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We present an ab initio calculation of the dc conductivity of amorphous silicon and hydrogenated amorphous
silicon. The Kubo-Greenwood formula is used to obtain the dc conductivity, by thermal averaging over
extended dynamical simulation. Its application to disordered solids is discussed. The conductivity is computed
for a wide range of temperatures and doping is explored in a naive way by shifting the Fermi level. We
observed the Meyer-Neldel rule for the electrical conductivity with EMNR=0.06 eV and a temperature coeffi-
cient of resistance close to experiment for a-Si:H. In general, experimental trends are reproduced by these
calculations, and this suggests the possible utility of the approach for modeling carrier transport in other
disordered systems.
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I. INTRODUCTION

Amorphous semiconductors are among the most impor-
tant electronic materials. a-Si:H is the universal choice for
thin film transistor applications in laptop displays and im-
portant photovoltaic material. Thin films of a-Si:H are
one of the promising active elements for uncooled micro-
bolometers1 as employed in focal plane arrays for night vi-
sion applications. Here, the temperature �T� dependence of
the electrical conductivity, and the temperature coefficient of
resistance �TCR� are of paramount importance. Experiments
suggest that there are well-defined conductivity regimes:
variable-range hopping at the lowest temperatures, phonon-
induced delocalization at higher temperatures, and ultimately
a metallic form of conduction �albeit with strong scattering�.
The venerable Meyer-Neldel rule2,3 �MNR� correlating the
exponential prefactor of the dc conductivity with the activa-
tion energy has been observed to be almost universally valid
in disordered systems. A microscopic understanding of these
effects is highly incomplete, though significant progress has
been made on MNR.3,4

Disordered solids pose definite challenges for transport
modeling. The Boltzmann equation is best suited to long
mean free paths, and is difficult to apply in these systems
with localized states and defects. Moreover, the topological
disorder must have a significant influence on the conduction
and a realistic calculation of transport must include this dis-
order explicitly �e.g., through a credible structural model�.

Modern density-functional simulations of materials rou-
tinely provide the Kohn-Sham5 eigenvalues and orbitals at
each step in a thermal molecular dynamics �MD� simulation.
The natural approximate connection of these quantities to
electrical transport is provided by the Kubo-Greenwood for-
mula �KGF�.6,7 The first application of the KGF to an atom-
istic model with computed electronic structure was by Allen
and Broughton8 for �metallic� liquid Si with a tight-binding
Hamiltonian. In this paper, we explore the utility of the KGF
with Kohn-Sham spectral properties to estimate the tempera-
ture dependence of the conductivity in a-Si and a-Si:H. An
adiabatic approximation is used for modeling the inelastic
scattering of the phonons �by thermally averaging the KGF

over a constant T MD trajectory�. The underlying idea is that
if the thermal fluctuations drive the unoccupied and occupied
states close together �in the spirit of Landau-Zener9 tunnel-
ing�, then the energy conserving � functions are nonzero, and
a finite contribution to the conductivity is made by such in-
stantaneous “snapshots” if the dipole matrix element is non-
zero. Doping, the MNR and TCR are obtained and shown to
be in reasonable agreement with measurements in a-Si:H.
The results are sufficiently encouraging to justify a fuller
exploration of the applicability of the method to disordered
systems more generally, including other amorphous semicon-
ductors and glasses and conducting polymers.

The paper is organized as follows. In Sec. II, we discuss
the underlying logic of the approach and some salient previ-
ous calculations, In Sec. III, we briefly describe models and
simulation procedures employed. In Sec. IV, we present re-
sults for a-Si and a-Si:H including the T-dependent conduc-
tivity, the effect of doping on the conductivity, and a discus-
sion of MNR and TCR for a-Si:H. Finally, in Sec. V we
draw conclusions.

