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We introduce a theoretical framework for computing transport coefficients for complex materials with

extended states, and defect or band-tail states originating from static topological disorder. As a first

example, we resolve long-standing inconsistencies between experiment and theory pertaining to the

conductivity and Hall mobility for amorphous silicon and show that the Hall sign anomaly is a

consequence of localized states. Next, we compute the ac conductivity of amorphous polyaniline. The

method may be readily integrated with current ab initio methods.
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The atomistic understanding of electrical conductivity
[1,2] and the Hall coefficient [3–7] is a key unsolved
problem in the physics of amorphous semiconductors [8].
The challenge is due to two factors: (1) the existence of
localized states of varying physical origin; and (2) at mod-
erate temperature, both localized states and extended states
are accessible excited states [9,10]. Previous work on
the conductivity [11,12] and Hall coefficient [13–17] of
amorphous semiconductors has involved either Miller-
Abrahams theory or small polaron models [9]. Neither
approach is ideal for amorphous semiconductors, with their
complex menagerie of localized states due to defects, and
tail states due to topological [18] or chemical disorder [8]
and electron-phonon couplings strongly dependent upon
carrier localization [19].

In this Letter, we first develop a novel formalism for
estimating the linear response to a mechanical perturbation
[20]. The method properly includes the four possible tran-
sitions between extended or localized initial and final
states. The full results and many intermediate details are
provided in Ref. [21]; here we require only transitions
between localized states. Our work resolves the puzzle of
the sign anomaly of the Hall mobility in a-Si:H:, provides
the temperature dependence of the transport coefficients,
and accurately predicts the ac conductivity of polyaniline.
The new formalism is expected to be applicable well
beyond the examples of this Letter and lends itself to
inclusion in current ab initio schemes.

In the small polaron hopping regime, the Kubo linear
response formula [20] has been used to compute conduc-
tivity and Hall mobility [12,15–17]. The key mathematical
obstacle to computing the current-current correlation func-
tion is the imaginary time integral [12,15–17], which re-
sults from the commutator between the microscopic
current and density matrix [20]. For a ‘‘mechanical pertur-
bation’’ (for which an external disturbance may be ex-
pressed with additional terms in the Hamiltonian [20]),
the local density operator !̂ of a quantity (charge, energy,

etc.) can be easily constructed [22]. We can avoid this
troublesome commutator.
We first average !̂ over a state !0ðtÞ of the system with

the mechanical perturbation, from which the microscopic
local density !ðr; tÞ ¼ h!0ðtÞj!̂j!0ðtÞi is obtained. Next
we calculate @!ðr; tÞ=@t by means of the time-dependent
Schrödinger equation i@@!0ðtÞ=@t ¼ H0ðtÞ!0ðtÞ, where
H0ðtÞ is the total Hamiltonian of ½systemþ
mechanical perturbation&. The third step is to apply the
local density (charge density, energy density) continuity
equation: @!ðr; tÞ=@tþr' jmðr; tÞ ¼ 0; the microscopic
response jm (current density, energy flux, etc.) is then
expressed in terms of !0ðtÞ. Practically speaking, !0ðtÞ
may be computed to the required order with perturbation
theory. By substituting !0ðtÞ into the expression for
jmðr; tÞ, one can obtain the microscopic response to the
required order of mechanical disturbance. Spatial and en-
semble average are taken at the final stage. The desired
transport coefficients can then be extracted from the en-
semble average of the spatially averaged flux j.
Since the state of the system is determined from the

initial conditions, averaging over the initial state can be
delayed until the final stage. Thus we can avoid the com-
mutator between flux and density matrix, i.e., the integral
over imaginary time.
Consider then, a system withNe electrons andN nuclei

in the presence of an electromagnetic field with potentials
(A, "), the charge density of state !0 at r !0ðr; tÞ ¼R
d#!0(!̂ðrÞ!0, where the arguments of wave func-

tion !0 are (r1 ' ' ' rNe
;W1 ' ' 'WN ; t), W1 is the position

of the first nucleus, etc. !̂ðrÞ ¼ P
je$ðr) rjÞ )P

LZLe$ðr)WLÞ is the charge density operator.
d# ¼ dr1 ' ' ' drNe

dW1 ' ' ' dWN is the volume element
in configuration space. The evolution of the state is deter-
mined by the time-dependent Schrödinger equation for
which the total Hamiltonian includes the interaction be-
tween system and external field. The contribution from the
electrons is:
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j mðr; tÞ ¼
i@eNe

