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It is argued that the topological disorder in a small region of an amorphous solid can be described by the
local strain field related to the local reference crystal. A localized state spread only in one distorted region can
be viewed as the consequence of superposition among some Bloch waves and its scattering waves caused by
the disorder. A semiclassical approximation is used to calculate the phase shift of Bloch waves in the amor-
phous solid. The inverse participation ratio and the mobility edge positions in the band tails are formulated in
terms of the parameters of the disorder potential. The dependence of the band tail decay rates on static and
thermal disorders is derived. The model is applied to a-Si, though conceptually it can be implemented to a wide
range of disordered systems. The ab initio calculations on a-Si and the experimental results on a-Si:H are
compared to the predictions of our model.
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I. INTRODUCTION

The localization of electronic wave function in semicon-
ductors has been intensively studied over nearly 50 years.1

Most of the studies are based on the multiple-scattering ap-
proach due to Anderson. A state is localized in a small region
due to the presence of disorder if and only if the probability
amplitude of this state in that region remains finite after an
infinite time.2 Due to the complicated graph summation tech-
niques, the method is difficult to apply to the topological
disorder in amorphous systems.3 Though the method is quite
general, it doesn’t provide a direct link between the key
properties, such as the energy dependence of the inverse par-
ticipation �IPR�, the mobility edge position, and the decay
rates of the band tails, to the experiments or simulations.

In 1950s, Gubanov et al.4 suggested that the electronic
structure of an amorphous solid could be found by a spe-
cially designed perturbation method, in which that of the
crystalline counterpart is taken as zero-order approximation.
It relates the decay rates of the band tails to the width of the
bond-length distribution.4 A structural model of an amor-
phous solid obtained by introducing topological deformation
in the reference crystal is also reported.5,6 Other theoretical
and experimental works also suggest that the gross features
of the energy spectrum and the wave functions of amorphous
solid are not very different from its crystal counterpart.
Hence, for a deeper insight into the electronic structure of the
amorphous solid, the energy bands and the Bloch states of
the reference crystal �if it exists� can serve as a useful start-
ing point.

Since the disorder potential in amorphous solid is not
small, a localized state cannot be obtained from a finite order
perturbation theory with a Bloch state as a zero-order solu-
tion. On the other hand, semiclassical approximation has
been successfully applied to the transport properties in vari-
ous external fields.7 For inhomogeneous static field and/or
field of moderate frequency, one can always construct an
electronic wave packet so that its size is much smaller than
the characteristic length of the external field.8 The group ve-
locity vnk

g of an electron in the nth band with wave vector k
is given by8

vnk
g =

�Enk

� � k
, �1�

and the time evolution of the wave vector k is

�k̇ = eE + ev � B , �2�

where � is Planck’s constant, e is the charge of electron, Enk
is the dispersion relation of the nth band, and E and B are the
external electric field and magnetic inductions.7 The semi-
classical approximation does not assume that the external
field is small whereas Born approximation requires this.

In this paper, we first illustrate that for a wide class of
amorphous solids the disorder in a small region can be de-
scribed by the atomic displacements relative to a local refer-
ence crystal �LRC� of this region. The size of the LRC is
determined by the extent of the disorder of the distorted re-
gion. In a distorted region, the extra force F suffered by a
Bloch electron �nk relative to that of LRC is expressed by the
atomic displacements relative to the atoms in LRC. In a-Si
and other amorphous solids, the de Broglie wavelength of
valence state or conduction state is shorter than the charac-
teristic length of the disorder potential. The semiclassical
approximation9 can be used to compute the phase shift of a
Bloch state when it passes through a distorted region in an
amorphous solid. A simple localization criterion is formu-
lated based on the interference of primary Bloch wave and
waves scattered by the disorder potential. By using this cri-
terion, for the first time, we have related important physical
quantities such as the positions of mobility edges, the decay
rate of band tails, the energy dependence of IPR, etc. to the
disorder parameters, the coordination number, and the tran-
sition integral. Our predictions are consistent with the avail-
able experimental results. We have also performed ab initio
local density approximation �LDA� �Ref. 10� and tight-
binding approximation �TBA� �Refs. 11 and 12� calculations
on a-Si to verify our results.

