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oDUCTION : :
opy methods have recently bee:n applied to several kinds of problems
pximum cg matter physics. In broad outline these applications have fallen into
i condens® o categories: moment problems (useful in spin systems, electronic
either of ;Zulaﬁons and densities of states for lattice vibrations), and a sophisticated
2 0 ¢ of maxent to the calculation of interatomic potentials in metals. These
applicauo“ have had considerable success, and our expectation is that extensions of
roachcsodS and entirely new applications will be developed in the future. In
meth ; 'siCS workers sometimes resort to approximations that have no a priori
solid state P .yan example we will mention is the use of ad hoc functional forms to
jusriﬁcatlon ;n‘ problems. Beside the information theoretic advantage of using
invert mor:[her point in favor of this procedure is that it provides concrete functional
anipulate and base other' approximat.ions on: this can be compared to
largc-Scalc comp.u.tcr calcglatlons. It wﬂ} be the goal of this paper to
som’i'arizc maxent practitioners with recent work in condensed matter and to relate a
faml;athcr generally encountered properties qlat migl.n occur in other applications.
i;w ill organize this paper as follows: Section II will discuss the maxent solution
ofc[hc classical moment problem and physical applications. Section III will include a

brief discussion of methods for obtaining interatomic potentials via maxent.

maxcnt; an
forms to M

. MOMENT PROBLEMS IN CONDENSED MATTER

The classical moment problem may be stated as follows: Given the first N power
moments of a non-negative function p(x) on some interval a < x < b:
b

bp= [dxx"p(x) , n=012..N , (1)
a
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differentiating with respect to p,
N

‘ p(x) = —;' cxp{-z Xix‘} ,

\ =1

and Z, A; are determined by requiring that p satisfy the moment ¢ :

determination of the A; is difficult, owing to the nonlinearity of the monstramt& T

many quadratures involved in an iterative procedure. A Newm:xenF P an

procedure was given in Ref. 1. Bretthorst® has developed a more 55 Minj izatiy

and Drabold® has found some sum rules that speed the Origim:l]St algorigey

Papanicolaou code up by more than a factor of two. Despite all of this, ; Mead g4

to find examples for which the maxent code fails. Not S“rpriSing1y' th'ls NOt hayg

happen for functions which have explicit singularities, or those i d;s tends

derivatives. Such functions are sometimes of physical interest. SCONtingy

Before discussing examples of moment problems in condensed matter
that these moment problems are a recurring theme of the subject. Solid state theori
tend to work with moment formulations of problems because they offer an altemaftliim
to the task of diagonalizing large matrices. For a spin %2 problem for example [h:
dimensionality of the Hamiltonian matrix which contains all dynamical information i
2K where K is the number of spins -- typically order 102 for a INacroscopic system!
In contrast, calculation of the low order moments is usually fairly straightforward,i
Also, the moments tend to contain information about the local environment of a
particular site; information one is usually interested in. The complete set of
eigenvalues and eigenvectors associated with the Hamiltonian contains vastly more
information, most of which is irrelevant to an investigators specific interests. Itis
also worth noting in passing that the reason why one can readily extract the momenis
is related to the fact that the trace of a quantum mechanical operator is independent
of the choice of basis’ In each of the examples we discuss, this is the key 10
obtaining the moments of physically relevant functions. In fact, with the appczfranccf
of reasonably reliable code for solving the maxent moment problem, we may think 0

WeE note
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Wﬂ ., ys with an alternate numerical method for diagonalizing
s ptonfilng. After all, we can (in principle) always calculate traces of
ot mamccs;ccs These traces are to within a normalization exactly the
mat:hlc dcnsit)’ of states for the Hamiltonian matrix. So for cases
""" goments Ofor other considerations allow easy calculation of powers of the
Symmemcsem should be considered as a means of obtaining the density of
e onian, M3 tential application of maxent moment methods to solid state
H"”ﬂ e od.lcf P?,e ment of convergence of certain expansions. For example, a
sﬂ‘g  is the lmg;anSio“ takes the form of an infinite series in traces of powers of
p!lh’tcmpcrat.ure Information theoretic exuapglanon for higher order terms in the
b jltonian- eful means of extracting physically meaningful results for
[bc. may prOVldC a us