2m

Z
d#0ð!0rr!

0( )!0(rr!
0Þ

) e2Ne

m
Aðr; tÞ

Z
d#0!0(!0; (1)

where the arguments of !0 are (r; r2; ' ' ' ; rNe
;

W1;W2; ' ' ' ;WN ; t; ), d#0 ¼ dr2 ' ' 'drNe
dW1dW2 ' ' '

dWNn
. In Eq. (1), the antisymmetry of !0 under exchange

of particles was used, and the Coulomb gauge r '
Aðr; tÞ ¼ 0 was adopted to simplify the expression.
jmðr; tÞ is gauge invariant[14,23]. Without the nuclear
coordinates, Eq. (1) is identical to the form used by BCS
to compute paramagnetic and diamagnetic currents for
superconductors in which Bloch states are not radically
modified by the electron-phonon (e-ph) interaction [23].
Equation (1) is a generalization to arbitrary strength of
e-ph interaction, and may be used for the localized carriers
in amorphous semiconductors or the polarons in ionic and
molecular crystals. The ratio of the second term to the first
term is eA=p (p is electron momentum), so that the con-
tribution from the 2nd term may be neglected.

We now apply Eq. (1) to compute the conductivity and
Hall mobility of an amorphous semiconductor. Since the
carrier concentration is low in lightly-doped amorphous
semiconductors, one can invoke the single-electron ap-
proximation, and !0ðtÞ for jm may be replaced by the
single-electron wave function c 0ðr; x1; x2; ' ' ' ; x3N ; tÞ,
where r is the coordinate of the carrier, x1; x2; ' ' ' ; x3N
are the displacements of 3N vibrational degrees of

freedom. Using perturbation theory, one can expand
c 0ðtÞ to the required order of external field [10,21]. We
use A with subscripts to label localized states, and denote
the coupling between two localized states "A and "A1

caused by external field as JfieldA1A
¼ R

dr"(
A1
hfm"A, where

hfm ¼ ði@e=mÞAðrÞ ' rr þ e2A2ðrÞ=ð2mÞ þ e"ðrÞ. The
spatially averaged microscopic current density to second
order of Jfield is

jðs; tÞ ¼ )Ne@e
m"s

Z
"s

dr
Z !Y3N

j¼1

dxj

"
fImðc ð0Þrrc

ð1Þ(

) c ð1Þ(rrc
ð0ÞÞ þ Imðc ð0Þrc ð2Þ(

) c ð2Þ(rc ð0Þ þ c ð1Þrc ð1Þ(Þg; (2)

where c ð1Þ is change in state to order Jfield, and c ð2Þ is
change in state to order ½Jfield&2, where c ð0ÞðtÞ is the state of
a carrier at time twithout external field."s is the ‘‘physical
infinitesimal’’ volume of Kubo [24]. Because the initial
state of the phonon-dressed carrier is unknown, we need to
average jk (k ¼ x, y, z) over the initial phonon distribution
and single-electron states. To compute the conductivity, we
only require the order Jfield term of Eq. (2). If one applies a
voltage drop across the material, the potentials are A ¼ 0
and " ¼ )2E0 ' r cos!t. Using perturbation theory, one
can compute c ð0Þ and c ð1Þ to order J1. By substituting c ð0Þ

and c ð1Þ into the first term of Eq. (2), one can use jx ¼P
k%xkE0k etc. to find the conductivity tensor. The con-

ductivity from the LL transitions is [21]:

