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ABSTRACT

We report the results of ab-initio molecular dynamics simulations for small clusters

of Si and C atoms. Ground-state geometries and vibrational spectra are presented. We

also describe a Bayesian spectral estimation technique which we have found to be useful

in analyzing molecular dynamics trajectories.

INTRODUCTION

Microcluster geometry and dynamics have'long been of interest to chemists. In

the last few years, there has also been considerable interest in the condensed matter

physics community. Beside an intrinsic interest in such molecules, calculations of cluster

properties lend insight into how well the various approaches to electronic structure are

working. In particular, the molecular environment is very different than the bulk, and

successes (and failures!) there can motivate improved approaches to the electronic

structure problem.

In this paper we will discuss the application of the first principles molecular dy-

namics (MD) scheme of Sankey and Niklewski I to microclusters. This methodology

is particularly well suited to cluster studies, as the entire calculation is carried out in

real space. The MD method is founded upon four major approximations. (1) Non-

local norm-conserving pseudopotentials of the Hamann-Schlfiter-Chiang type
2

. We

treat the non-local pseudopotential exactly. No local approximations are made. (2)

A local orbital basis set with slightly excited free atom sp
3 

orbitals on each atomic

site.' "Slightly excited" means that in addition to satisfying the free atom Schr6dinger

equation, the basis orbitals satisfy a boundary condition that imposes a finite range -

the orbitals have support only in a sphere of radius rc. We choose rc to give a third

neighbor model in the diamond structure. This gives an interaction range of 10a -and

6.
6
aB for Si and C, respectively. (3) The Harris implementation

3 
of the Local Density

Approximation (LDA) is used. This approximation is accurate in Si and C with a super-
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position of free slightly excited atomic densities as the "input density" in the language
of Foulkes and Haydock

4
. As the calculation is non-self-consistent, it is considerably

more efficient than fully self-consistent methods. The Harris approximation yields an

electronic charge density exact to first order in the difference between the starting and

self-consistent densities. (4) Matrix elements are calculated from lookup tables which

are computed once for each atomic species. Some three center integrals associated

with the pseudopotential, neutral atom and exchange-correlation matrix elements are

computed with the aid of an angular momentum expansion. These approximations

are collectively and separately quite accurate. The MD scheme has been applied with

success to surfacess, clusters
6
, amorphous Si

7
, and crystalline phases

1 
of Si and C, with

accuracy close the ab-injito simulations of Car-Parrinellos type.

The method is very convenient to use. To simulate a new material, one simply

calculates the lookup tables for the various matrix elements. This (one time) investment

takes several Cray hours. Simulation of a small molecule (Sis for example), takes about

1 sec per time step on a Cray X/MP. The time step length is set by a purely nuclear

(not electronic) time scale. Additionally, our compact basis set allows us to store

information from previous time steps which enables the use of quadrature schemes

more sophisticated than the commonly used Verlet method, which helps to accurately

extend the time step even further.

APPLICATION TO MICROCLUSTERS

To find ground state geometries of small clusters, we have applied both the sim-

ulated annealing and dynamical quenching methods. 1,6 The former is less efficient,

but more likely to find a global minimum in the total energy. For the small clus-

ters discussed here, dynamical quenching is adequate. For both Si and C our results

are in good agreement with quantum chemistry calculations
9 

and self-consistent LDA

calculationss. Results for Si structures have been reported elsewhere
6
. In Table 1, we

display geometrical parameters for selected C clusters. The results are quite satisfac-

tory.

We have found that within our approximations, carbon is more difficult to accu-

rately simulate than silicon. For rc = 
3

.
3
aB, we find an unexpected global minimum in

the potential energy for an isosceles triangle structure for C3, which is inconsistent with

more sophisticated calculations. Note however, that the bondlength predicted for the

metastable linear C3 structure is in excellent agreement with the state-of-the-art calcu-

lations of Alml6f and coworkers
9
. This is the only case for which we have encountered

a sensitivity to re. For a larger r, (r, = 5.0as) we find a linear ground state (global

minimum in the potential energy), though the bondlengths are not so satisfactory as

our "preferred" re = 
3
.
3

aB calculation. Parasuk and Alml~f
9 

also detected a sensitivity

to the choice of basis sets for C'6.
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molecule structure bondlengths (A) energy difference (eV/atom)

C2  linear 1.235 0.0

C3  triangle 1.3244,1.691 -2.2

C3  linear 1.303 (1.302) -2.1

C6  linear 1.281,1.301,1.291 -3.2

C6  hexagon 1.311 (1.31)* -3.4

linear C6 bondlengths from molecular end to center

TABLE 1. Geometry of Selected Carbon Molecules (rc = 3.3aB)
* Reference 9

The efficient execution of dynamics for microclusters has enabled us to study fi-

nite temperature entropic effects, and some of the "phase space" properties of small

clusters. Most of these results will be presented in another paper (Klemm et. al. -

this volume). In a preliminary way, we have also successfully simulated molecular col-

lisions/scattering and unimolecular dissociation. In this paper we will describe some

elementary dynamical properties and discuss a novel approach to analyzing time series

data to extract spectral information.

