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We compute accurate approximations of the electronic states near the gap in a very large and realistic
model ofa-Si. The spatial structure of the states is computed explicitly and discussed. The character
of the local to the extended (Anderson) transition in amorphous Si is described. The density of states,
the conductivity, and doping are discussed. [S0031-9007(98)05414-3]

PACS numbers: 71.23.Cq, 61.43.Dq, 78.66.Jg

The nature of the band-tail states in amorphous semicorand threep basis functions per site and (2) the 4096
ductors is of both fundamental and applied interest. Sincatom supercell model af-Si proposed in Ref. [2]. The
the seminal work of Anderson [1] it has been known thattight-binding model is an imperfect means of modeling
disorder induces localization of electron states. The deelectronic structure, but calculations [4] demonstrate that
tailed understanding of this has been a field of tremendouthe qualitative features of the localization of electronic
activity in condensed matter theory. In the parlance oftates due to disorder and their qualitative placement
amorphous semiconductors, the nature of the electron Izompares well to experiment or to more sophisticated
calization is determined by the microscopic structure ottheory [9]. The supercell model of Djordjevic and co-
the band-tail and midgap eigenstates and the dependena®rkers has been discussed in detail in the literature [2].
of this structure on the energy of the state. In this Letter|t has a pair distribution function, bond angle distribution,
we report the first explicit microscopic calculations of theand, as we will show, electronic properties in rather
band-tail states using a very large and realistic 4096 atorgood and uniformagreement with experiment. It has no
model ofa-Si (a cube about 43 A on a side), generated bythree-coordinated (dangling bond) sites. In addition, we
Djordjevic, Thorpe, and Wooten [2]. A related calcula- have relaxed a 512 atom model constructed analogously
tion for amorphous diamond has been published recentlf2] to the 4096 atom cell studied here with local basis
[3]. This paper goes well beyond related earlier work [4]local density approximation (LDA) methods [9], and only
on 216 or fewer atom cells, which accurately modeled deeminor changes were noted from the original coordinates.
gap states, but was limited in showing their ability to model Since the Hamiltonian we are using involves four basis
tail states. functions per atom, the dimension of the Hamiltonian

A localized-to-extended [1,5] transition occurs near bothmatrix H is N = 4 X 4096 = 16384. This is too large
the valence and conduction band taila#%i, since midgap to exactly diagonalize with traditional methods [10].
states are bound to be Anderson localized in a realistiSince the matrix is sparse (because the range of the tight-
model of ¢-Si and, likewise, states well into the valence binding matrix elements is small), a small subset of the
or conduction bands (beyond the mobility edges) areomplete set of eigenstates of the matrix can be computed
extended. While this picture is certainly valid, it is also essentially exactly with a Lanczos [10] technique. We use
qualitative, and details, such as the exact nature of theur maximum entropy method [11] to compute the global
mobility edge, are still controversial. Within finite-size density of states.
limitations of our model, we indicate qualitative features We estimate the electrical conductivity of the model,
of the transition that are robust and salient to ee&i and  using the Kubo formula [12] for the ac conductivity,

that we suspect are relevant to any topologically disordered 27 e?
insulator. o(w) = mi[ﬁ — fid IMi?
For applications, and for any transport experiments on L.k
a-Si [6], the gap and band-tail states are of interest. X 6(Ex — Ei — ho), 1)

