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ABSTRACT  
 

We employ first principles methods to explore the coupling between electrons and the 
lattice in amorphous silicon (a-Si).  First we compute the adiabatic electronic response to 
phonon modes in a realistic model of a-Si.  Then, we present a simulation of the electron 
dynamics of localized edge states in a-Si at room temperature by integrating the time dependent 
Schrödinger equation.  We study the character of the spatial and spectral diffusion of the 
localized states and directly simulate and reveal the nature of thermally driven hopping.  
Phonon-induced resonant mixing leads to rapid electronic diffusion if states are available 
nearby in energy and real-space.  We believe that many of the results we obtain are central to 
modeling transport involving localized states. 
 
 
INTRODUCTION 
 

It is of pure and applied interest to determine the nature of the coupling of the lattice and 
electron states in disordered materials.  This interaction is the root of thermally driven hopping 
between localized states; this is the principal mechanism of conduction for virtually all 
disordered systems at sufficiently low temperatures.  Anderson [1] first pointed out the failure 
of the conventional defect model in otherwise ordered structures to account for transport [2] 
phenomena in the disordered systems.  Using a random lattice model, he gave a proof that 
without thermal activation the mobile entities will be localized and at low enough defect 
concentrations no diffusion takes place.  Thomas [3] has argued that an electron starting in 
some localized state (as for example a donor) will suffer scattering with the phonons and 
become progressively delocalized.  He showed with an Anderson model that this “phonon-
induced delocalization” is essential to understanding transport in amorphous materials. 

Previous thermal simulations with Born-Oppenheimer dynamics indicated that there is 
always a large electron-phonon coupling for the localized states in the band tails and in the 
optical gap [4].  The effects of thermal disorder on the quantum coherence of the localized 
states can only be computed by directly dealing with the electron dynamics from the time-
dependent Schrödinger equation. 

In this paper we use realistic Wooten-Weaire-Winer type models due to Djordjevic, Thorpe 
and Wooten (DTW) [5] which are in good agreement with the structural, electronic and 
vibrational properties of a-Si [6].  The electronic structure calculations are based upon 
“FIREBALL96” of Sankey and co-workers [7]. 
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THEORY 
 
A.   Electron-Phonon Coupling 

 
To infer the role of the electron-lattice coupling in a-Si we begin by computing a 

“deformation potential”, which measures the response of a certain electronic energy eigenvalue 
to a particular phonon.  Earlier work has shown that it is useful to link the thermal fluctuation of 
the LDA energy eigenvalues near the band tails to the extent (localization) of the band tails in 
amorphous Si [4] (as separately measured in total yield photoemission experiments [8]).   It is 
now routine in ab initio simulations to compute both the electronic and vibrational eigenvalues 
and eigenvectors.  We show here that it is entirely straightforward to compute the electron-
phonon coupling, a sort of  “ab initio deformation potential”. 

Consider a particular electronic eigenvalue, λn, say in one of the band tails in a-Si.  To 
estimate the sensitivity of λn to a coordinate distortion (supposedly thermally induced), we can 
use the Hellmann-Feynman theorem, which gives ∂λn/∂Rα  = <ψn|∂H/∂Rα|ψn>.   Then for small 
distortions δRα, we have 
 

δλn ≈ Σα <ψn|∂H/∂Rα|ψn>δRα  .    (1) 
                                                           
Here, R is the 3N vector of displacements for all of the atomic coordinates from equilibrium 
and ψn is an eigenvector of H. If the displacements δRα(t) arise from classical vibrations, then 
one can also write: 
 

δRα(t) = Σω A(T,ω) cos[ωt + fω]χα(ω) ,    (2) 
  
where ω indexes the normal mode frequencies, A(T,ω) is the temperature dependent amplitude 
of the mode with frequency ω, fω is an arbitrary phase, and χα(ω) is a normal mode with 
frequency ω and vibrational displacement index α.  Using a temperature dependent squared 
amplitude A2(T,ω), it is easy to see that the trajectory (long time) average of the expression  
for δλn

2 is: 
 

<δλn
2
> ~ 1/2 Σω [A(T,ω)Ξn(ω)]2 ,    (3) 

 
where the electron[n]-lattice[ω] coupling Ξn(ω) is given by: 
 

Ξn(ω) = Σα<ψn|∂H/∂Rα|ψn>χα(ω)  .    (4)  
 
Ξ is easily computed as a byproduct of any ab initio calculation of the vibrational modes [10]. 

