Temperature dependence of electronic conductivity from ab initio thermal simulation
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Abstract

We present a temperature-dependent extension of the approximate electronic conductivity formula of Hindley and Mott that lever-
ages time-averaged fluctuations of the electronic density of states obtained from ab initio molecular dynamics. By thermally
averaging the square of the density of states near the Fermi level, we obtain an estimate of the temperature dependence of the
conductivity. This approach—termed the thermally-averaged Hindley-Mott (TAHM) method—was applied to five representa-
tive systems: crystalline aluminum (c-Al), aluminum with a grain boundary (Algg), a four-layer graphene—aluminum composite
(Al-Gr), amorphous silicon (a-Si) and amorphous germanium-antimony—telluride (a-GST). The method reproduces the expected
Bloch—Griineisen decrease in conductivity for c-Al and Algg. Generally, the reduction (increase) in conductivity for metallic (semi-
conducting) materials are reproduced. It captures microstructure-induced, thermally activated conduction in multilayer Al-Gr,
a-Si and a-GST. Overall, the approach provides a computationally efficient link between time-dependent electronic structure and
temperature-dependent transport, offering a simple and approximate tool for exploring electronic conductivity trends in complex

and disordered materials.
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1. Introduction

The electrical conductivity of condensed matter is a dynami-
cal property that emerges from charge carriers moving through
a time-dependent landscape influenced by lattice vibrations, de-
fects, electronic scattering disorder, and external fields. Cap-
turing that interplay—electrons responding to ionic motion on
femto- to pico-second scales while also scattering from static
inhomogeneities—is essential for predicting material perfor-
mance and interpreting transport experiments across metals,
semiconductors, and disordered materials.

Two main approaches are used to compute electronic con-
ductivity. The first is the semiclassical Boltzmann framework,
in which charge carriers are treated as quasiparticles whose
distribution obeys the Boltzmann transport equation (BTE). In
the weak-field, near-equilibrium limit, the linearized BTE with
a relaxation-time approximation (RTA) [1, 2] yields a con-
ductivity tensor and underpins most transport calculations in
metals and semiconductors [3, 4], as implemented in BOLTZ-
TRAP [5, 6] and EPW [7]. Iterative solutions beyond the
RTA can treat inelastic and anisotropic scattering more accu-
rately [8], but the semiclassical picture still assumes coherent
band transport and breaks down under strong disorder, local-
ization, or ultrafast excitation.

When such effects become significant, fully quantum linear-
response formulations are preferred. = Within the quan-
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tum picture, conductivity may be obtained from linear re-
sponse (Kubo) [9], its fluctuation—dissipation counterpart
(Green—Kubo) [10, 11, 12], or the single-electron eigenstate
formulation known as the Kubo—Greenwood formula (KGF),
widely used with density functional theory (DFT) [13, 14, 15,
16, 17, 18].

Mott writes the KGF for the conductivity as [19, 20]:
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for single-particle states i and “avg" indicates an average over a
small window near the Fermi level (Ef). N(Ey) is the density of
states at the Fermi level, and o is the DC conductivity. From a
Fermi Golden Rule argument it is natural to interpret electronic
conduction in terms of quantum transitions at the Fermi level.
Thus, o o« N?(Er). Hindley reached a similar conclusion by
invoking a random phase approximation [21]. We introduced
what we call the "N? method" based upon this proportionality
to obtain a positive additive distribution that provides informa-
tion about the local intensity of electrical conductivity and ap-
plied it to a copper-carbon composite material [22], as well as
defective tungsten [23]. All these were obtained for the case
of a static lattice. While one intuitively thinks of the electronic
density of states (EDOS) at the Fermi level as a rough measure
of conductivity, in fact it is the squared EDOS.