II. LOCAL REFERENCE CRYSTAL

For a wide class of amorphous solids, the local coordina-
tion is quite similar to that of their crystal counterparts. Thus,
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to some extent it is reasonable to characterize the disorder in
an amorphous solid by considering the positions of atoms in
the amorphous solid as deviations from the positions in the
reference crystal, although one cannot assign one reference
crystal to a large disorder region as the deviation from the
reference crystal increases at larger distances. Hence, to ef-
fectively describe the disorder in an amorphous sample, one
has to divide the amorphous sample into many small regions
and for each small region introduce its own LRC. Such
LRCs would be different in their orientations and sizes,
which can be determined by the extent of disorder of the
corresponding regions in the amorphous solid.

Consider an amorphous solid with only one atom in the
primitive cell of its reference crystal. Take a small region in
the amorphous solid. One typical lattice site of the LRC of
this distorted region is denoted as Rn=n1a1+n2a2+n3a3,
where n�n1n2n3� is the lattice index and a1 ,a2 ,a3 are the
basis vectors. The positions of N1N2N3 atoms in the LRC are
completely determined by N1N2N3 groups of numbers
n�n1n2n3� �ni=1,2 , ¯Ni , i=1,2 ,3�. The positions �Rn� of
the atoms in a distorted region are determined by the dis-
placements un of atoms relative to the lattice sites Rn of its
LRC: Rn=Rn+un. For a given distorted region of an amor-
phous sample, �Rn� or �un� are N1N2N3 vectors which com-
pletely describe the positions of atoms. In current work, the
disorder in a distorted region is described by N1N2N3 given
vectors �un�, eventually by the disorder potential �Va−Vc�,

Va�r� − Vc�r� � �
n

�
�

�U�r − Rn�
�Rn�

un�, � = x,y,z �3�

where Va is the single electron potential of the distorted re-
gion, Vc is that of the corresponding LRC, r is the position
vector of electron, and U�r−Rn� is the single electron poten-
tial for the atom located at Rn. It is quite direct to write down
all the formulae for amorphous solid with several atoms in a
primitive cell of its reference crystal.

With a suitable choice of the origin and orientation of the
LRC, the atomic displacements in a distorted region relative
to its LRC can be made small. For a localized state confined
in one distorted region, we may describe it as superposition
of a Bloch state with its scattering waves caused by the po-
tential Va−Vc. Argument based on ordinary perturbation or
integral equation of scattering supports this point. Although
the orientations and/or sizes of local reference crystals may
be different, the electronic states and single electron potential
Vc are all the same. The difference among different regions
in an amorphous sample is reflected in the disorder potential
Va−Vc of each distorted region.

To describe the disorder in a whole amorphous sample,
we divide it into many small regions. The disorder in each
small region is characterized by a group of displacement vec-
tors �un�, or in the language of theory of elasticity,13 a local
strain field referring to its LRC. There exist relative rotations
among those distorted regions.13 Those relative rotations are
global constrains on amorphous structure and prevent it from
relaxing to the more stable crystal structure. We will confine
ourselves to the localized states spread in only one distorted
region of either shorter or longer bond.

We estimate the size of a distorted region which could be
described by one reference crystal, in other words the size of
a LRC. If the size of a region in an amorphous solid is too
large, the atomic displacement in some parts of the region
relative to a LRC can be larger than one bond length. Using
the atom in the nth cell of LRC as reference will make no
difference with using the atom in the �n+1�th cell. The at-
oms in those parts should be assigned to other LRCs. In
a-Si,14 the half width of the bond-length distribution is about
0.2 Å �relative width 0.2 Å