II. APPROACH

A. Overview

Previous work on amorphous semiconductors and glasses
has shown that Kohn-Sham eigenvalues conjugate to local-
ized Kohn-Sham states are especially susceptible to the mo-
tion of the lattice10,11 �thermal fluctuation in the atomic co-
ordinates involved in localized states leads to a strong
modulation of such eigenvalues and eigenvectors�. Indeed,
the rms fluctuation of eigenvalues conjugate to localized
eigenvectors is proportional to the localization of the eigen-
vector as measured by the inverse participation ratio.11 Lo-
calized states appear in the gap, or in the spectral band tails.
Since they are close to the Fermi level, they play a role in
transport. The most elementary link between these states and
energies and the conductivity is the KGF, which is a natural
approach to strong scattering systems with short mean free
paths. With this in mind, we use the Kubo formalism and
current ab initio methods in conjunction with fairly realistic
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�structurally plausible� supercell models of a-Si:H to probe
the temperature dependence of the dc conductivity. Our work
is based upon �1� using Kohn-Sham states and energies in
Kubo’s expression for the conductivity and �2� adopting a
Born-Oppenheimer-like12 approximation of thermally aver-
aging the KGF �using instantaneous atomic configurations
obtained in the course of a thermal simulation at constant
temperature as snapshots�. Such an approach certainly has
limitations: for low temperatures in which one expects
variable-range hopping between defects the correct link to
first principles simulation would seem to require solutions of
the time-dependent Kohn-Sham equations14,15 or an ap-
proach more akin to a Miller-Abrahams13 model of the con-
ductivity. There are several studies which use the KGF to
compute the static lattice conductivity of amorphous
materials.16–18 The computed conductivity vanishes for local-
ized states in a static lattice.

As an alternative to the weak scattering theory of Ziman19

for liquid metals, investigators have used the KGF with vari-
ants of Car-Parrinello5 simulation to explore the conductivity
of liquid metals including, for example, l-NaSn alloys20 and
l-Na,21 with quite satisfactory results. It was found that Bril-
louin zone sampling had to be treated with care, which is
reasonable for a metallic system. The success of such calcu-
lations is one motivation to extend the approach to doped
amorphous semiconductors.22 Another significant develop-
ment of recent years is the Keldysh Green’s function ap-
proach offered to properly handle the effects of contacts and
finite potential drops for molecular electronics. An example
of this approach is the code TRANSIESTA.23

B. Connection to many-body formulation

The KGF has been applied on many occasions, and in
liquids in a mode very similar to what we report here. How-
ever, there is usually no discussion of the underlying as-
sumptions that connect the original many-body formulation
of the KGF to its usual use with MD averages and single-
particle states. For example, the KGF as used in these com-
putations is not formulated for use with inelastic processes,
and thus the use of MD trajectories and averaging requires
some discussion, which we offer in this section.

Consider a periodic perturbation Hint

Hint = Fe−i�t + F*ei�t �1�

acting on a system described via a many-body �electron and
phonon� Hamiltonian H. The transition probability from ini-
tial state �i to final state � f in the interval d� f under the
action of an external field �Hint� is24

2�

�
��� f�F��i��2��Ef − Ei − ���d� f , �2�

where � f and �i are eigenstates of many-body Hamiltonian
H

H� f = Ef� f, H = H0 + He-ph. �3�

Here, Ef and � f may be estimated by the ordinary time-
independent perturbation theory from the eigenfunctions �p

�0�

and eigenvalues Ep
�0� of

H0 = He + Hion. �4�

We adopt a Born-Oppenheimer description

H0�p
�0� = Ep

�0��p
�0� �5�

with

�p
�0� = �ep

	vp
�6�

and �ep
is a many-electron wave function, 	vp

is a many-
phonon wave function. The perturbation solution of Eq. �3�
is

�i = �
q

aiq�q
�0�, aiq = �iq + aiq

�1� + aiq
�2� + ¯ , �7�

Ei = Ei
�0� + Ei

�1� + Ei
�2� + ¯ . �8�

Detailed expressions can be found in standard textbooks. The
coupling He-ph between electrons and phonons need not be
small, in principle, eigenfunctions and eigenvalues of H can
be calculated to any order of He-ph.

In �→0 limit, we only keep the interaction Fe between
electrons and external field. Equation �2� is modified to

2�

� ��
epeq

��
vp

aefvf;epvp

* aeivi;eqvp	��ep
�Fe��eq

��2


 �
�Ef
�0� + Ef

�1� + Ef
�2� + ¯ �

− �Ei
�0� + Ei

�1� + Ei
�1� + ¯ � − ���d� f . �9�

Equation �9� shows that for �=0, the conservation of energy
is for the whole �electron+phonon� system. Phonons may
assist the transition between two many-electron states with
different energies if the phonons can serve as a source or sink
of energy.

