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We present a simulation of the electron dynamics of localized edge states in amorphous silicon
(a-Si) at room temperature by integrating the time dependent Schrödinger equation using a
Crank-Nicholson method and a first-principles local basis Hamiltonian. We study the character of
the spatial and spectral diffusion of the localized states and directly simulate and reveal the nature
of thermally driven hopping. Phonon-induced resonant mixing leads to rapid electronic diffusion if
states are available nearby in energy and real-space. We believe that many of the results we obtain
are crucial for modeling transport phenomena involving localized states.

1. Introduction

It is of great interest to study the coupling between the lattice and the electron states in
disordered materials. This interaction is the root of thermally driven hopping between
localized states which is the principal mechanism of conduction for virtually all disor-
dered systems at sufficiently low temperatures. Anderson [1] first pointed out the fail-
ure of the conventional defect model for ordered structures to explain transport (for an
example of recent work on quantum transport see [2]) phenomena in disordered sys-
tems. Using a random lattice model he proved that without thermal activation the mo-
bile entities will be localized and at sufficiently low defect concentrations no diffusion
takes place. Thomas [3] argued that an electron starting in some localized state (as for
example a donor) will be scattered by phonons and become progressively delocalized.
He showed, using an Anderson model, that this “phonon-induced delocalization” is
essential to the understanding of transport in amorphous materials.

Previous thermal simulations using Born-Oppenheimer dynamics indicated that there
is always a very large electron–phonon coupling for the localized states in the band
tails and in the optical gap [4]. The effects of thermal disorder on the quantum coher-
ence of the localized states can only be computed by directly dealing with the electron
dynamics from the time-dependent Schrödinger equation.

In this paper, we explore a direct integration of the time-dependent Schrödinger
(Kohn-Sham) equation to characterize the dynamics of localized states in a small model
of a-Si in the presence of thermal disorder (at T = 300 K). We employed the Born-
Oppenheimer dynamics for the ions and implemented the Crank-Nicholson [5] method
along with the orthogonalization scheme of Tomfohr and Sankey [6] to obtain the time-
dependence of a given state. The work discussed here is directly relevant to any disor-
dered system and therefore (potentially) to localized states. It can be understood as a
first step towards a “realistic” solution of the finite-temperature Anderson problem [7].
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2. Methods

We begin with the time-dependent Schrödinger equation

i�h
@

@t
YðtÞ ¼ ĤHðtÞ YðtÞ : ð1Þ

Here Y is the wavefunction of a single electron and ĤH is the one electron (density func-
tional) Hamiltonian for the host (here, the model of a-Si). We explicitly compute the time
dependence of the Hamiltonian which arises from the ion motion obtained from the
Born-Oppenheimer approximation. At each time step of the conventional quantum mole-
cular dynamics (QMD) one can directly diagonalize the Hamiltonian matrix to obtain the
stationary solution of the electronic structure. However, the coherence of the electron
state is lost in the solution. For any given initial state Yð0Þ, the wave function YðtÞ at the
time t can be obtained by solving the time-dependent Schrödinger equation or, equiva-
lently, operating on the initial state with the time evolution operator ÛUðtÞ such that
YðtÞ ¼ ÛUðtÞYð0Þ. In the Crank-Nicholson method for sufficiently small step t,

ÛUðtÞ ¼ 1 þ it

2�h
H

� ��1

1 � it

2�h
H

� �
: ð2Þ

For any t ÛU is exactly unitary. We calculated UðtÞ using HðtÞ with a time dependence
induced by the thermal simulation of the ionic motion from Fireball96 [8]. Using the
Löwdin transformation [9] we can express the wave function YðtÞ as a vector C over
an orthonormal basis wi, YðtÞ ¼

P
CiðtÞ wi. The key properties of localization and co-

herence do not change when applying the Löwdin transformation. We adopt the ap-
proximation of Tomfohr and Sankey that for sufficiently small time steps t the Hamilto-
nian can be taken to be constant. Then the equivalent matrix equation becomes

i�h
@

@t
CðtÞ ¼ HðtÞ CðtÞ : ð3Þ

At room temperature the results using a time step of 0.5 fs (for both ions and electrons)
were found to be close to the results using a finer step of 0.25 fs at the test calculation. So
the following results are based on a simulation using a time step of 0.5 fs. This time step
appears to be very long; it is, however, acceptable because of the proximity of the HOMO
(Highest Occupied Molecular Orbital) and LUMO (Lowest Unoccupied Molecular
Orbital) eigenvalues to zero energy. If we would start with a general wave packet built up
from the full spectral range of the basis a much smaller value of t would be required.