2.35 Å �. Suppose there is no fluctuation
in bond angles and dihedral angles, the fastest possible pace
to make the absolute displacement of a silicon atom reach
standard bond length 2.35 Å is about 12 Si-Si bonds. To
keep the deviation in a distorted region from its LRC small,
linear size less than 25 Å �including 12 bonds� is safe. Any
realistic change in bond length would be alternative after
several bonds. The linear size 25 Å is a rather conservative
estimation for a distorted region using one LRC. This esti-
mation is supported by a structural study: radial distribution
functions of a-Ge and a-Si calculated on elastically de-
formed nanocrystals of diameter about 3nm are in good
agreement with experiment on amorphous solid.6 Such a size
of a distorted region is large enough to assure the Bloch
states of its LRC is well defined. To understand this point,
one can use either of the following two opinions. The LRC
itself is infinitely large, only a small part represents the dis-
torted region of amorphous solid. This small part acts as
reference to describe the disorder of the region. Another
opinion is that for a big sample, zero boundary condition and
periodic boundary condition make no difference.15 Here big
means that the number of the atoms on the surface is much
smaller than the total number of the atoms in whole cluster.16

There are six degrees of freedom to choose a LRC: three
for the position of origin and three for the orientation. For a
distorted region in amorphous solid, a good LRC is the one
that minimizes the total deviation from LRC. This can be
obtained by a suitable choice of the origin and orientation of
the LRC. There could exist several good LRCs for a dis-
torted region in amorphous solid. The best LRC is the one
which has the smallest mismatch with its neighboring LRCs.
With the conditions �1� minimizing the displacements and
�2� the orientation has smallest mismatch with neighboring
LRCs, the LRC is unique for a region in amorphous solid.
Because we confined our discussion only to the localized
states spread in one distorted region, the error caused by
different good LRCs which satisfy condition �1� is a higher
order small quantity, the main disorder is reflected in Eq. �3�.
If condition �1� is satisfied, Eq. �3� would be the same for
different good LRCs.

III. LOCALIZATION CRITERION

The existence of reference crystal for each small region of
an amorphous sample suggests that an electronic state of the
amorphous solid could be viewed as a consequence of super-
position of some Bloch waves of the reference crystal with
their secondary scattering waves caused by the disorder,
since the characteristic length of valence states and conduc-
tion states are of the order of one bond length ��2.35 Å in
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a-Si 14�, a distance much shorter than the length scale in
which the disorder potential fluctuates obviously.14,17 Semi-
classical approximation,8,9 which requires a small ratio of the
de Broglie wavelength to the characteristic length of �Va
−Vc�, is justified for computing the phase shift of a Bloch
wave produced by disorder. In this approximation, one does
not need �Va−Vc� /Vc to be small.

A. Semiclassical approximation

Suppose a Bloch wave �nk is scattered by a distorted re-
gion D with a linear size L in an amorphous solid. Similar to
Eq. �2�, the time evolution of the wave vector of a Bloch
wave under the extra force F of D relative to its LRC is
given by

�k̇ = F = − ��Va − Vc� . �4�

Using the primitive cell of LRC numbering the atoms in
D, the x component of extra force suffered by an electron
relative to that of LRC is

Fx�r� = �
n�

�2U�r − Rn�
�Rnx � Rn�

un�
s , � = x,y,z , �5�

later its typical value is denoted as F. In current work, the
full information of �Rn� and �un� is not used. Only the size L
of the distorted region along the propagation direction of
Bloch wave, typical value of the extra force F in the dis-
torted region, the width of bond-length distribution, and the
width of bond angle distribution are taken as the parameters
of disorder. �un

s � includes the information of structural corre-
lation. These higher order structural correlations can be only
reflected in finer quantity such as the shape of band tails
which we will not touch in this work.

B. Localization criterion

A Bloch wave �nk passes through D, the phase shift �nk of
scattering wave along some direction is determined by the
propagation path L, and the change in wave vector caused by
the extra force F, by means of Eqs. �1� and �4�, is

�nk �
FL2

��kEnk�
. �6�

Because we are only concerned about the interference be-
tween a Bloch wave and its scattering wave, higher order
corrections to the wave function are irrelevant.

