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Analytic results for the asymptotic decay of the electron density matrix in insulators have been obtained
in all three dimensions �D � 1, 2, 3� for a tight-binding model defined on a simple cubic lattice. The
anisotropic decay length is shown to be dependent on the energy parameters of the model. The existence
of the power-law prefactor, ~ r2D�2, is demonstrated.
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In a phenomenological classical approach to atomic dy-
namics, a very local picture of interatomic interactions is
often highly appropriate. The simplest example is the use
of Keating “springs” to describe small atomic oscillations
in solids [1]. In quantum mechanics (QM), the situation
is superficially quite different. If cI are single-particle
wave functions (for example, the Kohn-Sham orbitals of
density-functional theory), then the electronic contribu-
tions to the total energy, forces, or the dynamical matrix
can all be obtained from the single-particle density matrix
(DM): r�r, r0� �

P
occ c

�
I �r�cI�r0� [2]. For a condensed-

matter system, virtually all of the Hamiltonian eigenstates
cI are extended and oscillatory throughout the volume of
the system, except some of the states near the band edges in
the case of disordered systems. To the extent that r�r, r0�
is built from objects that are extended in real space, it is
a nontrivial feature of the quantum mechanics of extended
systems that in fact the DM can be localized, even expo-
nentially so, in insulators [3,4].

The possibility of a local formulation of QM goes back
at least to Wannier [5], whose “Wannier functions” decay
in real space. Kohn [6] extended this work, and empha-
sized the principle of “nearsightedness”, that is the de-
pendence of local properties, such as forces, on the local
environment. The possibility of real-space local formu-
lations of QM has inspired vigorous activity on efficient
“order-N” methods for electronic structure [2].

In early pioneering work, Kohn [7] showed that the
DM and Wannier functions for a 1D centrosymmetric two-
band model decay exponentially in insulators: r�r, 0� ~

exp�2ljrj�, where l ~ E1�2
gap [7], although Ismail-Beigi

and Arias [8] find instead that l ~ Egap as Egap ! 0.
Des Cloizeaux proved that the DM decays exponentially
quite generally in insulators [9]. Recently, He and Vander-
bilt [10] demonstrated that in 1D there is in fact a power-
law prefactor ~ r21�2, and that the characteristic inverse
decay length, l, of both the DM and Wannier functions is
universal, although the prefactor is different in each case.

In this Letter, we report analytic results for the spatial
decay of the DM for a two-band tight-binding (TB) Ham-
iltonian for all three dimensions, D � 1, 2, 3. The Hamil-
1 0031-9007�02�88(19)�196405(4)$20.00
tonian we use is similar in spirit to that of Harrison’s bond
orbital model [11] and is the minimal model which con-
tains the basic features of an insulator. Both the power-law
prefactor and the exponential spatial decay of the DM are
found in the asymptotic regime. Thus, we reproduce the
results of Refs. [7,10], and extend them to 2D and 3D. We
derive the dependence of the inverse decay length, l, in
terms of the fundamental energy parameters of the model.
We further show how, in certain cases, the exponential lo-
calization arises from the truncation of the sum defining r.
Precise numerical results support the analytic asymptotic
behavior in all three dimensions.

Our model is of centrosymmetric nearest-neighbor
TB form on a simple cubic (sc) lattice described by the
Hamiltonian

Ĥ �
X
im

´mjim� �imj 1
X

im,j�i�m0

tmm0 jim� � jm0j . (1)

Here, each site i is characterized by two bare orthogo-
nal electronic states, jim� �m � 1, 2� with bare energies
´m (D´ � ´1 2 ´2 . 0 for definiteness), which together
form the orthonormal bare basis set. These may be inter-
preted as bonding and antibonding states centered at each
lattice site. The hopping integrals, tmm, between similar
states (the same m) on different nearest-neighbor sites j (to
i) transform the on-site energy levels into bands, while the
hopping integrals, tmm0 , between different states �m fi m0�
on different sites are responsible for interband hybridiza-
tion. For this model, the eigenstates jk, g� (k is the wave
vector and g � 1, 2 indexes the bands) and dispersion are
analytically available, and the spectrum exhibits the main
features of a semiconductor/insulator (i.e., two bands sepa-
rated by a gap for a certain range of parameters).