At finite temperature, initial state �i can be any one of all
possible states. To calculate the total absorption power in a
sample, we average initial state �i with Boltzmann weight-
ing, and sum over all possible final states.

The Born-Oppenheimer approximation �BOA� starts with
a stable lattice A0: �X1

0 ,Y1
0 ,Z1

0 , . . . ,XN
0 ,YN

0 ,ZN
0 � as its zero-

order configuration. The sum over all possible phonon states
vp, one phonon, two phonon, etc., in Eq. �9� means that we
explore all possible configurations of the lattice around our
original conformation A0. In the configuration space spanned
by all N nuclear coordinates �X1 ,Y1 ,Z1 , . . . ,XN ,YN ,ZN�,
those configurations included in �vp

in Eq. �9� form a
3N-dimensional region D around A0.

The next step in the transition to current thermal simula-
tions is the treatment of the ions as particles with trajectories
governed by the classical equations of motion. For a system
such as a-Si:H, this is a defensible approximation, at least
above the Debye temperature. Now, consider a MD simula-
tion commencing from a configuration in the neighborhood
of A0. One would then approximate Eq. �9� by
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lim
n→�

1

n�
j=1

n
2�

�
���ef

�j��Fe��ei

�j���2��� f
�j��0� − �i

�j��0��d� f , �10�

where n is the number of MD steps. The assumption here is
that the MD trajectory faithfully reproduces the dynamical
processes implicit in Eq. �2�. In each MD step, the Kohn-
Sham scheme gives the fully dressed single-particle energy
for the electron-phonon coupling of the last MD step. In a
sense, each MD step can be interpreted as a sum of one
specific series of Feynman graphs in set D, if we classify
Feynman graphs according to the configuration space points
in D.

For a chosen basis set, one can expand many-electron
wave function � as a linear combination of Slater determi-
nants of single-particle functions r,

�eq
= �

q1q2¯qN

eq1q2¯qN
cq1

† cq2

†
¯ cqN

† �000 ¯ 0� . �11�

The interaction between electrons and external field E along
the x direction can be written in single-particle form as

Fe =  eE

2
��

rs

�r�x�s�cr
†cs, �12�

from which the usual Kubo-Greenwood formula is obtained
as we discuss in the next subsection.

Depending upon the order of perturbation of Eq. �7�, Eq.
�9� describes various many-phonon-assisted processes. This
agrees with the Green’s function formulation. The Green’s
function method25,26 starts from the free single electron
propagator and the free single-phonon propagator, which is
the contrast with the Kubo formula which starts with the
exact many-body wave function for the whole electron
+phonon system. Technically, the former will be much easier
than the latter. Both acoustic and optical phonon-assisted
hopping26 are worked out and applied to the transition rate
from one localized state to another localized state, and the
Meyer-Neldel relation is viewed as a consequence of assisted
activation whenever large activation energies compared to
typical excitation are involved.3,27

C. Application of KGF to disordered solids
at finite temperature

The derivation of the KG formula from linear response
theory and the fluctuation-dissipation theorem is available in
the original literature,6,7 and elementary derivations are pro-
vided in standard books on transport in amorphous
systems.4,28 In these latter derivations, first-order time-
dependent perturbation theory �Fermi’s golden rule� is em-
ployed to deduce an expression for the ac conductivity ����.
From either derivation, one expects the KGF to be valid in
the weak-field limit and for elastic scattering processes. The
form for the diagonal elements of the conductivity tensor for
the static lattice that emerges from the preceding discussion
is

������ =
2�e2�

�m2 �
ni

��n�p��i��2
fF��i� − fF��n�

��


 ���n − �i − ��� , �13�

where �=x ,y ,z, fF is the Fermi distribution, e and m are the
electronic charge and mass, p� is a component of the mo-
mentum operator, i and �i are the eigenstates and eigenval-
ues, and � is the cell volume. The ac conductivity is then
����= 1

3�����. In the rest of this paper, single-particle
Kohn-Sham states and eigenvalues are used for the �� , ���.

In the dc limit ��→0� the conductivity takes the form

��T� = −
1

3�
�
�

−�

�

������
�fF���

��
d� , �14�

where

������ =
2�e2�

�m2 �
ni

��n�p��i��2���n − �����i − �� .