¢S
fwﬂ tcmpemmrc: sical application of the moment problem we discuss is the
e first PO nse function G(w) for spin systems.® This function has the
Ca1culatio‘n of :;fizn of a spectral density: it may be thought of as indicating the
gy ical mtcrp'tadon" per unit frequency range. It is clear that such a function must
gensity Of CX(;LC detailed dynamics of the spins, which is naturally a many-body
jepend UPON hanical problem. Several kinds of spin-spin interactions have been
quanl}lm mc&cad and Papaﬁicolaoul applied maxent to the one-dimensional XY
amined: Heisenberg exchange. Impressive agreement with the exact solution of
model andod fwas obtained. Because maxent was well converged in the Heisenberg
tthY, mmc sense that the answer did not change appreciably with additional
m;c(;fs) fhcsc authors reasonably concluded that they had an essentially exact
mo! ’

ution for the spin dynamics of the Heisenberg system. This result is significant,
u .
;zcausc there is no exact solution known.

For a calculation which may be directly compared to experiment, we turn to the
ase of a magnetic dipolar coupling between spins.‘/z. Here, careful .experimcnts have
icen done on CaF, where the fluorine nuclear spins are arranged in a simple cubic
latice. Some complicated calculations’ have produced eight exact moments for the
physically measurable "lineshape” function G(w) for this system. In Ref. 8 maxent
was applied to the theoretical moments and found to agree with experiment to within
-2%. In general the function G(w) is complex-valued, the real part representing the
MR absorption spectrum, which is clearly positive definite. It has been found
convenient in other calculations ° to introduce a function related to G, the self energy
@) which satisfies the equation G(w) = i/{[® — IT(w) + il ()]}, where IT and -I"
ire the real and imaginary parts of ¥ respectively. It can be shown that T is of one
sign, and therefore another candidate for the application of maxent. Power moments
o T are readily related to the known theoretical moments of G(w). Although the
drect use of maxent on the function G was very satisfactory, optimal agreement was
Obtzined by fitting T" as an intermediate step. The reason for this appears to be that "
i ;zisthWC;m than G and is therefore easier to apply maxent to. The utility of
i compzlig( ulnctxon z.lS rcl.ath to .the function-theoretic properties of G. and 2.on
e of Plane. This ppmt 1s discussed further in Ref. 8. Another interesting

© Work on the dipolar lattice was the appearance of an oscillating pattern
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of convergence. As others have shown, it is quite possip]e o § DRABOLDEF
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numerical difficulty, but to an intrinsic limitation of the meg < 90 nop ,MOme,
input moments. For the dipolar.casc it was observed that f:d for Cel'ta§ fer totz
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Lagrange multipliers should not be of one sign. Cases for which )tmp1ying e
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is manifested by a dependence of the A; on the cutoffs for the T eS -nonfconvergento
actual range of integration for G and I' is @ € (o, o)), It wag alsncal inte S(t}:e
energy and lineshape fits were complimentary in the sense that 0 founq thsg o

al self.
(self energy) produced a non-converged calculation, the seIfWhen the 1‘“°Shape

: : -ener :
function converged. So in some cases, one may be forced to US?’ Olneshape)
an auxilj
a1y

function to obtain a converged maxent fit.

We have also applied maxent to a more complicated versiop of
problem, the case of a nonmagnetic host with spins —% randomly diluteg th
a crystal.'® A particular realization of such a system is ordinary diamond dzoughom
existence of two isotopic species of carbon: spin 0 (magnetically inert) an d zpi?l [1}/1:
For high concentrations of magnetic particles it was found that maxep and
configuration averaged moments produced good line shapes. For low concentration
of spins, we used maxent as an aid in inferring to what extent spin wavefunction
were localized (in the terminology of magnetic resonance this characterized the
dipolar broadening as inhomogeneous or homogeneous).