We have written the density operator for the Hamiltonian
given by Eq. (1), first, in the eigenvector basis, jk, g�, then
expanded the eigenstates in the site basis jim� and evalu-
ated the density matrix elements, rim,jm0 in the site basis.
For fixed site indices i and j, the DM contains four ele-
ments, which, in the case of a semiconductor at zero tem-
perature, obey the following relations:

P
m rim,jm � dij
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and ri1,j2 � ri2,j1. Below, we investigate the decay prop-
erties only for the off-diagonal elements, ri1,j2 (the analy-
sis and results for the diagonal elements rim,jm are very
similar to those for ri1,j2 presented below). The expression
for ri1,j2 � r�rij � can be conveniently represented via an
integral in reciprocal space over the first Brillouin zone:

r�rij� �
21

2�2p�D

Z
. . .

Z p

2p
dk

eik?rij Sk

�A2
k 1 S2

k�1�2
, (2)

where rij�anx , any , anz� � rj 2 ri is the connection vec-
tor [with the unit-cell parameter a taken hereafter to be
unity, and na (e.g., a � x, y, z in 3D) being an inte-
ger], Sk � �1�2�

P
j�i� exp�ik ? rij� is the structure factor,

and Ak � 	D´ 1 2�t11 2 t22�Sk
�4t12 is the only energy
parameter of the model which, for the symmetric case
�t11 � t22 � t�, analyzed below for simplicity, is k inde-
pendent, i.e., Ak � A � D´�4t12. In the model without
interband hybridization (t12 � 0 or A ! `), the DM given
by Eq. (2) is obviously rij � 0. In order to study the spa-
tial decay of the density matrix, we should take the integral
in Eq. (2) and investigate its dependence on the lattice in-
dices na. This can be done analytically in the asymptotic
regime for all or some na ¿ 1, if the energy parameter of
the model obeys the inequality, A . D, which is the case
for weak interband hybridization in semiconductors.

Equation (2) has been derived without making use of
the particular symmetry type of the underlying lattice, and
is valid for any primitive lattice (one atom per unit cell).
The structure factor, Sk, reflects the differences between
various lattices. The DM given by Eq. (2) can be easily
calculated numerically for any reasonable choice of pa-
rameters, and the results of such calculations support the
main conclusions derived below analytically for the sc
lattice, subject to some additional restrictions (symmetric
case, t11 � t22, and weak hybridization, A . D).

To proceed with the evaluation of the DM given by
Eq. (2), first we expand in a series the denominator of the
integrand (Sk�A , 1, if A . D), separate the variables,
and then evaluate all D integrals making use of the or-
thogonality of the cos�kana� functions involved. This re-
sults in the following general exact form for the DM for
all three dimensions:

rna
�

�21�n

�4A�2n11

X̀
k�0

�21�k

∑
�2k0�!

�4A�k�k0�!

∏2

�2k0 1 1�SD ,

(3)

if s �
PD

a na is odd, and zero otherwise. Here k0 �
k 1 n � k 1 �s 2 1��2, S1 � 1�	k! �k 1 nx�!
, and
S2,3 are hypergeometric finite sums, the one for
2D, S2 �

Pk
m�0 1�	m! �k 2 m�! �m 1 nx�! �k 2 m 1

ny�!
 being expressible in closed form [12], but that for
3D, S3 �

Pk
m�0�2m 1 nx 1 ny�!�	m! �k 2 m�! �m 1

nx�! �m 1 ny�! �m 1 nx 1 ny�! �k 2 m 1 nz�!
, cannot
be so written, in principle [13]. The orthogonality of the
cos�kana� functions, being a consequence of the Fermi
level lying in the gap [only in this case are the upper limits
196405-2
of the integrals in Eq. (2) equal to p], is an important
feature in deriving Eq. (3). The original series is truncated
for small indices, which results in the appearance of the
exponential factor, �4A�22n21, before the sum in Eq. (3).
This factor then appreciably contributes to the energy �A�-
dependent part of the decay length of the DM [although
see Fig. 2(e) where this is not the case].

Further analysis is based on the use of Stirling’s ap-
proximation for na ¿ 1, which allows us to evaluate
asymptotically both the internal finite sum S3 in the 3D
case and the external infinite sums over k in all dimen-
sions. For example, if all na ¿ 1, then, keeping the lead-
ing term in the asymptotic expansions, we can write the
following expression for the DM in all three dimensions:

rna
� �21�n�2p�2D�2

√
DY
a

na

!21�2

exp	2sl
 , (4)

where the inverse decay length, l�A, na �, is given by

l�A, na� � ln�2A� 1
ss21

4A2
1

sln

s
2 lns , (5)

with s21 �
PD

a n21
a and sln �

PD
a na lnna . As follows

from Eqs. (4) and (5) and Figs. 1(a), 1(c), 2(a), and 2(d),
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FIG. 1. The dependence on distance of the logarithm of the
DM jlnrna

