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The electronic structure of a large~4096 atom! and realistic model of amorphous diamond is studied. The
density of states and the individual eigenstates in the valence-band tail and midgap region are computed with
two ‘‘order-N’’ spectral electronic-structure methods: the maximum entropy method and the shifted Lanczos
method. We observe approximately exponential band tails at both valence- and conduction-band edges. The
electronic states are explicitly computed in the vicinity of the gap through the valence-band tail region, and we
track their spatial transition from highly local to extended. A simple model leading to exponential band tailing
is described.@S0163-1829~96!08339-7#

One of the central issues of the physics of glassy and
amorphous solids is the nature of the band tails in the elec-
tronic density of states~DOS!. Particular issues include the
following: ~i! What is the origin of the ubiquitous exponen-
tial shape of the tails seen in photoemission and less directly
in optical absorption measurements?1 ~ii ! How does the spa-
tial character of the electronic eigenstates change from the
highly local midgap states to the extended states interior to
the valence or conduction bands? The nature of the elec-
tronic states for electron energies ranging between midgap
~localized! to valence or conduction~extended! is of obvious
interest to the theory of doping and transport. The tools re-
quired to address such questions in an unambiguous way are
the following.

~i! Very large and realistic structural models of a repre-
sentative amorphous system. Small models can give a good
account only of the the most highly localized midgap states,
and necessarily fail in describing the spatial structure of the
states as the volume of the state exceeds the volume of the
supercell. Tantalizing hints of the nature of band tailing have
been observed in earlier work on small supercells2 and with
elegant calculations using Bethe lattice techniques,3 which
cannot provide a useful description of the spatial structure of
the disorder-influenced electronic states. The structural
model of this paper is a 4096-atom cubic supercell model of
a-diamond (a-D! provided by Djordjevicet al.4 We note that
a-D is a hypothetical, entirely fourfold material at a density
of 3.52 gm/cm3 as crystalline diamond, but with topological
~primarily bond angle! disorder. It is probably related to tet-
rahedral amorphous carbon~ta-C!, which, however has a
lower density~3.0 gm/cm3) and contains about 15%sp2

sites.5 Column IV amorphous semiconductorsa-Ge and
a-Si are the materials most resemblinga-D, with their large
proclivity for sp3 bonding ~good quality unhydrogenated
a-Si is believed to have less than 0.1% non-sp3 sites!. That
the cell of Ref. 4 is a structurally credible model of amor-
phous diamond can be inferred from our local density ap-
proximation~LDA ! relaxations of smaller versions~216- and
512-atom models! constructed in an analogous fashion with
the Wooten-Weaire-Winer~WWW! method.6 We found that
these smaller supercells ofa-D were practically unchanged
upon relaxation. We reported on this in more detail

elsewhere.7 At present, several thousand atom structural
models are unattainable fromab initio molecular-dynamics
simulations.

~ii ! Electronic structure methods able to cope with the
large Hamiltonian matrices from which spectral information
is required.We use recently developed maximum entropy8

spectral methods9,10 to handle the state density calculations
and a shifted Lanczos11 scheme to compute the electronic
states of interest from the sparse 16 384316 384 Hamil-
tonian matrix. We use a block Lanczos method12 and sparse
matrix techniques to implement these calculations. We make
the simplest reasonable choice of an electronic Hamiltonian:
the orthogonal tight-binding Hamiltonian of Xuet al.13 For
thespectralcalculations we report here this Hamiltonian is a
reasonable choice. Its reliability is also in little doubt for an
entirely four-coordinated matrix as we study here. We con-
centrate on the valence-band tail in this paper since the basis
of the Xu et al. Hamiltonian is minimal~ones and threep
orbitals per site!.

From a less applied point of view, this paper provides
some information on the basic nature of electronic localiza-
tion in three dimensions in the presence of topological dis-
order. Naturally, our calculations exhibit finite-size
artifacts— since we restrict ourselves to a finite~albeit very
large! system. Nevertheless, this work has the appeal of be-
ing more ‘‘realistic’’ ~with genuine topological disorder as
characterized by a fairly realistic Hamiltonian! than most of
the large body of research applied to the celebrated Anderson
model:14
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in which, « i are random diagonal energies selected from a
uniform distribution of widthW and hopping parameterV is
usually taken as constant. This diagonal disorder is more
akin to ‘‘alloy disorder’’ than topological disorder in an el-
emental system for which the« i are identical for all sites and
the disorder modulatesV alone. In Eq.~1! the ratioW/V
characterizes the degree of disorder of the model. An ex-
ample of a recent study of the Anderson Hamiltonian for a
very large system is the work of MacKinnon and Kramer,15
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who compared their result with the scaling theory developed
by Abrahamset al.16 The theory of localization for the
Anderson model is a mature and sophisticated field, to which
our calculations have some salience.

