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Chapter 1

Introduction
One of the big issues that the world that we are living in faces is the energy

problem. There is a vast demand for energy and a need for alternative energy sources.

Among the alternatives to fossil fuels is to use solar energy and energy sources like

wind and hydrogen energy. These energy sources not only provide energy; they

are also environment friendly and clean with no repercussion to the planet we live

on. One of the materials which has been used for the last decades in making solar

cells is hydrogenated amorphous silicon (a-Si:H). The possibility of making a uniform

monolithic thin film and cheap processing cost make a-Si:H a valuable candidate for

applications. However, there is a drawback associated with extended exposure of solar

cells made of a-Si:H to light: the process of light-induced degradation, the Staebler-

Wronski Effect (SWE) first observed in 1977 [1]. There are several theoretical models

and explanations proposed for the light induced degradation of a-Si:H. However a

complete understanding of this problem is still unavailable.

In the last decades, extensive work in experiment and modeling has been

conducted to get the microscopic origin of SWE. Diffusion and concentration of hy-

drogen, and presence of defects and impurities in the network have been considered

to play a key role in SWE [2]. Light-induced structural changes are complex, and

information about the changes is provided by an array of experiments [2, 3, 4]. Some
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of the experimental features associated with SWE are the change in the conductivity

with defect creation (carrier trap formation), light induced hydrogen diffusion [5, 6],

preferential formation of a structure with proton distance of 2.3 Å in device grade

material and a shorter distance in low quality material [7]. Further, it was shown

that metastable dangling bonds (DB) were separated by at least 10 Å, studies of

defect creation and annealing kinetics in a-Si/Ge:H suggest that there is not a large

population of mobile H leading to recapture events of H onto DBs as part of the

photo-degradation process [8].

This work has been strongly motivated by a nuclear magnetic resonance

measurement for light soaked material made of a-Si:H and observed an enhanced

population of proton proton distance of 2.3±0.2 Å unseen in the original material.

The SWE effect is not limited to the a-Si:H materials. It has been reported that

hydrogenated silicon germanium alloys (a-SiGe:H) which also show the light induced

degradation [9].

A basic goal in this dissertation is to understand the light-induced degrada-

tion and to probe different structures to obtain explanation that can be related to

the NMR and other experimental observations.

The other aspect of hydrogenated amorphous silicon that is investigated in

this work is carrier transport. This is primarily because of the importance of a-Si:H as

an electronic material. In the last decades researchers have been studying and devel-

oping different methods and models to understand the role of defects and disorder in
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the electronic structure and electronic transport of amorphous and crystalline solids

[10]. However, many fundamental questions, especially on transport and optical prop-

erties, are still not fully understood qualitatively or quantitatively. The carrier trans-

port is strongly influenced by disorder, defects (such as non-fourfold atoms) which

introduce localized states in the optical gap and these states are strongly affected by

phonons [11]. Hopping and electron diffusion occur as phonons derive nearby states

into resonance [12, 13]. Studying the dynamics of electrons is key in the understand-

ing of the nature of transport in disorder materials. In this dissertation, the dynamics

of localized states in the presence of thermal disorder are investigated by integrat-

ing the time dependent Kohn-Sham equation. The study of transport in amorphous

materials is also presented. Kubo-Greenwood formula is used to compute the DC

conductivity of amorphous semiconductors.

1.1 Models

Since a small set of structural models of a-Si and a-Si:H is employed in this

work, in this section these models are summarized for reference throughout the rest

of the dissertation. The first step in performing a predictive simulation is to have

a physically plausible model, which represents the topology of the network to yield

an accurate description for the static (minimum energy conformation) properties and

dynamics of the atoms. In this work defect free 64 and 216 atom a-Si models are

used as a starting configuration for generating hydrogenated a-Si models shown in
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Fig. 1.1. These starting models were generated by Barkema and Mousseau [14] using

an improved version of the Wooten, Winer, and Weaire (WWW) algorithm [15]. New

(a) (b)

Figure 1.1: The two structural models of amorphous silicon (a) a 64 atom a-Si model and
(b) a 216 atom a-Si model. Periodic boundary conditions are used in all calculations in this
dissertation.

supercell models have been developed from these initial models among which are: 70

atom a-Si:H models aSi62H8 [aSi62H8(a), aSi62H8(b), and aSi62H8(c)], a 72 atom

a-Si:H model (aSi61H11), a 71 atom a-Si:H model (aSi61H10). A defect-free 64 atom

a-Si model Fig. 1.1(a) is used as a starting configuration for generating these models.

