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Abstract

We compute approximations to the electronic states near the gap in a large and realistic model of a-Si. The spatial
Ž .structure of the states are computed explicitly and discussed. The properties of the local to extended Anderson transition is

described. A qualitative picture of the Anderson transition is described. Implications for conductivity and doping are briefly
discussed. q 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

The nature of the band tail states in amorphous
semiconductors is of both fundamental and applied

w xinterest. Since the seminal work of Anderson 1 , it
has been known that disorder induces localization of
electron states. The detailed understanding of this
has been a field of tremendous activity in condensed
matter theory. In the parlance of amorphous semi-
conductors, the nature of the electron localization is
determined by the microscopic structure of the band
tail and midgap eigenstates and the dependence of
this structure on the energy of the state. Here, we
report the first explicit microscopic calculations of
the band tail states using a very large and realistic

Ž4096 atom model of a-Si a cube about 4.3 nm on a
. w xside , generated by Djordjevic et al. 2 . An orthogo-

nal tight-binding Hamiltonian is used to model the
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w xelectron states 3 . While there are important approx-
imations needed where the form of the Hamiltonian
is concerned, this paper presents results which are

Žotherwise exact e.g., with respect to analyzing the
spectral properties of the Hamiltonian matrix for the

.assumed 4096 atom model . A closely related calcu-
lation for amorphous diamond has been published

w xrecently 4 . To study the nature of electron states in
disordered systems, conventional supercell calcula-

Ž .tions 216 or fewer atoms are inadequate for any but
Ž .the most localized midgap states. Even in the cell

we discuss here, periodic boundary condition arti-
facts are relevant for states with ‘volume’ compara-
ble to that of the cell.

w xA localized-to-extended 1 transition is widely
believed to occur near both the valence and conduc-
tion band tails in a-Si, since it is clear that midgap
states are Anderson localized in a realistic model of
a-Si and likewise, states well into the valence or

Ž .conduction bands beyond the mobility edges are
extended. While this picture is certainly valid, it is
also qualitative, and certain details, such as the exact
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structure of the mobility edge are still controversial.
Within finite-size limitations of our model, we indi-
cate some features of the transition that are robust
and salient to real a-Si, and we suspect are relevant
to any topologically disordered system. Perhaps the
most interesting feature is that as one considers
electron energies varying between midgap and the
valence mobility edge, the states become extended
by what we will call ‘resonant cluster proliferation’;
the electron eigenstates evolve from tightly localized
structures with all their weight or ‘charge’ near some
major distortion, to weakly coupled ‘droplets’ of
charge until ultimately the states fill the volume of
the cell, at which point our calculations are unable to
draw further conclusions about the properties of the
transition since the periodic conditions compel the

Ž .states to be fully and artificially extended.
For applications, and for any transport experi-

Ž w x.ments on a-Si see, for example, Ref. 5 , the gap
and band tail states are of interest. For example, in a

Ž .Boron doped p-type sample of a-Si:H, one can
expect that states much like the ones we report near
the valence edge will be responsible for the conduc-

w xtion 6 . Any atomistic approach to computing con-
ductivity and transport properties must start from
calculations of the electron states near the Fermi
level as we compute for a very large cell of a-Si in
this paper.

2. Constraints on theory

Ž .The approximations of this paper are: 1 an
w xorthogonal tight-binding Hamiltonian 3 with one s
Ž .and three p basis functions per site and 2 the 4096

w xatom supercell model of a-Si proposed in Ref. 2 .
The tight-binding model is an imperfect means of
modeling electronic structure, but many calculations
Ž w x.see for example, Ref. 7 demonstrate that the
qualitative features of the localization of electronic
states due to disorder and their qualitative placement
compares well to experiment, or to more sophisti-

w xcated theory 8 . Computation of forces is another
w xmore sensitive matter 9 , with which we do not

concern ourselves with in this paper. The supercell
model of Djordjevic et al. has been discussed in

w xdetail in the literature 2 . It has a pair distribution
function, bond angle distribution, and as we will

show, electronic properties in rather good and uni-
form agreement with experiment.