�15�

We include thermally induced electron state and energy fluc-
tuations near the gap, by averaging expressions such as the
preceding over a thermal simulation. The dc conductivity is
computed from trajectory averaged quantities such as

�̄����� =
2�e2�

�m2 �
ni

��n
t �p��i

t��2���n
t − �����i

t − �� ,

�16�

where the bar denotes the average and we emphasize the
dependence of the various terms on the simulation time t.
This average then picks up thermal broadening effects in the
density of states, and also includes time dependence in the
dipole matrix element. A Gaussian approximant for the �
function with a width of 0.05 eV is used in our calculations.
We have repeated our calculations for widths between 0.01
and 0.1 eV, and our results do not change appreciably. We
insert thermally averaged diagonal elements as in Eq. �16�
into Eq. �14� to obtain the conductivities reported in this
paper.

The KGF includes three possible transitions: �i� localized
state to localized state, �ii� localized state to extended state,
and �iii� extended state to extended state. For amorphous
semiconductors, the upper tail of the valence band and the
lower tail of conduction band are localized. Below room
temperature, carriers are mainly distributed in localized
states, and �i� is the dominant conduction mechanism. With
increasing temperature, there are more holes in the upper
valence tail, which are available for the electrons in the
lower side of the mobility edge to transit. In addition, the
activation energy is lowered by thermal fluctuations. At
higher temperature, �ii� becomes more important until there
are enough carriers in extended states, and �iii� will become
the most effective conduction channel.

It is believed29 that the temperature range from
�300 to 700 K is dominated by “phonon-induced
delocalization,”30 in which the phonons aid the hopping
�though not to the extent of polaron formation�. Phonon-
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induced delocalization has been computed from the time-
dependent Kohn-Sham equation.14 It was observed that if
electron energies became close �because of phonon-induced
variation in energies�, mixing between the nearly degenerate
states could occur, which results in delocalization.15 This
leads to a monotonic and irreversible decrease in electron
localization. In the present calculation, the localization fluc-
tuates �see Fig. 2 of Ref. 15�. Thus, our calculation ignores
the explicit phonon-driven delocalization except insofar as
this effect is captured in the thermal averaging scheme.

There are sources of error in any calculation of this type,
which we must mention the following: �1� We use the Kohn-
Sham states computed in the local-density approximation
�LDA� as input into the KGF. �2� We employ very small
structural models ��70 atoms�. �3� Except for a few test
cases, we have used a minimal �single-zeta� basis. In fact, we
do this in part because this approximation gives a gap close
to the physical gap in a-Si. �4� Our simulations run for finite
time, though we have taken some care to verify that the
reported conductivities are adequately converged. �5� There
are physical mechanisms that should broaden the density of
states. Two of these arise from Brillouin-zone integration and
the sparse and discrete sampling of the tail states due to the
small cell size. �6� Classical dynamics �no quantization of
the vibrations� is employed throughout. These errors are
largely systematic, and as such, difficult to measure.

On the other hand, there are conditions that ameliorate the
situation. Where point �1� is concerned, quasiparticle states
for crystalline Si and the Kohn-Sham states are nearly
identical.31 Also, there is a strong thermal averaging effect:
even at room temperature, localized tail states can fluctuate
by tenths of an eV �far greater than kT�; this helps signifi-
cantly in connection with points �2�, �3�, and �5� above. Fi-
nally, there is a convincing body of empirical evidence that
the KGF employed as we do here �or with more primitive
Hamiltonians� provides reasonably quantitative predictions
for the dc conductivity. The use of a single zeta basis is
convenient computationally, and has the helpful feature that
the gap is much closer to experiment than a complete basis
calculation.

III. HAMILTONIAN AND STRUCTURAL MODELS

The ab initio local orbital code SIESTA was used to per-
form the density-functional calculations. We used a local
density approximation for the exchange-correlation �LDA�
using the Perdew and Zunger expression.33 Norm conserving
Troullier-Martins pseudopotentials34 factorized in the
Kleinman-Bylander form35 were used. We used a minimal
single � basis set for both Si and H.36 We solved the self-
consistent Kohn-Sham equations by direct diagonalization of
the Hamiltonian and a conventional mixing scheme. We used
the ��k=0� point to sample the Brillouin zone in all calcu-
lations. No scissor correction was used since the SZ optical
gap is close to experiment �a scissor shift is necessary for a
polarized basis�.

