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We describe recent applications of maximum entropy to matter in

phases. 
Applications to spin systems, electronic structure, and calculating

% tonic potentials are included.
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INTRODUCTION
methods have recently been applied to several kinds of problems

in 
matter physics. In broad outline these applications have fallen into

either of 
calculations 
two categories: 

and densities 

moment 
of 

problems 

states for lattice 
(useful 

vibrations), 

in spin systems, 

and a sophisticated

electronic

application of maxent to the calculation of interatomic potentials in metals. These

approaches have had c

these methods, and entirely new applications will be developed in the future. In

solid state physics workers sometimes resort to approximations that have no a priori

justification -- an example we will mention is the use of ad hoc functional forms to

invert moment problems. Beside the information theoretic advantage of using

maxent, another point in favor of this procedure is that it provides concrete functional

forms to manipulate and base other approximations 
It will be 

on: 

the 
this 

goal 

can 

of 

be 

this 
compared 

paper 
to

to
some large-scale computer calculations.

familiarize maxent practitioners with recent work in condensed matter and to relate a

few rather generally encountered properties that might occur in other applications.

We will organize this paper as follows: Section Il will discuss the maxent solution

of the classical moment problem and physical applications. Section Ill will include a

brief discussion of methods for obtaining interatomic potentials via maxent.

11. MOMENT PROBLEMS IN CONDENSED MATTER

The classical moment problem may be stated as follows: Given the first N power

moments of a non-negative function p(x) on some interval a S x S b:
b

dx xn p(x) n=012 N (1)
a
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develop an approximation for p based on the information contained

For finite N, it is clear that the solution to the moment 
problem 

is no 0
many functional forms can be invented which correctly reproduce t

moments, but which may differ (sometimes radically) in the unknown

optimal" 
functiomaximum

Following Mead and Papanicolaou, we may construct an

py.l

S = — dx p(x)[log p(x) — 1]
a

to be maximized subject to the consu-aint that p should have the 
required 

firstmoments. Using the usual procedure of introducing an auxiliary 
functional .N

differentiating with respect to p, we easily alTive at the maxent 
solution Of the

and Z are determined by requiring that p satisfy the moment

determination of the is difficult, owing to the nonlinearity of the maxent p and themany quadratures involved in an iterative procedure. A Newton 
minimizau•on

procedure was given in Ref. 1. Bretthorst2 has developed a more robust algorithm,
and Drabold3 has found some sum rules that speed the original Mead
Papanicolaou code up by more than a factor of two. Despite all of this, it is not hard
to find examples for which the maxent code fails. Not surprisingly, this tends to
happen for functions which have explicit singularities, or those with discontinous
derivatives. Such functions are sometimes of physical interest.

Before discussing examples of moment problems in condensed matter, we note
that these moment problems are a recurring theme of the subject. Solid state theorists

tend to work with moment formulations of problems because they offer an alternative
to the task of diagonalizing large matrices. For a spin h problem for example, the
dimensionality of the Hamiltonian matrix which contains all dynamical information is

2K where K is the number of spins typically order 1023 for a macroscopic system!

In contrast, calculation of the low order moments is usually fairly

Also, the moments tend to contain information about the local environment of a

particular site; information one is usually interested in. The complete set of

eigenvalues and eigenvectors associated with the Hamiltonian contains vastly more

information, most of which is irrelevant to an investigators specific interests. It is

also worth noting in passing that the reason why one can readily extract the moments

is related to the fact that the trace of a quantum mechanical operator is independent

of the choice of basis.5 In each of the examples we discuss, this is the key to

obtaining the moments of physically relevant functions. In fact, with the appearance

of reasonably reliable code for solving the maxent moment problem, we may think of



OF 
MAXIMUM

ENTROPY TO CONDENSED MATTER PHYSICS 139

.ding us with an altemate numerical method for diagonalizing
as prow After all, we can (in principle) always calculate traces of

4 %nian 
matrices: These traces are to within a normalization exactly the

of such

moments of the density of states for the Hamiltonian matrix. So for cases

tries or other considerations allow easy calculation of powers of the

$¯mæxent should be considered as a means of obtaining the density of

other potential application Of maxent moment methods to solid state

is the improvement of convergence of certain expansions. For example, a

"5 temperature 
expansion 
Information 

takes 
theoretic 

the form 
extrapolation 

of an infinite 

for 
series 

higher 
in traces 

order 
of 

terms 
powers 

in the
of

bigh-
Hamiltonian.

series may provide a useful means of extracting physically meaningful results for

temperatures.