The primary innovation of this paper is to exploit the o o
N?(Er) approach by approximately including the effects of



atomic motion — estimating the temperature dependence of the
electrical conductivity which is in general a challenging task.
Abtew et al [24] and Subedi et al [25] showed that averaging
the KGF over a suitably equilibrated ab initio MD simulation
(at constant temperature 7T') provides useful estimates for the 7
dependence of o, suggesting the possible utility of averaging
N? in a similar way by estimating the temperature dependent
conductivity as:
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in which i indexes a time step and the number of times steps n is
assumed to be large enough that the quantity o-(T) is converged.
In this paper, we showed that equation 3 provides useful esti-
mates of temperature-dependence and determine suitable run-
times, “n", post equilibriation to obtain o<(T') .

This approach is inherently approximate. Its main assump-
tions are: (1) an adiabatic treatment in which transport is
estimated by averaging over "Born—Oppenheimer" snapshots;
(2) classical dynamics, which neglects lattice quantization
(phonons); (3) interpretation of the Kohn—Sham (KS) eigen-
values as a proxy for the electronic density of states at the
Fermi level; (4) omission of any time-step dependence in the
matrix element D(Ey); and (5) applicability primarily to ho-
mogeneous systems—while the full Kubo—Greenwood formula
yields a complete conductivity tensor, that tensor information is
not retained in the present simplification. A practical advantage
is that N2(E ) can be extracted as a byproduct of quantum MD,
making the workflow straightforward to implement.

In what follows, we show that this simple scheme, which we
name the thermally averaged Hindley-Mott (TAHM) method,
produces temperature trends for the conductivity comparable to
those obtained from the more rigorous KGF method [25] and
from experiment [26]. Both the metallic reduction in conduc-
tivity with increasing temperature and semiconducting increase
with increasing temperature is reproduced. As first seen by
Subedi et al. [25], the scheme produces reasonable results in
a metal (Al) even for temperatures well below the Debye tem-
perature, which is surprising for a classical simulation.

We also report a microstructure-dependent semiconducting
behavior in aluminum-graphene composite with 4 layers of
AB-stacked graphene featuring undulating (worm-like) mor-
phology [27, 28, 29]. Furthermore, we compare our results for
amorphous silicon with KGF-based conductivity data [24] as
well as experimental conductivity data [30, 31, 32], and extend
the analysis to the phase-change memory material, amorphous
germanium-antimony—telluride [33].

2. Methods

2.1. Structural Models

Five materials of interest are considered in this study: crys-
talline aluminum (c-Al), aluminum with a grain boundary
(Algp), aluminum—graphene composites (Al-Gr), amorphous
silicon (a-Si), amorphous germanium-antimony—telluride,
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Figure 1: Structural representation of (a) aluminum with grain boundary (AB
stacking fault represented by the red dashed line), (b) aluminum-graphene com-
posite formed with the worm-like 4-layer (AB-stacked) graphene (gray), (c)
amorphous silicon, and (d) amorphous germanium (teal)-antimony (purple)-
telluride (brown) .

Ge,Sb, Tes (a-GST). The Vienna Ab-initio Simulation Package
(VASP) [34] was used for all simulations.

The c-Al model is a face-centered cubic (FCC) cubic contain-
ing 256 atoms (see Figure Sle). This configuration is used for
the bulk regions of the Algp structure, while the grain-boundary
region contains a stacking fault (red dashed line in Figure 1a).
Similarly, the same c-Al configuration is used for the Al-Gr
composite structure, in which the graphene region is a four-
layer (AB-stacked) undulating (“worm-like”) sheet (Figure 1b).

The undulating worm-like graphene morphology results
from conjugate-gradient (CG) energy relaxation of the Al-Gr
structure, starting from initially flat graphene layers between
the Al slabs with an interfacial Al-C distance of 3.22 A. This
configuration may mimic high-stress metastable interfaces pro-
duced by solid phase processing used to fabricate AA1100
alloys reinforced with reduced-graphene-oxide nanoparticles,
yielding ultra-conductive Al composites [35, 36].

For a-Si, we employed the 216-atom model of Djordjevic,
Thorpe, and Wooten [37], generated using the Wooten—Winer—
Weaire approach [38] and previously analyzed in other studies
[39, 40] (Figure Ic). The 315-atom a-GST model (Figure 1d)
was taken from Reference [33] .