For the case of DTW a-Si there are no coordination defects, though there are a small 
number of strained structures which lead to a reasonable distribution of localized tail and gap 
states.  From figure 1 note that (1) the electron-phonon coupling is larger for conduction tail 
states than valence tail states (the conduction tails are also more localized), 2) the acoustic 
phonons are evidently more important to the tail states than optical phonons.  3) The electron-
phonon coupling falls off rapidly for electron energies away from band edges. 
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Figure 1.  Electron-phonon coupling surface plot for 216 atom DTW model of amorphous Si. 
Phonon energy ω, electron energy E and absolute value of electron-phonon coupling Ξ 
(Equation 4).  The optical gap extends from –3.45 to –2.11 eV.  Note the dominance of  
acoustic phonons to the coupling.  

 
 
Earlier work has emphasized a strong correlation between the localization of a gap or tail  

state (as measured by inverse participation ratio (IPR) [4]) and thermal fluctuation as gauged by 
RMS variation of eigenvalues.  This appears to be a very general result and also occurs in 
chalcogenide glasses [9] and we suspect other materials with localized and bandtail states.  In 
figure 2 we show histograms of the IPR and RMS thermal fluctuation for a simulation at 300K. 
This (possibly universal) correlation between a static property (localization) and dynamic 
property (thermal fluctuation) is helpful for interpreting experiments [8], and merits further 
analysis. 
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Figure 2.  The localization (IPR) and the RMS fluctuation of gap vicinity energy eigenvalues at 
300K (216 atom model, 1 ps time evolution).  There is a strong correlation between the IPR 
(static property; bottom) and the thermal variation of the same eigenvalues (top panel).  Ef is the 
Fermi level. 
 
 
B.  Time Dependent Schrödinger Equation 
 

In this paper, we also explore a more fundamental direct integration of the time-dependent 
Schrödinger (Kohn-Sham) equation to characterize the dynamics of localized states in a small 
model of a-Si in the presence of thermal disorder (with T=300K). We employed Born-
Oppenheimer dynamics for the ions and implemented the Crank-Nicholson [11] method along 
with the orthogonalization scheme of Tomfohr and Sankey [12] to obtain the time-dependence 
of a given state.  The work discussed here is directly relevant to any system with disorder and 
therefore (potentially) localized states. One can understand this in fundamental terms as a step 
toward a 'realistic' solution of the finite-temperature Anderson problem [13]. 

We begin with the time-dependent Schrödinger equation: 
 

iħ ∂/∂t Ψ(t) = Ĥ(t)Ψ(t) .    (5) 
 
Here Ψ is the wavefunction of a single electron and Ĥ is the one electron (density functional) 
Hamiltonian for the host (here, the model of a-Si).  We explictly compute the time-dependence 
of the Hamiltonian, which arises from ion motion obtained from the Born-Oppenheimer 
approximation.  At each time step of the conventional quantum molecular dynamics (QMD) 
one can directly diagonalize the Hamiltonian matrix to obtain the stationary solution of the 
electronic structure.  However the coherence of the electron state is lost in the solution.  For any 
given initial state Ψ(0), the wave function Ψ(t) at time t can be obtained by solving the time-
dependent Schrödinger equation or equivalently operating on the initial state with the time 
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evolution operator Û(t), such that Ψ(t) = Û(t)Ψ(0).  In the Crank-Nicholson method, for 
sufficiently small step τ 
 

Û(τ) = (1 + iτ Ĥ/2ħ)-1 (1 – iτ Ĥ /2ħ) .    (6) 
  
For any τ, Û is exactly unitary, which also implies that all electron orbitals remain orthogonal 
for all later times.  We calculated Û(t) using Ĥ(t) with time dependence induced by thermal 
simulation for the ionic motion from Fireball96 [7].  With the Löwdin transformation [14] we 
express the wave function Ψ(t) as a vector C over an orthonormal basis ψi, Ψ(t) = ΣCi(t)ψi.  The 
key properties of localization and coherence do not change with the Löwdin transformation.  
We adopt the same approximation of Tomfohr and Sankey that for small enough time step τ, 
the Hamiltonian can be taken to be constant.  Then the equivalent matrix equation becomes  
iħ ∂/∂ t C(t) = H(t)C(t).  At room temperature, the results from the time step of 0.5 fs (for both 
ions and electrons) was found close to the results at a finer step 0.25fs at the test calculation. So 
the following results are based on the simulation at the time step 0.5 fs.  These time steps 
appear to be very long; the reason these are acceptable is the proximity of the HOMO and 
LUMO eigenvalues to zero energy.  If we began with a general wave packet built from the full 
spectral range of the basis, a much smaller τ would be required. 