Since the Hamiltonian we are using involves four
basis functions per atom, the dimension of the
Hamiltonian matrix is Ns4=4096s16 384. This
is too large to exactly diagonalize with traditional

w x Žmethods 10 . Since the matrix is sparse because the
.range of the tight-binding matrix elements is small ,

a small subset of the complete set of eigenstates of
the matrix can be computed with a Lanczos tech-

w xnique 10 . This approach enables computation of
states in a small neighborhood of energy essentially
exactly, and its efficiency stems from never requiring
operations more computer intensive than the applica-
tion of the matrix to a vector: matrix multiplications
are never required. In a related vein, we use our

w xmaximum entropy method 11–14 to compute the
global density of states. Both of these approaches
can be shown to require both memory and CPU time

Ž 3scaling linearly with N not like N as in full
.diagonalization methods . A final point is that since

the basis set of this Hamiltonian is minimal, we
concentrate on the valence tail more than the conduc-
tion tail, since the latter is likely to be more affected
by the incompleteness of the basis than the valence

Žtail that is, there is more s) or d character to
.low-lying conduction states than the valence states .

We estimate the electrical conductivity of the
w xmodel, using the Kubo formula 15 , which is well

known and we will not repeat here. By inspection of
the Kubo formula, it is clear that the localization of

Ž .the states, overlap and momentum matrix elements ,
and proximity in energy to each other and to the
Fermi level, are primary determinants of the DC

Ž .conductivity. Thermal electron–phonon effects are
also important at T)0. It is also appropriate to
comment that the v™0 limit of the conductivity is
tricky and difficult to unambiguously define for fi-
nite systems.

3. Results

Our results are summarized in three figures. The
Ž .global density of states DOS is given in Fig. 1, as

w xobtained by the maximum-entropy method 11–13 .
The general shape of the density of states is what we
expect of a credible model of a-Si. The gap region is
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Ž .Fig. 1. Total electronic density of states DOS of amorphous
silicon. Four hundred moments and 50 random vectors were used
to achieve the high resolution.

Ždiscussed in detail in Fig. 2. In the top panel Fig.
.2a the position and localization of the states is

reported. For each energy for which there is a spike,
the Hamiltonian matrix has an eigenvalue. The height
of the spike measure the localization using the in-

Ž . w xverse participation ratio IPR 16 . The higher the
IPR for a state, the more spatially localized it is. As
expected, states near midgap are very localized, and
there is a smooth fall off in IPR as energy changes

Ž .from midgap say, near 0.5 eV into the valence tail
Ž .near 0.0 eV . The figure emphasizes the essential
ambiguity of assigning a ‘valence band edge’ or
‘conduction band edge’. It would seem that the
mobility gap extends approximately from 0.0 eV to
about 1.2 eV. The structure of the states which are

Ž . Ž .labeled as a – f is given explicitly in Fig. 3, de-
scribed below. In Fig. 2b, we reproduce the density
of states. Fitting to an exponential fitting function,
we estimate that the width of valence band-tail is
about 190 meV.

In Fig. 2c, we give an estimate for the zero
temperature DC conductivity, where in this plot, the
abscissa indicates the position of Fermi level and the
predicted conductivity from the states discussed in

Ž .Fig. 2a. We note that 1 the midgap states are
incapable of carrying current, since they are local-

Ž .ized and sparse in the energy gap, 2 the states
Ž .become dense and extended enough to give a non-

zero conductivity when the model is doped to a

Ž .Fig. 2. Electronic states in the band-gap region: a Energy and
localization, parameterized by inverse participation ratio–IPR,
Ž .see text of electronic eigenstates. The larger the IPR, the more
spatially localized the state. The letters illustrate the location in

Ž .energy of the eigenstates depicted in Fig. 3. b Tail DOS. Some
localized states tail from the band-edges into band-gap. The
valence band-tail is approximately exponential with width of 190

Ž .meV as estimated with exponential fitting function dashed line .
Ž . Žc The DC conductivity as a function of doping location of the

.Fermi level computed with the Kubo formula. The general shape
of the curve is robust; however, the exact onset of a finite DC
conductivity depends somewhat on an arbitrary broadening used
to evaluate Eq. 3.