We performed the simulation on a 64-atom a-Si model which has one pair of coordi-
nation defects, an undercoordinated dangling bond complex (with energy shifted from
mid-gap), and an overcoordinated floating bond. The localized states are associated
with the geometrical defects and are located in the band gap. The HOMO is spatially
localized around a three fold dangling bond, essentially a bandtail state, only 0.1 eV
higher in energy than the next occupied orbital and near a dense collection of extended
states. The lowest unoccupied molecular orbital (LUMO) is distributed around another
small cluster associated with the floating bond. The LUMO of this model is spectrally a
midgap state, isolated by 0.7 eV from both the lower HOMO and the next unoccupied
state. Extended unoccupied states are at least 1.0 eV above the LUMO. We chose both
HOMO and LUMO as the initial states to study their dynamics. Only the G point was
used for Brillouin zone sampling.
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3. Results and Discussion

Figure 1 depicts a snapshot of the evolution of charges of the HOMO and LUMO. The
diffusion is presented in Fig. 1. It is evident that the thermal disorder is sufficient to cause a
spatial diffusion of the originally localized states. This result is very different (this work
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Fig. 1. The evolution of charges of the original HOMO (A) and LUMO (B). Black indicates a
higher concentration than 0.15 electrons. White is the opposite extreme, less than the average
(1=64) electron. Between the two extremes the degree of grey indicates a decreasing concentration
from the dark to the light. Note the different time scales for the HOMO and the LUMO. After
the first 1 ps of evolution the original HOMO state covers almost the whole cell volume while the
LUMO state remains somewhat concentrated after a longer 1.5 ps evolution



yielding more extended states) from the results for the ‘‘Born-Oppenheimer electron dy-
namics” (by which we refer to the instantaneous eigenstates of ĤH at each ionic configura-
tion) [4], and in which the simulation retains an unphysical coherence in the states as the
states are always computed anew at each step and are therefore always pure. More realisti-
cally, phonon-induced decoherence accumulates due to repeated phonon scattering events.
Thus the time-dependent wave functions CðtÞ will show a different behavior compared to
those obtained from conventional QMD. We employ the inverse participation ration (IPR)
to measure the spatial distribution features, i.e. the localization, of a state: IPR =

P
C4

i .
HereCi is the component of the state vector. For an extended state the IPR approaches 1=N
whereN is the number of the basis. For an ideally localized state the IPR is unity instead.

Figure 2a shows the time development of the IPR of the HOMO in the 5 ps simula-
tion. The time-dependent solution of the HOMO becomes an extended state very
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Fig. 2. The evolution of the localization (IPR) of the original a) HOMO and b) LUMO. The
dotted line refers to the stationary solution (Born-Oppenheimer) and the solid line to the dynami-
cal (time-dependent Schrödinger equation) solution. The arrows indicate the turning-point at
which the dynamical IPR begins to depart from the “Born-Oppenheimer” snapshot dynamics.. The
corresponding charge distributions near the turning-points can be found in Fig. 1



quickly. This trend is similar for the LUMO shown in Fig. 2b. The “turning-point”
separating the stationary and the dynamical IPR time development occurs near 350 fs
for the HOMO state. A similar separation is observed at only 1.5 ps for the LUMO
state. A typical charge distribution near the turning-points of the IPR can be found in
Fig. 1. The time-dependent solution of the LUMO retains some of its initially localized
character after 5 ps of simulation because in comparison to the HOMO at 300 K it is
more separated from a reservoir of electronic states with similar energy with which it
can mix.