j [(a),(b)] and of the effective inverse decay length,
l̃ � 2lnjrna

j�s [(c),(d)] in the 2D case (the prefactor is in-
cluded in the definition of l̃ for easier comparison of analytical
results with numerical ones). In (a) and (c), the DM has been
calculated on the lattice sites situated around the main diagonal
	11
 and characterized by polar angles f [ 	10±, 80±
, while in
(b) and (d), ny � 0 and nx varies (in the 	10
 direction). The
circles represent exact numerical results obtained using Eqs. (2)
or (3), while the crosses are the results of the analytical expres-
sions (4)– (6) [they are practically indistinguishable in (a) and
(c)]. In (c), the different analytical contributions to the effective
inverse decay length are shown by the solid line [the ln�2A� term
in Eq. (5)], squares [the second term in Eq. (5)], triangles [the
sum of the last two terms in Eq. (5)], and diamonds [the pre-
factor in Eq. (4)]. In (d), the solid line is the ln�2A� contribution
to the effective inverse decay length [see Eq. (6)], the squares
represent the contribution of 	2lnjJny �nx�A�j�nx
 to l̃, and the
diamonds signify the prefactor in Eq. (6).
196405-2



VOLUME 88, NUMBER 19 P H Y S I C A L R E V I E W L E T T E R S 13 MAY 2002
0 10 20

−1

0

1

2

3

−50

−40

−30

−20

−10

0

0 10 20 0 10 20 30
νx+νy+νz νx+νy νx

ln
|ρ

|
λ~

(a) (b) (c)

(d) (e) (f)

FIG. 2. The dependence on distance of jlnrna
j [(a)– (c)] and

of l̃ � 2lnjrna
j�s [(d)–(f )] in the 3D case. In (a) and (d), the

DM has been calculated on the lattice sites situated around the
main diagonal 	111
 for solid angles defined by the polar angle
f [ 	20±, 70±
 and azimuthal angle u [ 	20±, 70±
; in (b) and
(e), nz � 0 and nx and ny vary around the plane diagonal and
are characterized by the polar angle f [ 	20±, 70±
 (around the
	110
 direction); and in (c) and (f), nz � ny � 0 and nx varies
(in the 	100
 direction). All the symbols have the same meaning
as in Fig. 1 except in (e), where the solid circles represent the
contribution to l̃ due to the exponential term in Eq. (7), the
squares and triangles are due to Jnz and Jnx1ny

, respectively,
while the diamonds signify the prefactor in Eq. (7).

the DM in this model of an insulator: (i) exponentially
decays with the distance-related parameter s; (ii) has
a power-law prefactor which is proportional to n2D�2;
(iii) is anisotropic; and (iv) the inverse decay length of the
DM depends on the energy parameters of the model. The
behavior with effective distance of lnjrna

j and the effec-
tive inverse decay length, l̃ � 2lnjrna

j�s1, are shown in
Figs. 1(a) and 1(c) for the 2D case and in Figs. 2(a) and
2(d) for the 3D case, respectively. The different points
correspond to all the lattice nodes within a relatively wide
solid (polar in 2D) angle around the main diagonal. Ex-
amination of the results shows that the slowest decay of the
DM occurs along the main diagonal, i.e., the 	111
 direc-
tion in the 3D case. The analytical expression (5) allows
the different contributions to the effective decay length
to be estimated. It is clearly seen in Figs. 1(c) and 2(d)
that the major A-dependent contribution comes from the
ln�2A� term in Eq. (5), while the role of the second term,
�1�A2, in Eq. (5) is not important at all, especially in
comparison with the significant A-independent contribu-
tion from the last two terms in Eq. (5) [see Fig. 3(b)].

In the case when one of the indices, e.g., nx ¿ 1, but
the other ones are small and finite (for D $ 2),

rna
�

�21�n

p
2pnx

exp	2nx ln�2A�

Y
afix

Jna

µ
nx

A

∂
, (6)

where J stands for the Bessel function, the asymptotic
form for which, with large argument [12], must be used
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FIG. 3. The dependence of the inverse decay length l (a) and
the effective inverse decay length l̃ (b) on the energy-dependent
parameter A of the model in 3D. The data in (a) given by the
thick solid and the long-dashed lines were obtained by linear
regression from the slope of lnjrj evaluated numerically using
Eqs. (4) and (2) for the 	111
 direction, respectively. The thin
solid line in (a) represents Eq. (5) [the difference between the
thin and the thick solid lines is due to the prefactor in Eq. (4)],
while the short-dashed line shows the ln�2A� contribution to l.
The solid line in (b) represents the analytical result according
to Eqs. (4) and (5), while the long-dashed line is obtained by
exact numerical evaluation of Eqs. (2) or (3). The short-dashed
line in (b) shows the ln�2A� contribution, while the dot-dashed
line gives the 1�A2 contribution. The DM in (b) has been cal-
culated on the particular representative node characterized by
nx � ny � nz � 9.