For aSi62H8(a), the working supercell is obtained by removing two Si atoms. The

dangling bonds are terminated by adding 8 H atoms to create defect-free (that is, gap

state free) structures with SiH2 structural unit present in the network. This yields a

70 atom a-Si:H aSi62H8(a). The SiH2 conformations obtained in the aSi62H8(a) and

aSi61H11 are shown in Fig. 1.2(a) and Fig. 1.2(b).
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Figure 1.2: (a) SiH2 conformation in aSi62H8 and (b) SiH2 conformation in aSi61H11 with
a dangling bond [16].

Other structural units which has two (Si-H) structural models (each with 3

different configurations) are generated as shown in Fig. 1.3. The first one is a model

that contains an (H-Si-Si-H) structure which is referred as aSi62H8(b), where the two

Si atoms are bonded to each other as shown in Fig. 1.3 (a) and the other one is a

model that contains an (H-Si Si-H) structure which is referred as aSi62H8(c) where

the two Si atoms are not bonded but are next nearest neighbors (∼ 4.0 Å) as shown

in Fig. 1.3 (b).

Model aSi61H11 is obtained in the same way except that one more Si atom is

removed to form a 72 atom a-Si:H cell (61 Si atoms and 11 H atoms), which includes

one dangling bond [17]. This supercell surgery is repeated at other sites to generate

an ensemble of models to obtain some insight into the bonding statistics of SiH2

conformations in the solid state. aSi61H10 is generated in the same way as aSi61H11

except this time there are two dangling bonds and no SiH2 structure (61 Si atoms

and 10 H atoms).
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(a) (b)

Figure 1.3: The two structural units of hydrogenated amorphous silicon with 2(Si-H) struc-
ture (a) with the two Si atoms bonded: aSi62H8(b), and (b) with the two Si atoms as next
nearest neighbors : aSi62H8(c).

In addition to the aforementioned models other models are used in this work

including a 138 atom cell (18 of the atoms are H) a-Si:H model [18] (aSi120H18),

a 223 atom a-Si:H model (aSi214H9; 214 Si and 9 H atoms) and a 223 atom a-

Si1−xGex:H model. For aSi214H9, by starting from from a 216 atom a-Si model with

two dangling bonds, two silicon atoms are removed which resulted in the formation of

additional vacancies. All of the vacancies except one are then terminated by placing

a H atom at about 1.5 Å from the corresponding Si atom. Finally these newly

generated structures are well relaxed using conjugate gradient optimization technique

and SIESTA (discussed in the next section). While such surgical procedures are

clearly unphysical, it is worth pointing out that the resulting proton NMR second

moments of the clusters created are similar to the broad component of the line shape

observed in experiments [19]. The starting configuration for a-Si1−xGex:H model is a

well relaxed aSi214H9 model, then some of the Si atoms are substituted by germanium

according to the required concentration and relax the newly constructed configuration.
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In Fig. 1.4, Fig. 1.5, and Fig. 1.6, the structure of these models are illus-

trated by computing the partial pair correlation of the initial models as well as the

hydrogenated amorphous silicon models which are generated. In all cases the Si-Si

partial correlation shows a first peak of 2.36 Å and a second peak of 3.79 Å. After

the hydrogenation there is a very small shift on the first and second peaks where the

first peak is about 2.38 Å and the second peak is about 3.88 Å.
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Figure 1.4: Partial pair correlation for Si-Si for aSi64 and for aSi61H10 models.
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Figure 1.5: Partial pair correlation for Si-Si for aSi216 model and for aSi214H9 model.
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1.2 SIESTA

In this work the ab initio code SIESTA1 which uses the localized orbitals

is used. This code offers both flexibility and high accuracy, attributes required for

studies of disorder phases of matter. Here a terse description of the method and

the parameters and approximation used is presented. Detailed description of these

methods are well presented in Ref. [20].