A variety of experiments on amorphous systems show the
density of band tail states falling exponentially into the band
gap.17 It is clear that both structural and thermal disorder
contribute to the tail:2 this work focuses on the structural
origins of exponential tailing. Where structural broadening is
concerned, an early argument of Halperin and Lax19 led to a
DOS N(E)}exp(2guEu1/2) in three dimensions, and later
Soukouliset al.20 modified the theory with scaling localiza-
tion arguments and obtained the correct exponential form of
the DOS. As a complement to this work, we give a simple
argument below which also leads to exponential tails.

The electronic DOS of our amorphous diamond model is
computed with the maximum entropy method9 and illustrated
in Fig. 1. Compactly stated, random vectors and an averag-
ing scheme are used to obtain up to 100 moments of the
density of states of the sparse Hamiltonian matrix, and maxi-
mum entropy techniques are used to reconstruct the DOS
from the moments. This procedure may be viewed as a maxi-
mum entropy ‘‘binning’’ of the ~discrete! DOS. Care was
taken to properly converge the results with respect to both
the number of moments and random vectors.9 For an illus-
tration of the spectral resolution this method affords, see
Refs. 10 and 21. In Fig. 2~a! we show the valence-band edge
region for diamond in a 4096-atom cell and the tails from the
Djordjevic cell. The crystalline diamond cell has a defect-
free gap with sharp band edge, while the amorphous dia-
mond model has extended band tailing at both valence and
conduction bands, as well as a few defect states in the middle
of the band gap. Different numbers of moments and random
vectors are used to compute the DOS. Figure 2~b! shows that
our result of 80 moments and 50 vectors is well converged.
These parameters, particularly the number of random vectors
selected, is very conservative. A semilog plot in Fig. 3 re-
veals that the band tail falls approximately exponentially,
which agrees with the experimental observation. The tail de-
cay parameter E0 @such that the valence DOS
}exp(2E/E0)# is about 180 meV~versus approximately 60

meV seen in photoemission studies ona-Si!.17 Experimental
comparison toa-Si or a-Ge is necessarily qualitative.

We also find it useful to present a simple heuristic argu-
ment for the origin of structural exponential tailing for the
valence edge based upon the following assumptions. First, as
suggested by Bethe lattice calculations,3 we view band tail-
ing as originating in bond angle distortions from the tetrahe-
dral angleuT ; and we further assume that an energy devia-
tion from the diamond valence edge value can be assigned

FIG. 1. Total electronic density of states~DOS! of amorphous
diamond: 80 moments and 50 random vectors were used.

FIG. 2. ~a! Electronic DOS in the band-gap region. The solid
curve depictsa-D; dotted curve is crystalline diamond.~b! Results
with different numbers of moments. Convergence of the maximum
entropy reconstruction is obtained with 80 moments and 50 vectors.

FIG. 3. Semilog plot of electronic DOS in the valence-band tail.
The linearity of the graph fora-D suggests an exponential valence
tail. The DOS changes by a factor of' 150 over the range plotted.
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associated with these distortions. This effectively assumes
that the states in question are substantially localized~inho-
mogeneously broadened!. Second, we have observed that the
distribution of the cosine of bond anglesu in the cell is very
well approximated with a normal distribution
p(j)5exp@2(j2jt)

2/2s2#/(2ps2)1/2 with j5cos(u),
j t5cos(109.01°)~the mean bond angle is nearuT , as ex-
pected!, ands50.149~corresponding to a dispersion inu of
about 9.0°). This bond angle distribution was generated by
the WWW method, and is seen in the smaller 216 and 512
models as well, and as we pointed out,it is preserved under
an LDA relaxation in 216- and 512-atom models, lending
some credence to the view that the normally distributed co-
sines are realistic at least for dominantly four-coordinated
systems. To investigate this further, we would like to con-
sider bond angle distributions in supercell models generated
entirely fromab initio methods, but there are two problems
with this: ~i! the statistics are poor because of the small cell
size and~ii ! the unphysically large number of defects ob-
tained in virtually allab initio simulations introduces a com-
plicating factor in interpreting the resulting distributions.
With the assumption of normally distributed cosines, we take
the crystalline valence-band edge to be at energylV . As
l(j) is presumably a minimum forjT5cos(uT)'jt , this
function can be approximated for small distortions as
l5lV1K(j2j t)