We performed the simulation on a 64-atom a-Si model.  The localized states are associated 
with the geometrical defects and are located in the band gap.  The highest occupied molecular 
orbital (HOMO) is spatially localized around a 3-fold dangling bond, essentially a bandtail 
state, only 0.1 eV higher than the next occupied orbital and near a dense collection of extended 
states.  The lowest unoccupied molecular orbital (LUMO) is distributed around another small 
cluster associated with the floating bond. The LUMO of this model is spectrally a midgap state, 
isolated by 0.7 eV from both the lower HOMO and the next unoccupied state.  Extended 
unoccupied states are at least 1.0 eV above the LUMO. We chose both HOMO and LUMO as 
the initial states to study their dynamics. Only the Γ point was used for Brillouin Zone 
sampling. 

We have put a color figure on the WWW [15] which illustrates the spatial diffusion of the 
HOMO and LUMO states (a reduced monochrome figure acceptable for these Proceedings was 
found to be unsatisfactory).  It is evident that the thermal disorder is sufficient to cause spatial 
diffusion of the original localized states, and the HOMO state diffuses far more rapidly than the 
LUMO.  This result is very different (present work yielding more extended states) than the 
results for the “Born-Oppenheimer electron dynamics” [4], in which the simulation retained an 
unphysical coherence in the states, as the states are always computed anew at each step and are 
therefore always pure.  Phonon-induced decoherence accumulates due to repeated phonon 
scattering events. Thus the time-dependent wave functions, C(t), will demonstrate quite 
different behavior from those wave functions obtained from conventional QMD. We employ 
the inverse participation ration (IPR) to measure the spatial distribution features, i.e., 
localization, of a state:  IPR = ΣCi

4. Here Ci is the component of the state vector.  For an 
extended state, IPR approaches 1/N, where N is the number of basis. For an ideally localized 
state, IPR is unity instead. 

Figure 3A provides the time development of the IPR of HOMO in the 5 ps simulation.  The 
time-dependent solution of HOMO becomes extended very quickly.  The trend is similar for the 
LUMO in figure 3B.  The “turning-point” separating the stationary and dynamical IPR time 
development occurs near 350 fs for HOMO state.  A similar departure develops only at 1.5 ps 
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for the LUMO state.  The time-dependent solution of LUMO retains some of its initially 
localized character after 5 ps of simulation because it is more separated at 300K than the 
HOMO from a reservoir of like energy states with which to mix. 
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Figure 3.  The evolution of the localization (IPR) of the original A.) HOMO and B.) LUMO. 
The dotted line is for the stationary solution (Born-Oppenheimer) and the solid line for the 
dynamical (time-dependent Schrödinger equation) solution. Arrows indicate the departure of 
the adiabatic and time dependent Schrödinger solutions. T = 300K. 
 
 

Electronic diffusion is understood qualitatively as a consequence of quantum mechanical 
mixing when another state gets close in energy (and real space) to a reference eigenstate whose 
evolution we are tracking [16].  The mixing naturally leads to less localized states and this 
continues in principle until the packet has diffused throughout the simulation cell.  We now go 
further to investigate the spectral diffusion of the electron state into nearby (almost resonant) 
states.  Since the structure fluctuates at moderate fixed temperature, the Hamiltonian can be 
viewed as perturbed around an average H0.  With reference to the initial eigenspace of the 
Hamiltonian the transition amplitude to state α is proportional to the probability of finding an 
eigenvector in the initial eigenspace, i.e., ρ(α) µ |<Cα(0)|C(t)>|2, where α is the eigenstate label 
in the initial eigenspace.  Here we are interested in the transition to the states around the gap 
region, which are the most important states for transport near the so-called mobility edges, 
which marks the transition from localized to delocalized states at zero temperature.  The 
mobility edge is destroyed by the thermal fluctuations. 
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Figure 4.  The spectral evolution of the dynamical HOMO state, and its “phonon-induced 
leakage” into neighboring energy states similar to figure 5 where the initial state is LUMO. 
T = 300K. 