We have also recently applied maxent to the problem of obtaining theoretica
estimates of relaxation times in solid molecular hydrogen. We have observed
reasonable agreement between theory and <3xperimcnt.11

Maxent has been used to obtain densities of states in binary @ndom ?llqys.
Here, there have been a wide range of methods applied, from exact dlagao‘}gh.m(;z
of large matrices to recursion methods. For a particular model calculation ﬁtnl
found that maxent offered a real alternative to continued fraction and ;O echA
potential approximation (CPA) methods. While it is certainly. true .th.at 1;rr(13ited in
method produces very satisfactory results in a wide range of rcglmes, it l:don.
some contexts by mean-field like assumptions underlying 1S dcr;V from thiS
formulation of recursion and maxent moment methods do not Su_f er1cmentﬂ‘i°"
weakness. Maxent also has an advantage over recursion; in the usual m:ﬁl o0t
of recursion the electronic Green’s function takes the form of a COnnan ot
which must be terminated in some way. This is unfortunately mor;ly argu tha:hz
science. While an experienced practitioner of recursion would corr:;1 . physics f
particular choice of truncation schemes incorporates knowledge o) d as an
problem, we point out that such information could also be include

the Previoyg
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TIONS . he introduction of bias. As in the spin problem it was
AVPUCA ent, without t 3

¢ o functions related to thc.electronic Green’s function rather than
gstri? conS@Ct girectly. This was again because the auxiliary functions were
goful ton's function alloy problem it was best to use a function which bears the
bi,ha" . tllfc T:lf energy that the self energy did to the Green’s function in the

: i procedure produced the best agreement with a CPA calculation.
P roblem: s nt out that maxent and recursion are complementary to some
s phould also POt ovides the most efficient means of calculating the moments
We S ¢ recursion pr procedure. We also tried a specific example of one vacancy

nt, ent ; § :
o© | for the MaX found maxent to be superior to continued fractions.!®
! qalline St and f0

: nl4 provided the first application of maxent to structural
in and Carlsso :
JOWI €2 ns in the presence of defects such as vacancies. Very recently a
CalCUlano

0B ensive study of methods for calculating bond energies in a tight binding

oot cared.15 It was found that maxent was a useful means for computing
godel 023 4 o5 in the presence of defects, better than continued fractions with a
cural €T but only roughly equal in accuracy to a gaussian quadrature!’

rminator, : g :
08 tﬁich was computationally easier for more than six recursion levels.
w

.o o al.15 observed that there were computational difficulties with maxent fiue
Glanville, sensitivity of the maxent fit to the values of the Lagrange multipliers
toa_nexmmc[he moments. A possible remedy for this difficulty is to solve the
conjugate toblem on a different basis. The origin of the trouble lies in the nearly
@mcnt p::ure of the covariance (Hessian) matrix -- this is a consequence of the
.Smgumirnndegree of correlation between higher moments. A possible solution is to
gkc;ca; %inearly independent combinations of the moment constraints, solve the
moment problem on the new constraints, and transform back. Bretthorst? h?s even
gone so far as to construct an orthogonal basis, though any reasonable combinations
should help significantly. Turek!® has independently implemented these ideas and
finds that his code is much improved over the original approach of Mead and
Papanicolaou.!

aré
g proach

[I. INTERATOMIC POTENTIALS VIA THE MAXIMUM ENTROPY PRINCIPLE

The study of defects and structural energetics in metals is greatly aided by the
concept of effective interatomic potentials. This field has suffered from the lack of
wiform methods for obtaining such potentials. One of us has recently shown!® that
;alculaﬁpg interatomic potentials can be formulated as a problem of incomplete
C";fsﬁt;inzf Given knowledge of the changes in the two point density-density
i o r:ler;ctlonh in a ?condensed matte.r syster:n, how can one b.est guess the
T ; fl}r’cf tfmge;. To an§wer t.lus question, one must obtain guesses for
fuckions s necessalo? unctlons. (i.e., triplet, four-.body ...).  Knowledge of these
ik particlesary IV;)r calculating total energies since these depenc! on clusters of
Moduce 5 rigorou; i :;e{lt can be used to estimate these functions, and thus

ation for future work in the area. The method produces

*Xpressions f :
or the effective potential as a functional of the pair density-density
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correlation function. For further details of this approach A, DR‘\BOL
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