If the first coordination shell around an atom is spheri-
cally symmetric, the dispersion relation under TBA is18

Enk � En0 − zIn cos kxa . �7�

Here En0 is the middle of the nth band, z is the coordination
number, In is the transition integral for the nth band between
nearest neighbors, and a is the lattice constant in LRC. If the
phase shift �nk of the secondary scattering wave relative to
the primary wave is ��, then outside the distorted region D,
scattering wave will interfere destructively with the primary
Bloch state. A localized state is therefore formed inside D

due to the constructive interference of a Bloch state �nk and
its secondary scattering wave.

A more precise dispersion relation than Eq. �7� only com-
plicates formulae and will not lead to any qualitative new
feature. In the rest of this paper, we apply above criterion to
discuss semiquantitatively some features of the localized
states.

C. States close to the bottom or top of a band

Bloch states at the top of valence band and at the bottom
of the conduction band are more susceptible to the disorder
potential. The former is shorter wave, sensitive to details of
atomic displacements of a distorted region. The latter is long
wave: a small random potential will easily produce a change
in crystal momentum comparable to �k itself. In other
words, states with small group velocity are easily localized.
The group velocity of an electron in Bloch state �nk is vnk

g

�
zIna

� sin kxa; states near to the bottom �kxa�0� and states
near to the top �kxa��� have smaller vnk

g . According to Eq.
�6�, they are more easily localized than the states in the
middle of a band for a given disorder potential. For k close to
�
a �the top of valence band�, the group velocity of state �k

v is

vk
g=

IVz

� �
Et−E

IVz �1/2, where Et=E0
V+zIV is the top of the valence

band, and IV is the transition integral for valence band. By
Eq. �6�, for a valence state �k

v with energy Ek, the change in
phase shift with energy is given by

d�k

dE = FL2

a�Et−Ek�3/2�IVz�1/2 . For a
given distorted region with short bonds, Bloch states close to
Et will suffer larger phase shift. They are more readily local-
ized than the states in the middle of the band. Similar con-
clusion holds for the Bloch states in the bottom of conduc-
tion band. In Fig. 1 the IPR is plotted against electron energy
for a model of a-Si. Large IPR appears at the top and bottom
of a band, in agreement with the above prediction.

D. Location of the mobility edge

The upper mobility edge of the valence band is the deep-
est energy level Ek

�
V

V that the largest distorted region could

localize, i.e., produces a phase shift � for the corresponding
Bloch state. This leads to a specific wave vector k�

V �the
deepest one, i.e., mobility edge� which satisfies sin k�

Va
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0
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FIG. 1. �Color online� IPR of 512 atom model of a-Si dots from
ab initio calculation �Ref. 10�. Dashed line and solid line are from
two parameter �FL and zI� least-squares fit and eye guide fit with
Eq. �11�.
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= FL2

zIVa� in TBA. The energy difference between the top of
crystalline valence band and the mobility edge is Eme

V

=zVIV�1− 	1− � FL2

zVIVa� �2
1/2��
�FL2

a�
�2

zVIV
, last � only holds for

FL2

zVIVa� �1. It is obvious that stronger disorder potential and
narrower band lead to a deeper mobility edge. The lower
mobility edge of the conduction band can be obtained simi-
larly. The energy difference 	m between the lower mobility
edge of the conduction band and the upper edge of the va-
lence band is

	m � GC + ��FL2

a�
2

zVIV +
�FCLC

2

a�
2

zCIC � , �8�

where GC is the band gap of LRC, FC is the typical values of
extra force of long bond region, and LC is the linear size of
the long bond region. Because the van Hove singularity is
smeared out by the disorder, gap in amorphous solid is am-
biguous. 	m can be defined in a simulation by identifying
two mobility edge states from IPR.