For example, in a lightly boron doped{type) sample whereM;; = <¢,~|’f3|¢k> is the momentum operator ma-
of a-Si:H, one can expect that states much like therix element between eigenstat@sand i, ) is the cell
ones we report near the valence edge will be responsiblolume, andE; is the energy of state f; is the Fermi-
for the conduction [7]. Any atomistic approach to com- Dirac distribution function evaluated at enerdy. By
puting conductivity and transport properties must starinspection of the Kubo formula, it is clear that the local-
from calculations of the electron states near the Fermization of the states overlap (and momentum matrix ele-
level as we compute for a very large cell ®fSi for the  ments), and proximity in energy to each other and to the
first time in this paper. Fermi level are primary determinants of the dc conduc-
The approximations of this paper are as follows: (1) Antivity. Thermal (electron-phonon) effects are also quite
orthogonal tight-binding Hamiltonian [8] with one  important atT > 0; we discuss this elsewhere [13].
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The density of states fad is reproduced in Fig. 1(a): 1.5 eV essentially exactly using the Lanczos [10] scheme.
the global structure of the density of states is shown inThe position and localization of the individual states are
the inset. The valence edge shows more tailing thameported in Fig. 1(b). Each spike indicates an energy
the conduction edge: this is consistent with experimentsigenvalue, and the height of the spike is the localiza-
[14] and theory [15] which show that the valence tail istion from the inverse participation ratio (IPR){y,) =
primarily due to structural disorder, while the conductionN >~ , a; /SN, a2)?, where ¢, = 3V a,:¢; is the
tail is much more sensitive to temperature and originatesth eigenvector and, is one of theN orthogonal (tight-
in thermal disorder. Since this is a zero temperaturdinding) basis orbitals. The IPR for ideally extended
calculation, the relatively greater width of the valencestates is near 1.0, and an ideally localized state (on one
tailing is to be expected. The solid curve of Fig. 1(a)basis orbital) would yield = N. Figure 1(b) shows a
is the maximum entropy fit to the density of states, andsmooth falloff in IPR as energy (doping) changes from
is quite exponential, similar to what we observed inmidgap (say, near 0.5 eV) into the valence tail (near
amorphous diamond [3]. The decay paramdigiisuch 0.0 eV). If the exact position of the eigenvalues from
that density of statep(E) ~ exp(—E/Ey)] is 190 meV. Fig. 1(b) are fit to an exponential form for the tail [dashed
In earlier calculations on 216 or fewer atom cells, therecurve in Fig. 1(a)], we get almost exactly the same tail
are simply too few states to get a reasonable sampling @&fs from maximum entropy. In Fig. 1(c), we estimate the
the band-tail energy range [4,13]. dc conductivity using the Kubo formula [12], where in

Next, we computed 500 midgap and band-tail elec+this plot, the abscissa indicates the position of Fermi level
tronic eigenstates in the energy range betweét and and the predicted conductivity from the states discussed
in Fig. 1(b). We note that (1) the midgap states are in-
capable of carrying current since they are localized and
sparse in the energy gap, (2) if the states become dense
0.800 | 20 | _ Total EDOS ] (and extended) enough, a nonzero conductivity is obtained

. | /j\m when the model is doped to a Fermi level néar= 0,

0.600 | 1 .. . . . .

and (3) the conductivity risesmoothlywith increasing
0.400 | 45 0 5 0 5 10 1 p-doping. There is no signature in this work of an abrupt
mobility edge [5]. To estimate the dc conductivity, we
averageo(w) from the Kubo formula [12] in a small
band of widthéw = 0.02 eV aboutw = 0. We admit
that for the energy region around 0.1 eV where the states
Electronic eigenstates are sparse, the result is somewhat sensitive to the choice
of dw due to finite-size artifacts. So it is hard to pin
the exactlocation of the mobility edges in our calcula-
tion. However, the basic structure of the curve is very
plausible, and it would seem that the mobility gap extends
from 0.0 to about 1.2 eV.

To study the spatial structure of electron states and the
1200 b (©) ] qualitative nature of the local-to-extended transition, we
_ DC conductivity estimated at T=0K and E<E “visualize” states by assigning different colors to every

1 atom according to the “charge” associated with the atom
site for a given eigenstate. In Fig. 2, we choose six typical
valence states. The position of these states are also cross
labeled asa-f in Fig. 1(b). For the effect of visual-
ization, only 75% charge in each state is shown (those
atom sites contributing less charge density are omitted).
Changes in color thresholds modify the detailed appear-
FIG. 1. Electronic states in the band-gap region: (a) Elec-ance, but the features we discuss are robust to sensible
tronic density of states (DOS) computed by the maximum-changes in the visualization. Figure 2(a) is a typical ex-

entropy technique [11]. The total DOS is condensed in th ; ; ; ;
graph shown in the inset. 400 moments and 50 random Vecto‘?%onentlally localized state where the charge is confined

were used (Ref. [11]). The valence band tail is approximatel;}o a small cluster of atoms near a major structural dis-
exponential with width of 190 meV as estimated with the fit- tortion (bond angles severely deviating from tetrahedral
ting function (dashed line). (b) Energies and localization [frombonding). The size of the cluster increases as the energy
inverse participation ratio—IPR (see text)] of gap states fromis tuned from midgap toward valence band (it is not per-