2, whereK is a positive constant. As the
probability density function~PDF! of j5cosu is normal, one
can easily write the PDF forl, the highest valence-band
eigenvalue as broadened by the structural disorder of this
model by using the usual rule for changing variables in a
PDF. One obtains N(l)}exp@2ug(l2lV)u# where
g5(2s2K)21. An essentially identical argument can be
stated for the conduction tail. We note that, in this simple
picture, any mechanism causing approximately Gaussian
bond angle disorder leads to exponential tails. Consider a
very simplified model for the network dynamics, and assume
the lattice is in thermal equilibrium at finite temperatureT. In
a valence force field model,18 the energy associated with
bond bending involves a term of the formU5e0@dj#2,
where dj is the deviation of the angle between adjacent
bonds fromjT . Parametere0 may be inferred from Ref. 18
for a variety of materials. If one neglects other distortions,
comparison to the canonical distribution function suggests
that thermal disorder leads to normally distributed cosines
@with the width of the distributions2(T)}T#. The resulting
linear dependence in the exponential ‘‘tail width’’ is clearly
seen in experiments for the conduction tail in Ref. 17~for
a-Si!, and less obviously for the valence tailing, which seems
to be mostly structural in origin.

To show the nature of these band tail states, we apply a
shifted Lanczos method11 to probe the midgap and valence
tail energy region. We computed about 30 eigenstates in the
valence-band tail. The localization is characterized by the
inverse participation ratio ~IPR! defined as:
I (c j )5N( i51

N ai
j4/( i51

N ai
j2 where c j5( i51

N ai
jf i is the j th

eigenvector and$f i% is the ~tight-binding! orthogonal basis
and N516 384, the number of basis functions. Note that
I51 for completely uniform extended states andI5N for a
state completely localized on a single orbital: results are pre-
sented in Fig. 4. The first several defect states in the middle
of the gap (E'28eV) are strongly localized. As the energy

approaches the interior of the valence band~from about
29 eV to about210 eV), the degree of localization sub-
stantially decreases. This is more clearly shown in Fig. 5.
Atoms are assigned different gray-scale renderings~darker
more charge localization! according to their contribution to

FIG. 4. DOS and localization as measured by the inverse par-
ticipation ratio in the valence band tail region. The letters refer to
Fig. 5.

FIG. 5. Spatial character of the local to extended transition.
Darker shading implies more charge localization. I is the inverse
participation ratio~see text!. ~a! E528.27 eV: highly localized
midgap state~I52120!; ~b! E529.63 eV: less compact cluster
~I5326!; ~c! E529.84 eV: larger cluster ~I5210!; ~d!
E529.92 eV: weight on two separated clusters~I5110!; ~e!
E5210.0 eV: nearly extended state~I549!; ~f! E5211.0 eV:
extended valence state~I55!. Connecting lines between atoms de-
pict bonds.
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the eigenvectors. Atoms making little contribution~where
,0.05% of the ‘‘charge’’ is located! are omitted in the fig-
ure. The origin of the midgap defect state@Fig. 5~a!# is found
to be an atom that has very large bond angle distortion
(Du'20°). Such states are strongly localized on the defect
core and its nearest neighbors. As we expect, such large
angle distortions are rare in the model, so only a few~3 of
16 384! midgap states are found. States deeper into the band
tail but tend to have weight on certain clusters of atoms. The
deeper the state is inside the band, the larger the size of the
cluster, which implies smaller IPR. There is an interesting
pattern in which, when the size of the cluster increases to a
certain point, the localized states start to ‘‘bifurcate’’ into
two smaller weakly coupled pieces@compare Figs. 5~c! and
5~d!#. As we have pointed out elsewhere,22 using the simple
language of perturbation theory, it is natural to see this as a
‘‘resonant phenomenon’’ in the sense that electronic states
can spatially mix ‘‘energetically similar’’ parts of the net-
work that are well separated in the supercell because of

‘‘small energy denominators.’’ We have seen a very similar
resonance effect on vibrational eigenstates in glassy
GeSe2.

23 As one progresses deeply into the valence tail, the
fraction of the network associated with the given energy in-
creases until the states become fully extended; forE close to
210 eV, there is no clear pattern of clustering and states
become quite extended.
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