Electronic diffusion is understood qualitatively as a consequence of quantum mechan-
ical mixing when another state gets close in energy (and real-space) to a reference
eigenstate whose evolution we are tracking [10]. This mixing naturally leads to less
localized states and this continues in principle until the packet has diffused throughout
the simulation cell. We now go further to investigate the spectral diffusion of the elec-
tron state into nearby (almost resonant) states. Since the structure fluctuates at a fixed
moderate temperature the Hamiltonian can be regarded as perturbed around an aver-
age H0. With reference to the initial eigenspace of the Hamiltonian the transition ampli-
tude to the state a is proportional to the probability of finding an eigenvector in the
initial eigenspace, i.e.

qðaÞ / jhCað0Þ j CðtÞij2 ; ð4Þ
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Fig. 3. The spectral evolution
of the dynamical HOMO
state. Any decrease in the
HOMO is accompanied by an
increase in the nearby states,
a quantum jump between
states



where a is the eigenstate label in the initial eigenspace. Here we are interested in the
transition to energy states around the gap region which are the most important states
for transport and are located near the so-called mobility edges. These edges mark the
transition from localized to delocalized states at zero temperature and are destroyed by
thermal fluctuations.

Figure 3 depicts the evolution of the transition or hopping probabilities from the
HOMO to nearby states during the first 1 ps. The component of the original (t ¼ 0)
HOMO decreases to zero within 250 fs (which is earlier than the 350 fs IPR turning-
point) which indicates that the decoherence is very fast for the HOMO. The valence
state just below the HOMO reaches its maximum as the HOMO approaches its first
minimum at about 250 fs. The second valence state below the HOMO reaches its max-
imum at about 750 fs, 0.5 ps later than the first valence state below the HOMO. Spec-
trally, the original HOMO diffuses into other valence states at a rate related to the
thermal activation and splitting from adjacent energy states. Some transitions even oc-
cur between HOMO and LUMO. The magnitude of the transition across the gap is far
lower than the magnitude of the transition from the HOMO to other valence bands.
This is a quantum effect associated with the huge electron–phonon coupling of the loca-
lized states since room temperature (� 26 meV) is not high enough to directly induce a
transition between the HOMO and LUMO with a gap of 0.6 eV. Besides the thermal
activation the tunneling or spatial overlap between the hopping states may also play an
important role in the deeper gap transition. The diffusion of the LUMO to its nearest
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Fig. 4. The spectral evolution
of the dynamical LUMO state,
similar to Fig. 3 but the initial
state is LUMO



unoccupied localized state (0.7 eV above) gives a direct indication of the hopping diffu-
sion in Fig. 4. The character of the LUMO is different from the HOMO. The spectral
diffusion of the LUMO is slower than that of the HOMO as shown in Fig. 4. There are,
however, similarities: The LUMO diffuses into the neighboring conduction states more
easily than across the gap and the spectral diffusion is also strongly dependent on the
distance between the LUMO and other conduction states.

We found that these two localized states show a different response to the external
thermal manipulation which is in stark contrast to the results obtained by Born-Oppen-
heimer dynamics. The HOMO is easily delocalized by the thermal disturbance while
the delocalizing progress is very slow for the LUMO. In previous Born-Oppenheimer
dynamics [4] it has been observed that the eigenvalue of the LUMO shows larger fluc-
tuations than the eigenvalue of the HOMO. However, the time coherence in the dyna-
mical solution reveals the different delocalization process because of the difference in
the spectral and spatial “neighborhoods” of the states studied. We found that the delo-
calization will not occur if the temperature is too close to 0 K.

4. Conclusions

In this paper, we presented a simulation of the dynamics of the localized electronic
edge states in a-Si at room temperature by integrating the time dependent Schrödinger
equation with a simple Crank-Nicholson method and a first-principles (Fireball96) Ha-
miltonian. We found that the localized edge states, the highest occupied molecular orbi-
tal (HOMO), and the lowest unoccupied molecular orbital (LUMO), are strongly
modulated by phonons. Temperature induces a stronger intra-band transition than the
inter-band transition across the gap. The simulation indicates a different diffusion me-
chanism for HOMO and LUMO. We emphasize that the decoherence is a dynamical
process and can only be approached by the analysis of electron dynamics. The observed
delocalization is also a dynamical effect which will not occur if the adiabatic approach
is applied since the memory of the phase of a quantum state is discarded. Our work
demonstrates in a quantitative and realistic way (1) the nature of thermally induced
hopping, (2) the need of a spatial and spectral overlap for electronic diffusion, and (3)
lays important groundwork for a future theory of non-adiabatic transport in disordered
systems.
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