Re%jkð!Þ
Im%jkð!Þ

#
¼)Nee

2

"s
Imi

X

AA1

½IA1Aþ*IA1A)&+fðE0
AÞ½1)fðE0

A1
Þ&vk(

A1A
ðE0

A)E0
A1
Þ)1ðvT)vÞjA1A

)Nee
2

"s
Im

X

AA1A3

fðE0
AÞ½1)fðE0

A1
Þ&½1)fðE0

A3
Þ&ðvT)vÞjA1A3

ðE0
A)E0

A1
Þ)1@)1vk(

A1A
JA3A½IA3A1Aþ*IA3A1A)& (3)

þ Nee
2

2@"s

X

A2A1A

fðEAÞ½1) fðEA2
Þ&ImðvT ) vÞjA2A

fðE0
A1

) E0
A2
Þ)1ðvk

A2A1
Þ(J(A1A

ðQ1A2A1Aþ *Q1A2A1A)Þ

þ J(A2A1
ðE0

A ) E0
A1
Þ)1ðvk

A1A
Þ(ðQ2A2A1Aþ *Q2A2A1A)Þg:

Re%jkð!Þ takes the positive sign and Im%jkð!Þ takes the
negative sign. Equation (3) is a special case of the general
conductivity formula (Eq. (42) of Ref. [21]) for LL
transition (between localized states). Unlike previous theo-
ries [9], the dc conductivity may be directly extracted from
Eq. (3) without a limiting process. Here, vk

A1A
¼R

dr"(
A1
vk"A, v

k ¼ )i@m)1@=@xk, v
T is the transpose

operator of v. E0
A is the eigenvalue of state "A, fðE0

AÞ
is the Fermi distribution. JA1A¼

R
dr"(

A1

P
p=2DA

Uðr)
RpÞ"A is transfer integral from"A to"A1

,DA is the spatial
region in which "A is nonzero, p =2 DA indicates the atoms
not in DA [10]. In Eq. (3), the first term is the order J0

contribution, the remaining terms are order J1 contribu-
tions. Here Is and Qs are vibrational contributions.
IA1A*ð!; TÞ has dimension of time (denote its order as
t*A1A

). t*A1A
may be interpreted as the mean free carrier

time, indicating the time evolution of c 0ðtÞ in a field-driven
2-site transition, cf. Eq. (C1) in Ref. [21]. Similarly the
twofold time integrals IA3A1A*, Q1A2A1A*, and Q1A2A1A*,
have dimension of ½time&2, reflect the time evolution of
c 0ðtÞ in 3-site transitions induced by transfer integral J,
they have same order of magnitude ½t*A3A1A

&2, cf. Eqs. (C3,
C7-C9) in Ref. [21]. @)1JA3A½t*A3A1A

&2 may be explained as
the mean-free time in a 3-site process. The interference
between Jfield and J is displayed in the interference between
two components (reached through different paths) of the
final state [21]. The interference between different paths in
real space [14] is a special case of the present ansatz. At high
temperature kBT > @ #! ( #! is first peak in phonon spec-
trum), Is and Qs can be approximately computed using
the method of steepest descent (see Appendix D in
Ref. [21]). For example:
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IA1A* ¼ e)&@ð!0
A1A

,!Þ=2)&'A1A
=4
$
C)1=2

X1

n¼0

ð)iÞnð!)!0
A1A

Þn

n!Cn=2
$
%
nþ 1

2

&
) i

!X

(

1

2
ð)A1

( ) )A
(Þ2!( cosh

&@!(

2

")1
#
; (4)

where )A1
( is the shift in origin of the (th normal

mode caused by a carrier in state "A1
, 'A1A ¼

1
2

P
(@!(ð)A1

( ) )A
(Þ2 is the reorganization energy for a

LL transition[10]. C ¼ @)2kBT'A1A[10,21]. The mean-
free time decreases with increasing 'A1A and energy

difference: t*A1A
- @ðkBT'A1AÞ)1=2e)&@ð!0

A1A
,!Þ=2)&'A1A

=4
.