SIESTA [21] uses the standard Kohn-Sham self-consistent density functional

method in the local density (LDA-LSD) or generalized gradient (GGA) approxima-

tions [22, 23, 24] with different parametrization options for the exchange correlation

function. In this work, parametrization of Perdew and Zunger (PZ) [25] in the LDA

and of Perdew, Burke and Ernzerhof (PBE) [26] in the GGA are used. Norm con-

serving Troullier-Martins [27] pseudopotentials factorized in the Kleinman-Bylander

[28] form were used. For LDA both double ζ polarized basis sets (DZP), where two s

and three p orbitals for the H valence electron and two s, six p and five d orbitals for

Si valence electrons were used, and for comparison a cruder single ζ basis set (SZ),

where one s orbital for the H valence electron and one s and three p orbitals for Si

valence electrons were used. Only DZP basis sets is used for GGA calculations. For

details on generation of the basis orbitals see reference [29] and references therein.

1SIESTA (Spanish Initiative for Electronic Simulations with Thousands of Atoms) is both a method and
a computer program implementation, to perform electronic structure calculations and ab initio molecular
dynamics simulations of molecules and solids. Comprehensive reviews are available in Ref [20].
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1.3 Outline

The dissertation is organized as follows. Introduction, different models and

the density functional code that are used in this work are discussed in Chapter 1.

In Chapter 2, investigation of different dihydride structures and the comparison of

the results from this work and the NMR experiment is presented. Then a ground

state and simulated light excited state simulation which suggests the formation of

dihydride structure is presented. Finally the consequence of hydrogen diffusion to

the electronic and vibrational properties is discussed. In Chapter 3 a thorough inves-

tigation of hydrogen diffusion and its mechanisms and a key short time mechanism

for the hydrogen diffusion are presented. The structural, dynamical, and electronic

properties of amorphous Si1−xGex:H alloys, and the effect of germanium concentra-

tion on the electronic properties are presented in Chapter 4. In Chapter 5, time

dependent Kohn-Sham equations is presented. The general method for estimating

the DC conductivity using the Kubo-Greenwood formula and its application, the ef-

fect of doping and the Meyer Neldel rule are also presented in Chapter 5. Finally

concluding remarks are presented in Chapter 6 which is followed by Appendix A.

In this dissertation, I report my research on several topics, most of which

was published only with my advisor and in one case with a fellow graduate student F.

Inam (chapter 3). Inam’s role in that chapter was to assist in computing statistics of

bond breaking which is minor in the whole chapter. The dissertation consist of several

chapters, most of which have been published in closely related forms in journals. My
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contributions in this dissertation and in the published and submitted articles are: all

of the simulation work, all of the writing (with many editing and corrections from my

advisor D. A. Drabold) and all of the calculations except one Ref. [H] where Inam

contributed few results. All of my results are under a constant guidance from my

advisor D. A. Drabold. Our list of publications follows:

I. T A Abtew and D A Drabold, “Thermally driven hopping and electron trans-

port in amorphous materials from density functional calculations”, J. Phys.

Cond. Matt. (16) S5289-S5296 (2004).

II. T A Abtew, D A Drabold and P C Taylor, “Studies of silicon dihydride and its

potential role in light-induced metastability in hydrogenated amorphous silicon”,

Appl. Phys. Lett. (86) 241916 (2005).

III. T A Abtew and D A Drabold, “Simulation of light-induced changes in hydro-

genated amorphous silicon”, J. Phys. Cond. Matt. (18) L1 (2006).

IV. T A Abtew and D A Drabold,“Hydrogen dynamics and light-induced structural

changes in hydrogenated amorphous silicon”, Phys. Rev. B (74) 085201

(2006).

V. D A Drabold and T A Abtew,“Defects in Amorphous semiconductors: amor-

phous silicon, in Theory of Defects in Semiconductors”, Edited by D. A. Drabold

and S. K. Estreicher, Springer-Verlag (2006).”
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VI. T A Abtew and D A Drabold, “First principles molecular dynamics study of

amorphous Si1−xGex:H alloys”, Phys. Rev. B (75) 045201 (2007).

VII. T A Abtew and D A Drabold, “Light induced structural changes in hydro-

genated amorphous silicon”, J. of Optoelect. and Adv. Mater. (8) 1979

(2006).