The first physical application of the moment problem we discuss is the

of response function G(O) for spin systems.6 This function has the

physical interpretation of a spectral density: it may be thought of as indicating the

,density of excitation" per unit frequency range. . It is clear that such a function must

depend upon the detailed dynamics of the spins, which is naturally a many-body

quantum mechanical problem. Several kinds of spin-spin interactions have been

examined: Mead and Papanicolaoul applied maxent to the one-dimensional XY

model and Heisenberg exchange. Impressive agreement with the exact solution of

the XY model was obtained. Because maxent was well converged in the Heisenberg

case @ the sense that the answer did not change appreciably with additional

moments), these authors reasonably concluded that they had an essentially exact

solution for the spin dynamics of the Heisenberg system. This result is significant,

because there is no exact solution known.

For a calculation which may be directly compared to experiment, we turn to the
case of a magnetic dipolar coupling between spins h. Here, careful experiments have
been done on CaF2 where the fluorine nuclear spins are arranged in a simple cubic
lattice. Some complicated calculations7 have produced eight exact moments for the
physically measurable "lineshape" function G(o) for this system. In Ref. 8 maxent
was applied to the theoretical moments and found to agree with experiment to within
-2%. In general the function G(o) is complex-valued, the real part representing the
NMR absorption spectrum, which is clearly positive definite. It has been found
convenient in other calculations to introduce a function related to G, the self energy
E(o) which satisfies the equation G(o) = — 11(0) + illo)]), where Il and —r
are the real and imaginary parts of E respectively. It can be shown that r is of one
sign, and therefore another candidate for the application of maxent. Power momentsof are readily related to the known theoretical moments of G(O). Although theuse of maxent on the function G was very satisfactory, optimal agreement wasObüed by fitting r as an intermediate step. The reason for this appears to be that rhas less fructure than G and is therefore easier to apply maxent to. The utility ofthe auxiliary function E is related to the function-theoretic properties of G and E onthe complex plane. This point is discussed further in Ref. 8. Another interestingfeature of the work on the dipolar lattice was the appearance of an oscillating pattern
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of convergence. As others have shown, it is quite possible to find
for which the maxent procedure does not converge. By this we do not Omennumerical difficulty, but to an intrinsic limitation of the method for ce . fer totsinput moments. For the dipolar case it was observed that for N Rain sets a
number of input moments, k an integer), no maxent soluüon existed-41<+2 

(N Of
interval. This result 

grounds 
is connected 

is expected 

with the 

decay 
expected 

like
large—o 

, for 

beh

Some 
avior 

a. 
of 
on 

On 
the 
the 

the 
exact 

Other

the

G
which on physical to 

hand, the maxent fitting function behaves like thus to reproduce 
the cobehavior, there must be considerable cancellation for large (D,

tet
Lagrange multipliers should not be of one sign. Cases for which

implying 
that

situations for which there is no maxent solution. Numerically this 
non-convergenceis manifested by a dependence of the on the cutoffs for the numerical integrals (theis (D e (—00, 00)). It was also found that self.energy and lineshape fits were complimentary in the sense that when the lineshape(self energy) produced a non-converged calculation, the self-energy 

(lineshape)function converged. So in some cases, one may be forced to use an auxiliary

We have also applied maxent to a more complicated version of the previous
problem, the case of a nonmagnetic host with spins —1/2 randomly diluted throughout
a crystal.10 A particular realization of such a system is ordinary diamond, due to the
existence of two isotopic species of carbon: spin 0 (magnetically inert) and spin h.
For high concentrations of magnetic particles it was found that maxent and
configuration averaged moments produced good line shapes. For low concentrations

of spins, we used maxent as an aid in inferring to what extent spin wavefunctions

were localized (in the terminology of magnetic resonance this characterized the
dipolar broadening as inhomogeneous or homogeneous).