The average mobility * is defined by %xx ¼
e2ðNe="sÞ*. From Eq. (3), one can see that * depends
on the energy distribution and spatial distribution of local-
ized states. A typical value of * can be estimated:
* - v2

A1A
tA1AðE0

A ) E0
A1
Þ)1 þ vA1AvA3A1

ðt2A3A1A
@)1JA3AÞ+

ðE0
A ) E0

A1
Þ)1. As a test, we apply Eqs. (3) and (4) to the

frequency dependence of the ac conductivity in polyaniline
at T ¼ 300 K [25]. The Austin-Mott !0:8 law [9] derived
from dipole loss does not accurately fit experiments [26].
In Fig. 1, we fit the data [25] with the first three terms
(a quadratic polynomial in !) in Eq. (4). Because the
highest frequency of external field 106 Hz . T ¼
300 K, factors e*&@! / 1 do not play a role in the low
frequency regime @! . kBT.

To describe the Hall effect, one needs c 0ðtÞ to second
order of Jfield: one Jfield includes electric field Ex, and
another includes magnetic field Bz. After substituting
c ð0Þ, c ð1Þ and c ð2Þ into the second term in Eq. (2), and
averaging over various initial conditions,%yx is determined
from jy, see Eq. (49) in Ref. [21]. The primary temperature
dependence of %yz is included in the time integrals which
are obtained from integrating out vibrational states. There
are two types of 3-site processes (Fig. 10 of Ref. [21]). The
twofold time integrals result from electron-phonon inter-
action and have dimension ½time&2 and the same order of
magnitude s2AA2A1

, where sAA2A1
is the characteristic time

for the 3-site processes. Similarly there are 8 types of 4-site
processes (Figs. 11 and 12 of Ref. [21]), they lead to
threefold time integrals, the order of magnitudes are
s3AA3A2A1

, where sAA3A2A1
is the characteristic time for

the 4-site processes. sAA2A1
(3-site processes) and

½@)1Js3AA3A2A1
&1=2 (4-site processes) may be explained as

the mean-free times in presence of magnetic field. The
order J1 contributions of %yx come from various 4-site
processes, their order is nee

2ð@)1JA3As
3
AA3A2A1

Þ@)2

½BzeL
A2A1
z =m&xA1AvA3A2

, where x and v are the matrix

elements of coordinate and velocity, LA2A1
z ¼ R

dr"(
A2

Lz"A1
is the matrix element of the z component of elec-

tronic orbital angular momentum. The widely used 3-site
process in the literature[4,7,14–16] is a special case of
Fig. (11) of Ref. [21] when A2 ¼ A3. The order J0 con-
tributions of %yx comes from 3-site processes. Their order
is nee

2s2AA2A1
@)2ðBzeLz=mÞxv. It roughly corresponds to

the ‘‘interference’’ contribution (involving two sites)[16].
They are neglected in some other calculations[14,17].
The ratio of the order J1 terms to J0 terms is
ð@)1JA3As

3
AA3A2A1

Þs)2
AA2A1

- 1. For a more quantitative com-

parison with experiment, one needs to apply Eq. (49) in
Ref. [21].
Amorphous semiconductors are isotropic, so that one

may estimate the Hall mobility as: *H ¼ B)1
z %xy=%xx -

e@ xvs2AA2A1
t)1
A1A

, where xA3A ¼ i@vA3AðE0
A ) E0

A3
Þ)1. For

a-Si:H [8], + and RA1A - 5–10 %A, J - 0:02 eV, one has
*H - 0:1–0:2 cm2 V)1 sec)1. The temperature depen-
dence of *H may be obtained from those of %xy and %xx:

*H - e@ xvs2AA2A1
t)1
A1A

exp
$
)