2.2. Implementation

The electronic density of states for all systems was
computed using VASP [34] with projector augmented-wave
(PAW) potentials [41], the Perdew—Burke—Ernzerhof (PBE) ex-
change—correlation functional [42], and a Gaussian smearing
width of 0.01 eV. For the time-dependent analysis, snapshots
were extracted from ab initio molecular dynamics (AIMD) sim-
ulations performed at different temperatures, maintained by a
Nosé-Hoover thermostat [43].

The AIMD trajectories spanned several picoseconds, with in-
tegration time steps of 0.5, 1.0, 0.75, 1.0, and 2.0 fs for c-Al
(2.5 ps), Algg (5 ps), Al-Gr (3 ps), a-Si (4 ps), and a-GST (7.5-
10 ps), respectively. This framework is general and can equally



incorporate electronic structures sampled from longer MD sim-
ulations based on classical, empirical, or machine-learning in-
teratomic potentials. The I'-point was used to sample the Bril-
louin zone for all simulations, with periodic boundary condi-
tions. The cutoff energy for a-GST was 320 eV and 400 eV
was employed for the other structures. The selected simulation
times were chosen to ensure convergence of the averaging at
the Fermi level.

The instantaneous electronic density of states (EDOS) at time
1, (obtained from a constant temperature MD simulation), is:

D(E,1,) = ) dE = €(1,) @

and ¢(z,) is a Kohn—Sham eigenvalue at time step z,,.

The Kohn-Sham states relevant to the DC conductivity are
those near the Fermi level E ;. We therefore define the instanta-
neous N? at time  as:

2
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where we take 8 to be a Gaussian of width 4. The value of
h is tuned to the presence (or absence) of an electronic gap:
h = 0.35 eV for c-Al and Algg, 0.2 eV for Al-Gr, 0.7 eV for
a-Si, and 0.54 eV for a-GST. These values are larger than the
mean spacing between KS eigenvalues at E, so that 4 is broad
enough to capture thermal fluctuations of near-E states while
remaining narrow enough to resolve intrinsic spectral features.'
At each time step, the Fermi level is shifted so that £y = 0 for
reference.

The next step is to estimate o(7) by averaging over a
converged trajectory of a well-equilibrated atomic configu-
ration at temperature 7 (see Equation 3). We sample the
Born—Oppenheimer (BO) trajectory using a running (cummu-
lative) time average over post-equilibration time steps {tk},le.
Using Equations 1-6, we compute TAHM ((N?),) as:

1 K
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This yields an estimate of o(7T) once fluctuations becomes
small for a sufficiently long simulation.

2.3. Estimating Conductivity from (N*),

The temperature dependence of the electronic conductivity
can be estimated by correlating (N2), with experimental con-
ductivity data at a known temperature. Fitting a single data
point of (N?), to a corresponding experimental conductivity

!For small systems or when few states lie near E ', this broadening choice
becomes more delicate.

provides an estimate of the proportionality constant associated
with the conductivity matrix element [22].

For example, the Al-Gr composite structure exhibits an ex-
perimentally measured conductivity of oG = 3.87 X 107 S/m
at 300 K [44]. We first define a single calibration factor n at
Ty = 300 K from the measured conductivity of Al-Gr:

y = o al-Gri(To) @)

(NHYA-51(Ty) To=300 K

We then use this proportionality to map the TAHM of each sys-
tem onto a predicted conductivity and resistivity at any temper-
ature:

1
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hence giving a quantitative estimate of temperature-dependent
electronic transport behavior.

3. Results and Discussion

For brevity, we will denote N>(E r,T,t) in Equation 5 by
N?. The character of temperature-induced EDOS fluctuations
around the Fermi level differs among the materials. The instan-
taneous EDOS at selected time steps and temperatures for all
structures is shown in Figure 2a—e, and all similar plots for all
temperatures considered per structure is shown in Figure S2a—
e. Except for a-Si, which was analyzed over the broader range
of 200-1800 K, the temperature range for the other systems ex-
tends up to 700 K. For clarity, the Fermi level in each plot has
been shifted to zero (indicated by the dashed black line).