 
Figure 4 depicts the first 1 ps evolution of the transition or hopping probabilities from the 

HOMO to nearby states.  The component of the original (t=0) HOMO decreases to zero within 
250 fs (earlier than the 350 fs IPR turning-point), which indicates that the decoherence is very 
fast for the HOMO.  The valence state just below the HOMO reaches its maximum as the 
HOMO approaches its first minimium at about 250 fs.  The second valence state below the 
HOMO reaches its maximium at about 750 fs, 0.5 ps later than the first valence state below the 
HOMO.  Spectrally, the original HOMO diffuses into other valence states at a rate related to the 
thermal activation.  A small portion of transfer occurs even between the HOMO and LUMO.  
The magnitude of the transition across the gap is far lower than the transition from the HOMO 
to other valence bands.  This is a quantum effect associated with the huge electron-phonon 
coupling of the localized states, since the room temperature (~26 meV) cannot directly induce 
a transition between the HOMO and LUMO with a gap of 0.6 eV.  The tunneling or spatial 
overlap between the hopping states may play another important role in the deeper gap transition 
besides the thermal activation.  The diffusion of the LUMO to its nearest unoccupied localized 
state (0.7 eV above) gives a direct indication of the hopping diffusion in figure 5.  The character 
of LUMO is different from the HOMO.  The spectral diffusion from LUMO is slower than that 
of HOMO as shown in figure 5.  It is similar to the extent that the LUMO diffuses into the 
neighboring conduction states more readily than across the gap and the spectral diffusion is also 
strongly dependent on the distance between the LUMO and other conduction states. 
 

A14.1.7



0.0 500.0 1000.0 1500.0 2000.0
Time (*0.5fs)

0.0

0.5

1.0

LU
M

O
 P

ro
je

ct
io

n

LUMO
LUMO+1
HOMO

 
 

Figure 5.  The spectral evolution of the dynamical LUMO state.  T=300K. 
 
 

We found that these two different localized states demonstrate different response to thermal 
manipulation and this difference is very different from the results of Born-Oppenheimer 
dynamics.  The HOMO is easily delocalized by the thermal disturbance while the delocalizing 
progress is very slow for LUMO.  Previous Born-Oppenheimer dynamics [4] showed that the 
eigenvalue of LUMO has larger fluctuation than the HOMO.  However, the time coherence in 
the dynamical solution reveals the different delocalization process because of the difference in 
spectral and spatial “neighborhoods” of the states studied.  We have noted that the 
delocalization will not occur if the temperature is too close to 0 K. 
 
 
CONCLUSION 
 

In this paper, we presented a simulation of the dynamics of the localized electronic edge 
states in a-Si at room temperature by integrating the time dependent Schrödinger equation with 
a simple Crank-Nicholson method and a first-principles (Fireball96) Hamiltonian.  We found 
that the localized edge states, the highest occupied orbital (HOMO) and the lowest unoccupied 
orbital (LUMO), are strongly modulated by phonons.  Temperature induces a stronger intra-
band transition than the inter-band transition across the gap.  The simulation indicates a 
different diffusion mechanism in HOMO and LUMO.  We emphasize that the decoherence  
is a dynamical process and can only be approached by the analysis of electron dynamics.   
The observed delocalization is also a dynamical effect, which will not occur if the adiabatic 
approach is adopted, since the memory of the phase of a quantum state is discarded.   
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This paper is far from the final word: one key point will be to ascertain the extent to which we 
are sampling the bandtail states in “real” a-Si.  Our small model quite probably is inadequate 
here, and larger calculations are underway.  We believe however that the basic physical 
processes are present in this paper.  Our work demonstrates in a quantitative and realistic way 
(1) the nature of thermally induced hopping, (2) the need for spatial and spectral overlap for 
electronic diffusion and (3) lays important groundwork for a future theory of non-adiabatic 
transport in disordered systems. 
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