We have used two different well-relaxed models of a-Si64
�64 Si atoms�37 and a-Si61H10 �61 Si and 10 H atoms�.38 We
have prepared these models for six different temperatures of

200, 300, 500, 700, 1000, and 1500 K. In each case we fol-
lowed the following procedures. The two models were an-
nealed to a particular temperature for 1.5 ps which is fol-
lowed by equilibration for another 1.5 ps. Once the models
are well equilibrated, we performed a constant temperature
MD simulation for another 500 steps to obtain an average dc
conductivity for the respected models at a given temperature.

IV. RESULTS

A. Amorphous silicon: a-Si

Conductivity

We have studied the electronic properties at different tem-
peratures by using the inverse participation ratio �I� which is
defined as

I = �
i=1

N


qi����2, �17�

where N is the total number of atoms and qi��� is the Mul-
liken charge residing at an atomic site i for an eigenstate with
eigenvalue � with �i=1

N 
qi����=1. I is unity for an ideally
localized state and 1/N for an extended state.

In Fig. 1 we show the instantaneous inverse participation
ratio �IPR� as a function of energy for six different tempera-
tures. As the temperature increases from 200 to 1500 K, the
optical gap is reduced and eventually at higher temperature
all the states become extended with no energy gap in the
density of states. The gap closes both because of thermal
fluctuations on the eigenvalues and as a harbinger of the
transition to a metallic state at sufficiently high temperatures.
We emphasize that these are only snapshots: the instanta-
neous IPR of a well-localized state can vary15 by a factor of
�2. This is understood as a consequence of the fluctuation of
the eigenvalues 
as eigenvalues approach, the localized states

-6 -4 -2
0

0.02

0.04

0.06

IP
R

0

0.02

0.04

0.06

0.08

IP
R

-6 -4 -2
Eigenvalue (eV)

-6 -4 -2 0

T=200K T=300K T=500K

T=700K T=1000K T=1500K

(a) (b) (c)

(d) (e) (f)

FIG. 1. �Color online� Instantaneous snapshot of IPR �I� vs en-
ergy for different temperatures in a-Si64 model. The Fermi level
falls in the gap near E=−3.8 eV. Localization is significant near the
band edges, and note that the gap closes at higher temperature: at
1500 K the cell has melted, and at 1000 K the gap has closed be-
cause of thermal fluctuations in the eigenvalues.
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associated with the eigenvalues tend to strongly mix; mixed
states �involving more than one defect center� exhibit a re-
duced localization�.17

The dc conductivity of a-Si64 is accumulated over 500
instantaneous configurations for different temperatures: T
=200, 300, 500, 700, 1000, 1500, and 1800 K. At a tempera-
ture of 1800 K, the system is actually a liquid with a diffu-
sion coefficient of D�1.6
10−4 cm2 s−1 and a dc conduc-
tivity of �0.3
104 �−1 cm−1 which is reasonably close to
the measured value of �1.0−1.3�
104 �−1 cm−1,39 and value
of 1.75
104 �−1 cm−1 obtained in another computation.40

In Fig. 2 we have shown the dc conductivity of a-Si64 as
a function of temperature. The results from experiment for
selected temperatures are also shown. As we can see from
Fig. 1, increase in the temperature of the system enhances
delocalization of the states and eventually closes the optical
gap to change the material from semiconductor to metal. In
doing so the dc conductivity changes from 0.31

10−10 �−1 cm−1 for T=200 K to 0.24
103 �−1 cm−1 for
T=1000 K.

The temperature dependence of dc conductivity can be
written as

� = �oe�−Ea/kBT�, �18�

where Ea is the activation energy �Ea=EC−EF or Ea=EF
−EV� and �o is the preexponential factor of the conductivity.
By dividing the dc conductivity into two regions of low tem-
perature �T�450 K� and high temperature �T�450 K� we
extracted the Ea and �o. For low T, we have obtained Ea
�0.34 eV and �o�4 �−1 cm−1. For high T, Ea�0.45 eV
and �o�1
104 �−1 cm−1.