In TBA, the middle of a band kxa= �
2 , the group velocity

reaches its maximum
zIna

� . By Eq. �6�, to localize the states in
the middle of the nth band, we need FL

zIn

L
a 
� �simulation

shows L
a �3 in the 64 atom a-Si model14�. States in the

middle of a band are most difficult to localize. If those states
are localized, the whole band is localized. A stronger local-
ization condition is 	k�k. In the middle of band kx= �

2
1
a , the

change in wave vector is FL
zIna . It leads to the condition to

localize whole band FL
zIn



�
2 . This value is too small compar-

ing with previous works19 based on multiple-scattering
method FL

zIn
�6–34. The deeper localized states are generated

by the deeper Bloch states and are spread in several distorted
regions �shorter-long-short-¯�. Current method only consid-
ers the states localized in one distorted region. One cannot
expect a better estimate.

E. Energy dependence of inverse participation ratio

The IPR I j of a localized eigenstate � j could be approxi-
mated as1 I j �

a3

� j
3 , where � j is the localization length of � j. If

a Bloch wave �nk suffers a phase shift � by some distorted
region to produce � j, it is localized in range � j :� j	k��. The
change in wave vector is 	k� FL

�kEk
,

� j �
�

	k
=

��kEk

FL
�

�zIna sin ka

FL
. �9�

According to Eq. �5�, the extra force F�, where  is the
relative change in lattice constant. To minimize the free en-
ergy, a denser region with shorter bonds and small angles
will gradually decay away toward the mean density rather
than exhibit an abrupt transit to a diluter region and vice
versa. Therefore the size L of a denser region is proportional
to . Equation �9� indicates �� a

2 ; this agrees with the result
of the deformed coordinate method.4 The advantage of Eq.
�9� is that it also reveals the role of the coordination number
z and the transition integral I. The dependence on k �wave-

length and propagation direction of Bloch wave� is displayed
too in Eq. �9�: close to band edge, ka�0 or �

a , the localiza-
tion length is small, and IPR is high �see Fig. 1�.

Making use of Eqs. �9� and �7�,

� j�Ekj� =
�zIVa

FL
�1 − �Ekj − bme

V + zIV − Eme
V

IVz
2�1/2

,

�10�

bme
V is the location of the upper mobility edge of valence

band. When we approach bme
V from the upper side with

higher energy, it is easy to find � j→L from Eq. �10�, local-
ization length � approaches to the size L of whole region as
�Ekj −bme

V ��, where 1
2 ���1, and it is close to the lower

bound of previous works.20 The trend expressed by Eq. �10�
is consistent with a simulation based upon time-dependent
Schrodinger equation.21

For a localized state derived from Bloch wave �kj
v , the

energy dependence of IPR can be found

I�Ekj� �
�FL/�zIV�3

	1 − �Ekj−E0
V

zIV
�2
3/2 . �11�

This is a prediction of our work. Equations �10� and �11� are
not quite satisfied because Ekj is the corresponding energy
level in LRC, not the eigenvalue of the localized state � j. It
can be cured by taking into account energy-level shift caused
by the disorder. Figure 1 shows IPR vs eigenvalues in a 512
atom model of a-Si.14 As expected from Eq. �11�, IPR de-
creases from higher values at band edges to smaller values in
the band interior. The functional form �11� fits the simulation
quite well.

According to Eq. �11�, the least squares fitting parameters
in Fig. 1 are �FL�V=1.256 eV, �zI�V=3.185 eV, E0

V

=−7.390 eV, �FL�C=1.437 eV, �zI�C=3.502 eV, and E0
C

=−1.080 eV. The width of valence band of c-Si is about
2.7eV and the width of conduction band is22 about 2.3eV.
The fit parameters are reasonable, something like what we
expected for Si. Gap for c-Si is22 1.12eV, substitute above
parameters into Eq. �8�, and the distance between mobility
edges is 2.205eV. It falls in the range 1.58–2.43 eV of the
observed optical gap.23–25

The aim of this work is to use crystalline parameters such
as transition integral, coordination number, and disorder pa-
rameters of amorphous solid to compute some features of the
localized states. From the bond-length distribution and the
bond angle distribution of an amorphous solid, the extra
force F and the linear size L of a denser or diluter region can
be estimated. Since the fitting parameter of the band width is
not far from the realistic crystalline band width, a direct
computation will give a reasonable IPR curve and a sensible
value of the distance between two mobility edges.