Appreciable temperature-dependent fluctuations near Ey are
observed for c-Al, Algg, and Al-Gr (Figure 2a—c). The fluc-
tuations are most pronounced for a-Si (Figure 2d), where the
electronic gap broadens with increasing temperature and simu-
lation time. They are less pronounced for a-GST (Figure 2e).
The following subsections present a detailed analysis for each
system.

3.1. Aluminum: Crystalline and Grain Boundary Structures

The analysis for the c-Al and Algg systems were performed
over a temperature range of 50-700 K. The characteristic elec-
tronic density of states (EDOS) profile of aluminum is largely
preserved, exhibiting extended near-E states, in both c-Al
(Figure 3a,b) and Algg (Figure S3a,b). Early MD steps that
exhibit strong non-equilibrium fluctuations before thermal sta-
bilization were not included in the analysis. For c-Al (Algp),
this included the first 0.8 ps (2 ps). The running average imple-
mentation on N? effectively smoothened these oscillations to
yield convergence as shown in Figure 3b and S3b for c-Al and
Algg, respectively. The time-averaged (N?), were determined
once the running average varied by less than 5% over succes-
sive steps and exhibit a decrease from 100 K to 700 K in both
c-Al (Figure 3c) and Algp (Figure 3d).

Next, we compare (N2), results with experiment in Figure 3e.
The experimentally measured resistivity from Reference [26]
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Figure 2: The electronic density of states near the Fermi level obtained from the MD simulations at different instantaneous Born-Oppenheimer snapshots, showing
for (a) Crystalline aluminum, (b) Aluminum with a grain boundary, (c) Aluminum-graphene composite, (d) amorphous silicon, and relaxed (¢) amorphous germa-

nium-antimony—telluride.

(up to 300 K) is plotted against the resistivity inferred from the
(N?); using Equation 9. To convert (N?), into a conductivity
estimate, we choose a reference temperature 7y = 50 K and
determine a proportionality constant 77 to be ~ 2.5 x 1072, This
choice is consistent with the KGF analysis of Subedi et al. [25],
where they also adopt 7y = 50 K for the same dataset. For
crystalline aluminum, electron—phonon scattering follows the
Bloch—Griineisen (BG) behavior which suggests that in the low-
T regime (T <« ®p) the phonon contribution scales steeply ( o
T?) and becomes small compared to the defect-induced residual
resistivity [45].

For c-Al in Figure 3e, the temperature dependence predicted
by (N?), is consistent with the KGF analysis [25] and agrees
qualitatively with both the experimental data and the extrap-
olated BG fit. The resistivity of Algg is higher than that of
c-Al and shows a larger deviation from experiment, especially
at high temperature, as expected due to the additional grain-
boundary scattering. Nevertheless, at lower temperatures its re-
sistivity remains close to c-Al and to the experimental curve,
and the overall trend with T is preserved, as seen more clearly
in Figure 3f. Between 100 and 700 K, crystalline Al shows a
~ 9.53% reduction in conductivity, compared to ~ 11.73% for
Algg. This behavior parallels the SPC-based results of Ref-
erence [25], where local conductivity is reduced at Al grain
boundaries.

3.2. Aluminum—Graphene Composite

The running time average of N7 for Al-Gr converges well
and increases smoothly with temperature over the range 100-
700 K (Figure 4a). Instantaneous le traces at the simulated
temperatures are shown in Figure S4. After calibrating the con-
ductivity at a reference temperature of 300 K (Section 2.3),
on2(T) exhibits an approximately linear increase with temper-
ature, with slope 1.49 x 10* Sm~! K~! (Figure 4b). Within a
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Figure 3: Analysis for crystalline aluminum (c-Al) and aluminum with a grain
boundary (Algg) . (a) Instantaneous N,2 from the EDOS at different temper-
atures and (b) the convergence of the running time-average of N,2 for c-Al
(similar plots for Algg are provided in Figure S3a and b). Converged (N2,
versus temperature with quadratic fit for (c) c-Al and (d) Algs. (e) Experi-
mental resistivity [26] compared with values from N2(EF) for c-Al and Algg;
Bloch—Griineisen (BG) predictions are included. (f) Temperature-dependent
resistivity for c-Al and Algg; from (N?),, with error bars from MD time aver-

aging.
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Mott-type picture, this trend indicates a semiconducting-like
response at the Al-Gr interface where thermal fluctuations pro-
mote near-E states and enhance the time-averaged overlap be-
tween occupied and accessible electronic states.