B. Doping

It is known that doping and temperature change result in a
shift in the position of Fermi level within the optical gap.42,43

In our simulation, we have computed the dc conductivity for
a given doping by shifting the Fermi level from its intrinsic
position toward the conduction band edge or valence band
edge in steps of 0.1 eV. This procedure allows us to “scan”

the optical gap and compute conductivity for different dop-
ing levels of n type as well as p type. Our scheme is quite
different from experiment. For example, it is known that the
energy of defect states depends upon the location of the
Fermi level,44 so that a proper calculation of doping �mean-
ing with explicit substitution of the donor or acceptor spe-
cies� should be carried out self-consistently. Our procedure is
a highly idealized version of the “doping problem,” which
shows how the conductivity varies for without compensation
effects. Because of these effects, it is not easy to correlate the
conductivities we predict for a specific Fermi level position
with the experimental concentration of dopant atoms. We are
presently extending this work by explicitly including B and P
impurities in the system and computing the conductivities
separately for each doped model system.45

The computed dc conductivity for different temperatures
as a function of chemical potential is shown in Fig. 3. As the
Fermi energy shifts toward either the valence or conduction
band from midgap the dc conductivity increases. At higher
temperature, since the optical gap closes, shifting the Fermi
level �doping as n type or p type� does not yield any signifi-
cant change on the conductivity.

C. Hydrogenated amorphous silicon: a-Si:H

1. Conductivity

In the same way that we analyzed a-Si64 in the previous
section, we have started our analysis of a-Si61H10 by com-
puting its electronic properties from the inverse participation
ratio. In Fig. 4, we have shown the IPR I of a-Si61H10 for
different temperatures. As can be seen from the figure, the
optical gap decreases with increasing the temperature which
is attributed to phonon-induced delocalization and structural
rearrangements.

The dc conductivity of a-Si61H10 as a function of tem-
perature is shown in Fig. 5 with comparison from experi-
mental results from Beyer et al.46 As we can see from Fig. 4,
increase in the temperature of the system enhances delocal-
ization of the states and eventually eliminates the optical gap
to change the property of the material from semiconductor to
metal. In this case, the dc conductivity changes from 0.54
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FIG. 2. �Color online� dc conductivity of intrinsic a-Si64 aver-
aged over 500 configurations computed at different temperatures.
The solid symbols are from our work, open symbols are from ex-
periment, open square from Ref. 39, open diamond from Ref. 18,
and open triangles from Ref. 41. The error bars are from equilibra-
tion time and discrete sampling of the density of states.
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FIG. 3. �Color online� dc conductivity of a-Si64 as a function of
doping, averaged over 500 configurations computed at different
temperatures versus chemical potential.
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10−10 �−1 cm−1 for T=200 K to 0.83
102 �−1 cm−1 for
T=1000 K.

For low T, we have obtained Ea�0.31 eV and �o
�5 �−1 cm−1. For high T, Ea�0.36 eV and �o�5

103 �−1 cm−1. These results are in a reasonable agreement
with the experimental results of Kakalios and Street.47 In
studying doped a-Si:H, Kakalios and Street showed that for
low T, the Ea ranges from 0.16 to 0.21 eV with �o�5
−10 �−1 cm−1.

The computed dc conductivity for different temperatures
as a function of chemical potential is shown in Fig. 6. As in
the case of a-Si64, the dc conductivity increases as the Fermi
energy shifts toward either the valence or conduction band
from midgap. At higher temperature, since the optical gap is
almost zero, shifting the Fermi level �doping as n type or p
type� does not yield any significant change on the conductiv-
ity.

As the temperature increases from 300 to 1000 K, the
contribution from the matrix elements decreases while the

contribution from the density of states near the Fermi level
increases. The temperature dependence of the dc conductiv-
ity is most affected by the density of states which is consid-
erably broadened for higher temperature.

2. Meyer-Neldel rule

In an activated picture of conduction, one expects an ex-
ponential conductivity �=�0 exp�−Ea /kT�. In disordered
systems �not limited to a-Si:H� there is a more complicated
T dependence and, in particular, a “kink” in the conductivity
in the vicinity of 400–500 K.48 The first interpretation for
this kink was the existence of distinct low-T and high-T con-
duction mechanisms with significantly different activation
energies �slopes�.49 It is argued that this interpretation is un-
likely, and that the effect arises from the temperature depen-
dence of the Fermi energy.48