Lanczos calculation. Large IPR implies more spatial localizagctly monotonic). For energies deeper into the valence
tion. The letters illustrate the location in energy of the eigen-

states depicted in Fig. 2. (c) The estimated dc conductivity as Qand (E <, 0:1 eV), the eigenstate “proliferates” into a
function of doping (location of the Fermi level) computed with form consisting of several small clusters. At the begin-
the Kubo formula [Eq. (1)]. ning of this phase, an energy eigenstate is a superposition
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(a) E= 0.1974 eV: IPR =658 (d}) E=-0.0542eV;IPR=24

FIG 2(color). Spatial character of the local-to-extended transition: energy eigenstates. For a given state df arigrgpsition

as indicated in Fig. 1(b), IPR is the inverse participation ratio (see text), and electron charge density is depicted according to the
color. Each atom shown is colored according to the fraction of total charge: Etaicki6), red (>1/64), yellow (>1/256), green
(>1/1024), and white £1/1024, such that at least 75% of the total charge is shown). The electronic states evolve from the tightly
localized (midgap) states (a) to weakly coupled “cluster” states (b) and (c), to fragmented multiclusters states (d) and (e), and
finally to extended valence states (f).

of two clusters weakly overlapping each other in realor lower (=) clusters in Figs. 2(b) and 2(c). The states
space. This could be understood with perturbation theoryi=) are nearly localized eigenstatestdf since|,) and

two nearly energy degenerate localized clusters weaklyi/.) are almost degenerate. For energies near the mobil-
overlapping each other will admix to form two new states.ity gap we conjecture the existence of cluster stftes
One (of several) examples supporting this are two statesxact localized eigenstates due to a gileslateddistor-

|,y and |.), split by a small energy (10 meV), de- tion. The states of Fig. 2, especially Figs. 2(b) and 2(c)
picted in Figs. 2(b) and 2(c), which appear to be builtare interpreted as mixtures of overlapping, nearly degen-
from two weakly overlapping clusters. By computing erate cluster stately). |*) are approximationsto the

=) = ) = |p.), we obtain new states much more |«), since|=) are not ideally isolated from each other in
localized than¢;,) or [.) and resembling the uppé#)  this model with its realistic distribution of defects. This
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is reasonable, since major defects induce local (clusteglusters|a) and|B). In the spirit of Hiickel theory [17],
states [4]: more common, milder defects induce less lowe cantak&,g ~ (E, + Eg)Sap/2forSas = (a | B).
calized cluster states which overlap in realistic models offhen, in first order perturbation theory, the formation of
a-Si, and are therefore not isolated, but whose existenceigenstates dl from these clusters becomes obvious; the
can be inferred from the eigenstates (perturbatively, sufirst order correction to the zeroth-order (cluster) state
perpositions of the cluster states). We next displaced onie > ;.. I'agl B), wherel'op = (Eo + Eg)Sga/2(Ea —
atom with largest localization from the upper cluster of ei-Eg). The strong mixing for small energy denominators
ther Fig. 2(b) or Fig. 2(c), 0.09 A and recomputed eigen{E, =~ Eg) and the role of the overlap are indicated. We
states. A cluster similar to the lower cluster was a newwill develop this approach further elsewhere [13].
eigenstate with an energy between original stafgs and We thank Dr. B.R. Djordjevic and Professor M.F.
li.). The displacement pushéd) “off resonance” with  Thorpe for providing us with their structural model. We
|—), as our model would predict. thank Professor Peter Fedders, Professor Ron Cappelletti,
We note that the dc conductivity plotted in Fig. 1(c) and Professor Sergio Ulloa, for insightful discussions.
begins to rise from zero just at the energy where théThis work was partially supported by NSF under Grant
electronic states begin to proliferate into multiple clustersNo. DMR 96-18789 and the Ohio Supercomputer Center
For deeper valence states, eigenfunctions consist of thresder Grant No. PHS218-1.
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