in Eq. (6). Bearing in mind that Jna
�nx�A� ~ �nx�A�21�2

for nx ¿ 1, it is easy to see that the power-law prefactor,
~ n2D�2, is restored in Eq. (6). The results for this par-
ticular case are presented in Figs. 1(b), 1(d), 2(c), and 2(f).
Again, the contribution of the term ln�2A� in the inverse
decay length is dominant, and the inverse decay length is
now larger than for decay along the main diagonal [cf.,
e.g., Figs. 2(a) and 2(c)].

Finally, if nx, ny ¿ 1 and nz is finite (in 3D),

rna
� �21�n

s
n1

2pnxny
exp

∑
2n1

µ
1 1

n2

2n1

ln�nx�ny�
∂∏

3 Jnz

∑
n1

A

∏
Jn1

∑
n2

1
p

nxny A

∏
, (7)

where n6 � nx 6 ny and, for both Bessel functions,
known asymptotic expressions (for the argument in Jnz

and for the argument and index in Jn1
) must be used [12].

These asymptotics for both Bessel functions restore the
n23�2 prefactor for the DM in the same manner as for
Eq. (6). The energy �A�-dependent contribution to l [see
Fig. 2(e)], in this case, comes mainly from the asymptotic
expression for Jn1

which is of exponential type if n1�
�A
p

n1 � , 1 (and of cosine type otherwise) [12].
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Another important point to discuss is the dependence
of the typical inverse decay length, l, on the energy pa-
rameters of the model. The only energy-dependent pa-
rameter in this model is the parameter A which is simply
related to the spectral characteristics of the model, A �
D´�4t12 � DDEopt��bDEb�, where DEb � 4Dt is the
band width, DEopt � D´ is the optical (direct) band
gap and the ratio of hopping integrals, b � t12�t, which
can be connected to the thermal gap, DEth � 	DE2

opt 1

�bDEb�2
1�2 2 DEb. The spectral parameters (DEb,
DEopt, and DEth) are not independent values because the
hopping integrals tmm0 in the Hamiltonian (1) can depend
on the orbital energies ´m, and obtaining such a depen-
dence, e.g., t12�D´�, requires a more accurate analysis
which is not necessary for our approach (that is why we
plot l vs A but not the direct gap width D´ in Fig. 3).
However, the limiting case, D´ ! 0, can be investigated,
at least numerically (analytical results are valid only for
A . D) under the reasonable assumption that t12 fi 0
as D´ ! 0, and the results are presented in Fig. 3(a),
confirming the linear scaling of the inverse decay length,
l ~ A ~ D´ for A ! 0 [8].

This model can be analyzed analytically only for a sc
lattice and, thus, strictly speaking, we stick to the atomic
orbital representation. However, numerics show that the
results (exponential decay of the density matrix and varia-
tion of the decay length with parameters of the Hamilto-
nian) are qualitatively the same for different underlying
lattices. This is not surprising because the asymptotic be-
havior at large distances hardly depends on the local struc-
tural details (the local features of the lattice can influence
the value of l by a factor of �2; see Figs. 1 and 2).
Thus, we believe that our results, at least qualitatively, are
general. Indeed, the inverse decay length decreases with
decreasing A (see Fig. 3), thus reflecting the known delo-
calization tendency of the DM with increasing metallic-
ity (in the bonding/antibonding representation [11] A �
V2�V1, being the ratio of the bonding-antibonding split-
ting energy and the metallic bandwidth energy). Moreover,
the analytical expressions for the decay length give correct
order-of-magnitude estimates of l for Si and C [14].

In conclusion, we have derived analytic asymptotic ex-
pressions for the spatial decay of the density matrix in in-
sulators. The results have been obtained for a tight-binding
Hamiltonian defined on the sc lattice having two orthogo-
nal bare states on each node. Two additional assumptions,
namely, symmetric bands (equal in-band transfer integrals)
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and relatively weak intraband hybridization, allow us to de-
rive exact asymptotic results for the density matrix in all
three dimensions. The main features of the analytic so-
lution are exponential spatial decay of the density matrix,
anisotropy of the decay length, the dependence of the de-
cay length on the energy parameters of the model, and the
existence of a power-law prefactor �~ r2D�2�. All the ana-
lytic asymptotic results have been supported by precise nu-
merical solutions of the problem.
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