Ž .Fermi level near Es0, 3 the conductivity rises
smoothly with increasing p-doping. There is no evi-

w xdence in this model of an abrupt mobility edge 17 .
The exact location of the mobility edge is difficult to
estimate in our theory, because of finite size arti-
facts. The basic structure of the curve is quite plausi-
ble, however. In Fig. 3 we show ‘visualizations’ of
the electron states. 1 We show the evolution of states

1 For a color version, see http:rrwww.phy.ohiou.edur ;

draboldrresearch.html.
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Fig. 3. Spatial character of the local to extended transition. Those
atoms which together comprise 75% of the charge of the state are

Žshown. E is energy eigenvalue the position is also indicated in
. Ž .Fig. 2a . IPR is the inverse participation ratio see text . The

Ž . Ž .electronic states evolve from highly localized mid-gap states a
Ž . Ž .into band-tail states b , c , and finally to extended valence states

Ž .d .

Ž . Žfrom midgap Fig. 3a through the band tail Fig.
. Ž .3b,c to quite extended Fig. 3d . Note the evolution

Žfrom a small clump with high charge density mid-
.gap, Fig. 3a to overlapping ‘charge droplets’ roughly

Žin a line remember that periodic boundary condi-
.tions are imposed , to weakly overlapping droplets in

Fig. 3c. Fig. 3d shows a quite extended state.

4. Discussion

The most significant outcome of this work is a
qualitative understanding of the Anderson transition.
In this connection Fig. 3c is particularly revealing,
showing that the states become extended by ‘reso-

Žnant cluster proliferation’ localization decreases for
energies approaching the bandtails by formation of

.weakly overlapping droplets . As we argued else-
w xwhere 1 , we understand this to be a ‘resonant

phenomena’: clusters of atoms with similar energy
have their wave functions mixed by small, but non-
zero overlap and very small energy denominators.
These clusters originate in network irregularities, and
would be bona fide eigenstates in their own rights
but for other overlapping resonant cluster states.
Huge distortions are rare, and are associated with
isolated, localized midgap states. Milder distortions
are more common, induce less localized states, and
have energies closer to the mobility edge. Thus, we
find that the volume of the cluster states, and their
concentration increases for energies varying between
midgap and either mobility edge; at the mobility
edge the cluster states sufficiently overlap and the

w xeigenstates become extended 18 . Such a model is
sensible only for midgap and tail energies, and is not
obviously extendable to the states past either mobil-
ity edge.

States such as those illustrated in Fig. 3 are what
w xis needed as input to the Kubo formula 15 and

emphasize the complexity of the conductivity, and its
dependence on all the details of the electronic eigen-

Ž .states and related quantities . In this paper we con-
centrated on zero temperature, and it is clear that the
thermal effects are quite important for the general
case. In an adiabatic approximation, the lattice vibra-
tions simply harmonically modulate the positions of
the atoms and therefore the electronic states and
energies, and the Kubo formula can be thermally
averaged to infer an important part of the tempera-
ture dependence of the conductivity. Such a study is
in progress.

5. Conclusions

We have explored the local-to-extended transition
in the most important practical amorphous semicon-
ductor: a-Si. We show that the evolution of the

w xelectron states from midgap local well into the
Ž . w xvalence or conduction tail extended proceeds by

‘cluster proliferation’, as illustrated in Fig. 3. Our
work provides a realistic and fairly simple picture of
the tail and gap states in amorphous Si.
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