This behavior contrasts with previous simulations of flat
single- and double-layer Al-Gr composites, which report a
metal-like decrease in o (T) with increasing temperature [36],
although at fixed temperature the conductivity increases as the
AI-C distance is reduced from 3.41 to 2.97 A. The metallic-to-
semiconducting behavior in the Al-Gr composite arises from its
microstructure—aluminum coupled to a multilayer, undulating
graphene stack—which appears to stabilize and thermally acti-
vate interfacial conduction channels, leading to the monotonic
increase in conductivity. To our knowledge, this provides the
first atomistic evidence of semiconducting behavior in multi-
layer (> 3-layer) Al-Gr composites with a worm-like graphene
morphology, consistent with high-resolution imaging observa-
tions by Kappagantula et al. [46].

Normalized N2
Normalized N?

Figure 5: Spatial projection of N> electronic activity in the Al-graphene com-
posite. (a) 2D colormap of normalized N2 on a (100) plane slice at x ~ 6.0 A.
(b) Radial (p) profiles of N? extracted along the colored traces in (a) at the in-
dicated projection angles 6.

The N? method [22] was employed to visualize conduction-
active regions in the aluminum—graphene composite. Whereas
TAHM captures the time-averaged near-E electronic activ-
ity along an MD trajectory, N? projects the near-E; contri-
butions into real space, revealing where conduction pathways
form across heterogeneous regions. Figure 5a shows the (100)

cross-section at x = 6 A. The dashed white oval marks the re-
gion where the lower carbon layer (gray spheres) is closest to
the upper aluminum matrix (orange spheres), with a distance of
~ 2.36 A. The contour map (normalized N?) spans O (blue) to 1
(white). The colored traces (green, red, and blue) are radial cuts
taken along near-by in-plane directions (82°, 90° and 100°),
showing how near-E activities varies with distance from the
Al/C interface. The resulting peak-suppression-recovery pat-
tern in Figure 5b reflects enhanced interfacial electronic activ-
ity, its attenuation into the amorphous graphene layers, and its
re-emergence beyond the Al-C interaction zone.

3.3. Amorphous and Liquid Silicon

Figure 6a shows the temporal fluctuations of the mean Kohn-
Sham eigenvalues of the states near the Fermi level at each
temperature, serving as a direct probe of near-Ef electronic
fluctuations induced by thermal lattice motion for temperatures
from 200 to 1800 K. At low temperatures, the EDOS above
and below Er remain well separated, persisting the band-gap.
With increasing temperature, particularly beyond 1200 K (and
around its melting point of ~ 1420 K [47]), pronounced broad-
ening and overlap of these states are observed, signaling ther-
mally driven delocalization of the electronic states near the
band edges [24, 48, 49]. Figure S5a and b shows the instanta-
neous N,2 across the temperatures and its running time-average
convergence.
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Figure 6: Analysis for amorphous silicon. (a) Thermal fluctuation of near-gap
states (Ey = 0) at temperatures between 200 to 1800K. (b) Converged (N?y,
values as a function of temperature. (c) Comparison of (N?), with experimen-
tal data points from References (ii) [30], (iii) [31] and (iv) [32]. (d) Depen-
dence of (N2); on the Gaussian broadening (/) used to obtain the instantaneous
N2(Ef, T, 0).

(N?), remains nearly constant up to about 1000 K and then
increases sharply between 1200 and 1500 K (Figure 6b) . This



rapid rise, followed by a slight plateau, mirrors the experimen-
tally observed behavior of the electrical conductivity of liquid
silicon at high temperatures [50]. The trend reflects a phase
transition as the system approaches its melting point (= 1420 K
Figure 2d). At these elevated temperatures, strong thermal
atomic motion and dynamic structural arrangements in the dis-
ordered liquid network enhance the overlap among electronic
states near the Fermi level, facilitating carrier hopping and im-
proving electronic connectivity [24].