F. Decay rate of the band tails

In a distorted region of a-Si where bonds are shortened,
valence states have more amplitude in the middle of bonds.
The disorder potential is important only in the middle of
bonds rather than close to the core of atoms. Electrons will
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feel Va−Vc more than a region where bonds are closer to
normal. Valence tail states are easily localized in a distorted
region with shorter bonds.14,26 On the other hand, in a dis-
torted region with longer bonds, the conduction levels are
lowered and the probability of conduction electrons staying
in the middle of nearest-neighbor atoms becomes larger than
a region where bonds are closer to the mean. The conduction
tail states are more readily localized in a distorted region
with longer bonds and large angles.14,26

The effect of three- and four-point atomic correlations on
the shape of band tail is subtle: localized states adhere to
one-dimensional �1D� filaments in amorphous solid.17 Ac-
cording to the theory of line shape,27 the decay rate EU

V�C� of
valence �conduction� tail can be derived from the relative
shift of energy levels of LRC caused by disorder. Suppose
	b is the width of the bond-length distribution, the blurring
�k in wave vector k is 	b

b k, where b is the average bond
length. The shift of level Ek

v �Ek
c� for a Bloch state �k

v ��k
c� in

valence �conduction� band by the disorder is in 	Ek
v�c�

=�d��Va−Vc���k
v�c��2. The relative level shift due to this

bond-length distribution is �k d
dk	Ek

c. It is easy to see Va

−Vc�
	b
b Vc. Then

EU
V�C� �

	b

b
k

1

k

	b

b
Vc = �	b

b
2

�Vc� =
�	b

b
�Vc�2

�Vc�
. �12�

If we make a correspondence between the structural disorder
	b
b �Vc� and on-site spread W of levels, Eq. �12� is comparable

to the results of the models of on-site disorder EU�0.5W2

B �B
is the band width28� and EU� �

4
W2

3�2 �2

2ml2

, where l and W are

correlation length and variance of random potential.29 Equa-
tion �12� is also consistent with an assumption made by
Cody et al.30 to explain their absorption edge data in a-Si:H.
Since the width of the bond-length distribution is 	b

b �0.1
and �Vc��1–10 eV, the order of magnitude of mobility edge
should be � 	b

b ��Vc�, several tenths of eV to 1eV, so that the
decay rate EU

V�C� of band tails is around several tens to several

hundred meV. Both estimates agree with experimental
observations.31 Equation �12� indicates that EU

V�C� is propor-
tional to static disorder that is characterized by � 	b

b �2, in con-
sistent with the fact that EU

V�C� of a-Si:H increases with depo-
sition power.31 	b and b could also be explained as the width
and the average value of the bond angle distribution.

Since local compression is compensated by adjacent local
tensile in any realistic amorphous solids, EU

V � �V

�C EU
C, where

�V ��C� is an order one dimensionless constant characterizing
the peak �node� of valence �conduction� states. In a-Si and
a-Si:H, disorder potential �Va−Vc� takes larger value in the
middle of Si-Si bonds. Since valence states are more in the
middle of bonds than conduction states,32 they feel the dis-
tortion more. Therefore �V��C. One expects EU

V �EU
C. This

agrees with measurements in a-Si:H: EU
V �43–103 meV vs

EU
C �27–37 meV, linear relation among EU

V and EU
C has also

been observed.31

To test the correctness of Eq. �12�, for six a-Si models
with 20 000 atoms, we undertook a TBA calculation on den-
sity of states.11,12,33 EU

V�C�, the width �cos � of bond angle dis-
tributions, and the width �BL of the bond-length distribution
are extracted for each model. The left panel of Fig. 2 clearly
shows good linear relation between EU

V �EU
C� and �cos �

2 ,
curves pass origin �decay rate EU

V�C� is zero for crystal due to
van Hove singularity� as displayed in Eq. �12�. Equation �12�
should be further tested in ion implanted samples, where a
continuous increase in disorder from crystal to amorphous is
realized by increasing the dose.34 The EU