For activated processes with activation energy greatly ex-
ceeding the characteristic excitation energies available to the
system, it is clear that a fluctuation involving many small
excitations will be needed to push the system over the bar-
rier. The larger the number of ways the necessary fluctuation
may be obtained, the more likely it is for the process to
occur. This line of thinking led to the concept of “multiple
excitation entropy” �MEE�, which has clarified the origin of
the Meyer-Neldel rule �MNR� in a great many different ac-
tivated processes.3 One can think of the KGF as representing
a sum over pathways, in which case the number of available
paths or “channels” is T dependent and certainly increasing,
reflecting an entropic increase as discussed in MEE.50

For preexponential factor �0 and activation energy Ea, the
MNR may be expressed as

�o = �ooeEa/EMNR. �19�

By performing a linear fit on the dc conductivity results, we
identified the intercept at �1/T�=0 to �o and the slope to the
activation energy Ea. There are number of experimental re-
sults on a-Si:H which show this exponential behavior with
EMNR=0.067 eV.51,52 By plotting � as a function of 1/T for
various dopants �n type as well as p type� we extracted �o
and Ea for a-Si61H10 and the results are shown in Fig. 7. Our

FIG. 4. �Color online� IPR �I� versus energy for different tem-
peratures in a-Si61H10. Similar comments to Fig. 1.
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FIG. 5. �Color online� dc conductivity of a-Si61H10 averaged
over 500 configurations computed at different temperatures. The
solid symbols are from our work, and the open symbols are from
experiment �Ref. 46�. The error bars are from equilibration time and
discrete sampling of the density of states.
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calculation gives an exponential behavior of �o as a function
of Ea, reflecting the Meyer-Neldel rule, with EMNR
=0.060 eV.

The preceding shows that the mechanism�s� responsible
for MNR are present in our simulations. The enhancement of
the conductivity with increased activation energy may be
qualitatively understood in our picture as being due to the
increase in electron-lattice coupling with increasing activa-
tion energy �and therefore localization�. Since localized
states possess an “amplified” electron-phonon coupling,10,11

some compensation is to be expected. In our picture, the
MNR arises because the phonons treat electrons with differ-
ent localizations �or Ea� differently, and the effect runs in a
direction consistent with experiment: for doping into the
more localized states, the electron-phonon coupling is larger
and serves to modulate the energies more strongly than for
more weakly localized states with smaller Ea.

3. Temperature coefficient of resistance

The other fundamental characteristic of a-Si:H is its
high-temperature coefficient of resistance, which makes it a
candidate for uncooled microbolometer applications. The
temperature coefficient of resistance �TCR� is defined as

TCR =
1

�o

� − �o

T − To
, �20�

where � is a resistivity at any given temperature T and �o is
a resistivity at a reference temperature To �usually room tem-
perature�. The computed result of TCR with a definition of
Eq. �20� using To=300 K for a-Si61H10 is shown in Fig. 8.
The experimental TCR near room temperature is −2.7% K−1

for a-Si:H.53 Our calculations predict a TCR value of
�−2.0% K−1 at T=350 K which is in agreement with the

experiment. Close to T0 the value of TCR is very sensitive to
temperature and has a wide range of values −�2.0
−5.0�% K−1.

V. CONCLUSION

We have presented a study of transport in an amorphous
material. We used the Kubo-Greenwood formula for comput-
ing the dc conductivity of a-Si64 and a-Si61H10 for different
temperatures. We have also presented the effect of doping on
the dc conductivity. As the Fermi level approaches either the
conduction edge or valence edge we observe an increase in
the dc conductivity. Once the EF exceeds the “mobility edge”
we observe a weak temperature dependence on the dc con-
ductivity. Though it requires further investigation �by using
various dopants in a-Si64 and a-Si61H10�, we observe the
Meyer-Neldel rule with exponential behavior for the preex-
ponential factor �o. The computed result for TCR is in good
agreement with the experiment. Further study of this method
involves using a richer basis set, and fuller k-point sampling
in the Brillouin zone �or essentially equivalently, larger
cells�. Furthermore “deconstruction” of the KGF will be un-
dertaken to explore the instantaneous configurations that pro-
vide significant contributions to �.

Our work shows that the simplest implementation of the
KGF shows promise for computing the electrical conductiv-
ity of disordered semiconductors, and this success hints that
it may be used with profit on other systems besides.
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line is an exponential fit which represents Eq. �19�. It is interesting
to compare this result of simulation to a similar plot for a large
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FIG. 8. The temperature coefficient of resistance �TCR� for
a-Si61H10 as a function of temperature.
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