Figure 6¢ compares the trend of (N 2y, to experimentally mea-
sured conductivities [30, 31, 32]. Both show the characteris-
tic exponential rise of conductivity with temperature expected
for thermally activated transport in amorphous semiconductors,
followed by a transition toward non-semiconducting behavior
near the melting regime. The agreement between the computed
and experimental trends indicates (N?), captures the essential
physics of thermally assisted delocalization in a-Si [51, 52].

We also investigate the effects of different Gaussian broad-
ening, /1 used to obtain N*(E r,T,t) in Equation 5. As shown
in Figure 6d, the overall trend remains consistent for different
h values from 0.04 eV to 0.8 eV; with wider spread at tem-
peratures below the jump at 1200 K, and more convergence at
higher temperatures (> 1350 K).
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Figure 7: Analysis for amorphous Germanium—Antimony-Telluride. (a) The
running time-average of Nt2 illustrating convergence. (b) Temperature depen-
dent (N?), conductivity extrapolated from experimental conductivity at 300 K
from Reference [53].

3.4. Germanium—-Antimony-Telluride

Similar to the Al-Gr composite, a-GST exhibits semicon-
ducting behavior characterized by an increase in (N?), with
temperature as shown by the convergence of the running time-
average plot in Figure 7a for the temperature range of 300 —
700 K (See the instantaneous N plot in Figure S6). This trend
is consistent with the expected response of a-GST, where ther-
mal excitation promotes carrier activation across its narrow mo-
bility gap [54, 55]. The a-GST model employed in this study
exhibits a band-gap of approximately 0.54 eV, with a mid-gap
state located about 0.31 eV below the LUMO (See model “M5"
in Reference [33]).

The conductivity of a-GST, shown in Figure 7b shows nearly
linear increase with temperature. This is is consistent with
experimental reports of thermally activated conductivity in a-
GST [55, 53]. The (N?), fit to conductivity was carried out

using the experimentally measured average conductivity of a-
GST at 300 K (0eyp = 0.025 S/m) [53] gives a proportionality
constant of 7 ~ 6.204 x 1076,

4. Conclusion

We have developed and demonstrated the TAHM method
that extends Mott and Hindley’s simplified picture of electronic
transport into the time domain. By averaging the squared fluctu-
ations of near-Fermi-level electronic density of states obtained
along ab initio molecular dynamics trajectories, the method
captures the coupling between lattice motion, electronic dis-
order, and charge transport. When scaled to a single experi-
mental conductivity value, the resulting temperature-dependent
trends reproduce the observed behavior across metallic, semi-
conducting, composite, and amorphous systems. The method
predicts metallic reduction in conductivity as well as semicon-
ducting increase with increasing temperature from TAHM.

For aluminum crystal and aluminum with a grain boundary,
TAHM shows a monotonic decrease with increasing tempera-
ture, consistent with Bloch—Griineisen electron—phonon scatter-
ing. In contrast, the multilayer, worm-like aluminum—graphene
composite displays a semiconducting-like increase in TAHM
with temperature, reflecting thermally activated interfacial con-
duction pathways stabilized by its microstructure. In amor-
phous silicon, TAHM remains nearly constant at low tem-
perature but rises sharply between 1200 and 1500 K, coin-
ciding with the onset of gap closure and the semiconductor-
metal (melting) transition. The a-GST system exhibits a steady,
nearly linear increase in TAHM with temperature, consistent
with thermally activated carrier excitation across a mobility
gap.

Together, these results establish the TAHM method as a
simple yet predictive microscopic descriptor of temperature-
dependent electronic transport that is transferable across diverse
structural and electronic regimes. The framework provides a
computationally efficient and physically transparent comple-
ment to other Kubo—Greenwood-based formulations, enabling
rapid assessment of conductivity trends in nanostructured, com-
posite, and disordered materials.
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