V �EU
C� vs �BL

2 curve
does not pass origin �see the right panel of Fig. 2�, this is an
indication that the bond angle disorder is a little more deci-
sive in determining the shape of a band tail than the bond-
length disorder for a well-relaxed structure.14,26

The electron-phonon interaction is strong in amorphous
solid.35 At finite temperature, the displacement of an atom in
amorphous solid from the corresponding position in the LRC
at zero temperature is a vector sum of the static displacement
us and thermal vibration displacement uT�t� from the zero-
temperature configuration of amorphous solid, where t is the
time moment. In ordinary optical-absorption experiment,
time interval T is much longer than the period of the slowest

(b)(a)

FIG. 2. �Color online� Left: EU
V and EU

C vs �cos �
2 . Six squares are extracted from the density of states of six models computed in TBA,

dotted line and solid lines are least square fits with and without �0,0� points. Right: EU
V and EU

C vs �BL
2 .
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mode, therefore the observed decay rate of conduction-band
tail is a time average EU

C = 1
T�0

Tdt�C�
us+uT�t�

a �2�Vc�. Atoms vi-
brate around their equilibrium positions in amorphous solid
and the time average of the cross term us ·uT�t� is zero. Thus
decay rate from static disorder and the decay rate from ther-
mal disorder is additive30 EU

C =EUs
C +EUT

C , where the static
part EUs

C =�C�
us

a �2�Vc�. Thermal part is given by a similar

expression EUT
C =�C�uT

2 / a2��Vc�, where uT
2 = 1

T�0
Tdt	uT�t�
2 is

the long-time average of the square of amplitude of vibra-
tion. An ultrafast probe of absorption edge may find the os-
cillation in EU

C. Since uT
2 �

kBT

BC
a2, where BC is typical binding

energy in the diluter regions where conduction tail states are
localized.18 EU

C linearly increases with temperature, EUT
C

=�CkBT
�Vc�
BC

. Similarly, the result holds for EU
V . The is consis-

tency with the fact that above 350 K absorption edge linearly
increases with kBT in a-Si:H.36,37 Because BV�BC, EU

C is
more susceptible to the thermal disorder38 than EU

V , as ob-
served in Ref. 37.

IV. SUMMARY

Two major assumptions of this work are �1� the existence
of local reference crystals for amorphous solid and �2� semi-
classical approximation. For a wide class of amorphous sol-
ids with topological disorder, by viewing an amorphous solid
as many distorted regions relative to corresponding LRCs,
we push forward some understandings on the localized states
confined in one distorted region. The predicted energy de-
pendence of IPR, the distance between two mobility edges,
and the dependence on static disorder and on thermal disor-
der of the decay rate of band tails agree with available ex-
periments and simulations. We explained the fact that va-

lence tail states are more localized in a denser region with
smaller bond angles and shorter bond lengths and conduction
tail states are more localized in diluter region with longer
bond lengths and larger bond angles in a-Si.14,26

The present work is inapplicable to amorphous solid for
which the reference crystal does not exist. In principle for
each crystal, there exists an amorphous solid for which the
local coordination is similar to that of the crystal. The in-
verse is not true. In an amorphous solid, atoms fill space
without the requirement of translational invariance. There are
more types of amorphous solids than those of crystals. For
some amorphous solids, it is quite possible that we cannot
find a similar crystal structure as reference. For those amor-
phous solids, current model is not applicable. Given an arbi-
trary set of atomic positions �Rn�, correlated or random,
Anderson’s multiple-scattering consideration can be used,
which does not need Bloch wave as starting point.

In this work, we left many important questions un-
touched: the justification of Eq. �4� in the same footing as
Eq. �2�, localized states spread in several distorted regions,
the consequence of higher order atomic correlations, the ori-
gin of exponential shape of band tails, the origin and ther-
modynamic consequence of the relative rotation among dis-
torted regions, etc. We will address some of them in an
upcoming paper.39
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