Ea
A1A

2kBT
) 3

2
kBT

+
X

(

ð@!(Þ)1ð)A1
( ) )A

(Þ2
#
: (5)

At low frequency, the phonon spectral density / !2, so that
the sum in Eq. (5) converges. Figure 2 gives the Hall
mobility vs temperature for n-type a-Si:H. Both Eq. (5)
and the Friedman-Holstein result [14], are roughly consis-
tent with experimental data[8]. Ea

A1A
¼ 'A1Að1þ

&GA1A='A1AÞ2=4 is estimated from typical parameters
&GA1A ¼ 0:05 eV and 'A1A ¼ 0:2 eV for a-Si [10].
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FIG. 1 (color online). ac conductivity of polyaniline as a
function of frequency at T ¼ 300 K: star symbols denote ex-
perimental data [25], solid line is from the first three terms in
Eq. (4).
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FIG. 2 (color online). Hall mobility vs temperature: square
symbols for n-type a-Si:H [8], dashed line from best fit of
Friedman-Holstein formula [14], solid line is from Eq. (5).

PRL 105, 186602 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

29 OCTOBER 2010

186602-3



We may demonstrate the sign of Hall voltage from Ehrenfest’s theorem. The expected value for the acceleration on a
carrier is:

d

dt

Z
d#c 0(ðtÞ

%
dr

dt

&
c 0ðtÞ ¼ ) qi@

2m2

Z
d#c 0(c 0r +Bþ 1

m

Z
d#c 0(ðtÞ½qE)rrVðr; fWngÞ&c 0ðtÞ

) q

m2

Z
d#c 0(B+ ð)i@rrc

0Þ þ
Z

d#c 0( q
2

m2 ðB+AÞc 0; (6)

where q is the charge of the carrier. If a system has only
extended states, because the mean-free time of a carrier is
much larger than the effective interaction time with pho-
nons and defects, the drift velocity is along the direction of
qE for a nearly free carrier. The direction of the average
magnetic force in an extended state (diagonal element) is
the same as the classical one qE+B, the sign of the Hall
voltage is as expected. Because the force exerted on a
carrier by the external E field is much weaker than
the binding force of disorder potential, the time average of
m)1

R
"(

A1
ð)i@rr ) qAÞ"A1

in a localized state "A1

is zero: no net magnetic force acts on a localized carrier.
The mean trapping time that a localized carrier spends
in a localized state before making a transition to other
states is -@J)2ð'kBTÞ1=2eEa=kBT (high temperature) or
-@J)2ð&GÞ (low temperature), where &G is the typical
energy difference between the final and the initial states
[10]. The mean transition time needed for a transition event
is -mdR=@, where d is a typical bond length, R is the
distance between two localized states for a LL transition,
R is localization length for a LE transition. The mean
transition time is much shorter than the mean trapping
time in a typical localized state. Comparing with the tran-
sition speed @=ðmdÞ, the speed qEdR=@ obtained from
external electric field E during the transition time is negli-
gible. The magnetic force suffered by a carrier during a
transition is along the direction of qv+B, where v is the
transition velocity of the carrier. However, v does not have
any relation to the direction of E. If one applies an E field
along the x axis and B field along the z axis, a direction
dependent Hall voltage should be detectable along any
direction in the yz plane, not only along the y axis.
Checking this prediction would be a crucial test for this
work. A recent experiment [27] shows that the signs of Hall
voltage in several a-Si:H films are not always reverse to
those expected from qE+ B, the present analysis seems to
agree with this observation.

We have devised an accurate and practical method for
computing transport coefficients, with applications to
amorphous semiconductors and potential application to
many other systems. The localized states make the anoma-
lous sign of Hall voltage possible. The method has the
potential to be implemented with current single-particle
ab initio simulations, and requires only the eigenvalues and
eigenvectors of the single-electron Hamiltonian, dynami-
cal matrix, and quantities easily derived from these.
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