We have also recently applied maxent to the problem of obtaining theoretical

estimates of relaxation times in solid molecular hydrogen. We have observed

reasonable agreement between theory and experiment 11

Maxent has been used to obtain densities of states in binary random alloys.

Here, there have been a wide range of methods applied, from exact diagaonalization

of large mau-ices to recursion methods. For a particular model calculation12 it was

found that maxent offered a real alternative to continued fraction and coherent

potential approximation (CPA) methods. While it is certainly u•ue that the CPA

method produces very satisfactory results in a wide range of regimes, it is limited in

some contexts by mean-field like assumptions underlying its derivation.

formulation of recursion and maxent moment methods do not suffer from this

weakness. Maxent also has an advantage over recursion; in the usual implementad0n

of recursion the Green's function takes the form Of a continued fraction

which must be terminated in some way. This is unfortunately more an art than a

science. While an experienced practitioner of recursion would correctly argue that a

e of the physics of the

problem, we point out that such information could also be included as an additional
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t on maxent, 
without the 

related 

introduction 

to the

of bias. As in the spin problem it was

This was again because the auxiliary functions were

In the alloy problem it was best to use a function which bears the

t0Ththit 

self energy that the self energy did to the Green's function in the

procedure produced the best agreement with a CPA calculation.

out that maxent and recursion are complementary to some
spin 

should 
p

also point 

We recursion provides the most 
We also 

efficient 
tried 

means 
a specific 

of calculating 
example of 

the 
one 

moments
vacancy

extent, 
as 

continued fractions. 13nt to be superior to 

in
Brown and Carlsson14 provided the first application of maxent to structural

calculations in the presence of defects such as vacancies. Very recently a

comprehensive study of methods for calculating bond energies in a tight binding

model has appeared.15 It was found that maxent was a useful means for computing

ctural energies in the presence of defects, better than continued fractions with a

root terminator, but only roughly equal in accuracy to a gaussian quadrature17

approach which was computationally easier for more than six recursion levels.

Glanvüle, et al.15 observed that there were computational difficulties with maxent due

to an extreme sensitivity of the maxent fit to the values of the Lagrange multipliers

conjugate to the moments. A possible remedy for this difficulty is to solve the

moment problem on a different basis. The origin of the frouble lies in the nearly

singular nature of the covariance (Hessian) matrix -- this is a consequence of the

increasing degree of correlation between higher moments. A possible solution is to

take N linearly independent combinations of the moment solve the

moment problem on the new constraints, and transform back. Bretthorst2 has even

gone so far as to construct an orthogonal basis, though any reasonable combinations
should help significantly. Turek16 has independently implemented these ideas and
finds that his code is much improved over the original approach of Mead and
Papanicolaou.

Ill INTERATOMIC POTENTIALS VIA THE MAXIMUM ENTROPY PRINCIPLE
The study of defects and structural energetics in metals is greatly aided by the
concept of effective interatomic potentials. This field has suffered from the lack of
uniform methods for obtaining such potentials. One of us has recently shown thatcalculating interatomic potentials can be formulated as a problem of incompleteinfomation: Given knowledge of the changes in the two point density-densitycorelation function in a condensed matter system, how can one best guess theassociated energy changes? To answer this question, one must obtain guesses forhigher order correlation functions (i.e., biplet, four-body ...). Knowledge of thesefunctions is necessary for calculating total energies since these depend on clusters ofparticles. Maxent can be used to estimate these functions, and thusproduce a rigorous foundation for future work in the area. The method producesexpressions for the effective potential as a functional of the pair density-density
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correlation function. For further details of this approach, we refer 
the

Ref. 15.

reader
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