In Fig. la we show traces of the (planar) motion of Si 3 at kinetic temperature

T = 500K, where T is defined by:

3/2kBT =< p
2 /2Msg >, (1)

where the right hand side is the average kinetic energy of the molecule after many

oscillations. For T = 50K and 500K the molecule essentially executes small oscillations

about its equilibrium (isosceles triangle) configuration. For the considerably higher

temperature of 2500K (Fig. 2), the motion is more complex, and exhibits a six-fold

pattern. Animation of this trajectory reveals that the six-fold structure is a consequence

of a repeated exchange of the role of "vertex atom" (vertex of the isosceles triangle). For

these simulations the velocity of the center of mass and the total angular momentum

vanish; this was accomplised with a judicious choice of initial conditions
6
.

In Fig. lb,2b we show spectral densities calculated by Fourier transforming the

velocity-velocity autocorrelation function, obtained from the trajectories. At 50K and
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500K there are three dominant peaks corresponding to the normal modes expected

for the Si3 system. Even at 500K there are indications of anharmonic effects in the

spectra. The spectrum for the 2500K molecule (Fig. 2b) is very much more complex; it

may be quasi-continuous. For the 50K and 500K case we have identified the dominant

frequencies with a Bayesian spectral estimation procedure due to G. L. Bretthorst
10

,

which we discuss in the next section. The Bayesian frequency estimates axe from a

direct analysis of the raw atomic velocities, not from the discrete Fourier transform

(DFT) plotted in the Figure.
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FIGURE 1. (a) Trajectory of Si3 molecule at T=500K. (b) Vibrational spectra of

Si 3 for 500K and 50K. Frequencies labeling peaks are Bayesian estimates (see text).

Frequencies are from five and three frequency models, respectively. Uncertainty in fre-

quencies is ; 0.2cm-
1
.
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FIGURE 2. (a) Trajectory of Si3 at T ,• 2500K. (b) Vibrational spectrum for Si3 at

T ; 2500K.

BAYESIAN SPECTRAL ESTIMATION

The standard way to obtain a vibrational density of states from MD data is to

calculate a velocity autocorrelation function g(t) whose Fourier transform is the spectral

density g(w). A practical difficulty with this relation is that the function g(t) is known

only for finite range of t - which depends upon how long the MD simulation was

performed, and g(t) is only sampled at discrete points (because of the discreteness of

the MD time step). For a g(t) with these limitations, the most general and accurate way

to spectrally decompose the time-dependent function is to employ Bayesian spectral

estimation techniques. One purpose of this section is to provide a brief commentary

on this method, and suggest a reference which we hope will be useful to readers.

In Bayesian spectral estimation, one uses the principles of probability theory to

ascertain the optimal procedure to find the frequencies present in a stationary time

series. It has been rigorously demonstrated"
0 

that the standard DFT is an optimal

frequency estimator only for time series with one frequency present (a rare case in MD

simulations). There are several advantages to the Bayesian method. (1) The spectral

resolution is very much improved over the DFT with window. (2) If the problem has

noise (either experimental or statistical) the estimation algorithim can handle it natu-

rally, unlike some other successful spectral estimation techniques. Accurate estimates

of the noise in the "data" and errors in estimated spectral parameters are useful byprod-

ucts of the method. (3) The Bayesian scheme gives a very elementary representation

of both g(t) and g(w) in terms of finite Fourier sums. (4) The method is efficient, In

part because of the ability to integrate out nuisance parameters (Fourier amplitudes,
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for example). The central point is that the Bayesian method allows one to "make the

most" of spectral information in a time series which may be very difficult to extend to

longer times. A complete introduction to this subject is given in Ref. 10.

CONCLUSION

We have illustrated the application of a new, efficient MD scheme to elemental mi-

croclusters. The method accurately describes bulk, amorphous, surface and molecular

bonding. A recently develped probability-theoretic method for time series analysis is

presented in the context of spectrally decomposing MD trajectories.
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