VIII. T A Abtew, F. Inam, and D A Drabold, Thermally stimulated H emission and

diffusion in hydrogenated amorphous silicon, submitted to PRL (Nov. 2006).
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Chapter 2

Light induced structural changes in

hydrogenated amorphous silicon
The work presented in this chapter is published: T A Abtew, D A Drabold and P C Taylor,

Appl. Phys. Lett. (86) 241916 (2005); T A Abtew and D A Drabold, J. Phys. Cond. Matt. (18)

L1 (2006); T A Abtew and D A Drabold, J. of Optoelect. and Adv. Mater. (8) 1979 (2006); T A

Abtew and D A Drabold, Phys. Rev. B (74) 085201 (2006).

There have been various proposals for the microscopic origins of the Staebler-

Wronski effect (SWE). One class of models involves breaking of “weak bonds” which

were often unspecified [30]. Another class of models propose the creation of new

defects as a result of movement of the original defect [31]. Zafar et al.[32] considered

a metastability model based on transfer of H between clustered and isolated phases

seen by NMR. Bonding in each of these phases was presumed to be monohydride. In

their subsequent work Zafar et al.[33] showed that the 2-phase picture satisfactorily

accounted for new experiments on the thermal changes in the spin-density and also

the changes caused by evolving hydrogen. Nevertheless, this model was unable to

account for light-induced effects.

Some current theories combine the electronic and hydrogen energy states and

hydrogen diffusion as in the hydrogen collision model of Branz [5] and the hydrogen
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flip model of Biswas et al. [34] . Kopidakis et al.[35] proposed that clustered-phase

sites can bind either one or two hydrogen pairs (dihydride-bonding). In this line of

argument, recently, Zhang et al.[36] proposed a model that m vacancies of m missing Si

atoms, which are fully terminated with Si-H bonds to eliminate dangling bonds (DB)

and strained Si-Si bonds, provide the H-pair reservoir and metastability sites in Si.

There are also newer findings [37] that reveal a lack of spatial correlation between the

defects and hydrogen, the realization that the effectiveness of light induced defects as

recombination centers depends on the light exposure conditions, and the observation

that it is not only defects which are produced by extended light exposure but also

larger structural changes in the material involving the Si network.

An experimental clue of importance that has strongly motivated our work was

recently reported by Su et al. [7], who performed nuclear magnetic resonance (NMR)

experiments on protons in a-Si:H and found that the NMR spectrum of light-soaked a-

Si:H films show the preferential creation of a H-H distance of 2.3±0.2 Å. Remarkably,

this experiment directly connects light soaking to creation of a specific new structure

(or family of structures) in the amorphous matrix. Given the remarkably well-defined

nature of the observed proton separation, it is natural to expect that the structure(s)

causing the feature must be a well defined conformation. There are two possible

interpretations of the results of Su et al. [7]. The simplest interpretation is that some

metastable, paired-hydrogen site is formed after the exposure to light. A second

interpretation, which can not be ruled out by the experiments to date, is that some
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changes in the various NMR relaxation rates after exposure to light allow existing

paired-hydrogen sites, such as SiH2, to become observable in the NMR spectra. Of

particular importance to the latter interpretation, Stutzmann et al. [30] have argued

that the breaking of weak Si-Si bonds will also promote the diffusion of dangling

bonds away from the original site. If the presence of such a dangling bond near a

stable, paired-hydrogen site, for which the most logical candidate is SiH2, allows this

site to be seen in the H NMR, then the results of Su et al. are also logically explained.

Although there are technical reasons why this explanation is not as probable as the

formation of metastable, paired-hydrogen sites, it cannot be ruled out.

In this chapter we present a systematic study and analysis of light-induced

effects in hydrogenated amorphous silicon. First we present a study on the feasibility

of silicon dihydride structures for the observation of the NMR experiment of Su et al..

We then present a study of H atomic dynamics in the electronic ground states and

light excited states. The diffusion mechanism of hydrogen and the resulting formation

of new structure in the amorphous network is also discussed.

2.1 Silicon dihydride structures in a-Si:H

The experimental results of Su et al. [7] pose important questions. Is the

observation of two protons separated by a distance of 2.3 Å feasible in terms of the

energetics and structure of the amorphous network? And if feasible, what creates the
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structure in the first place? In this section we answer the first question by investigating

different structural units and compare them with experiment [16].

One of the possible candidates for the experimental observation of two pro-

tons separated by a 2.3 Å is a dihydride structure. This dihydride structure may be

in the form of two H atoms connected to a single Si atom to form a H-Si-H structure

where the Si atom is bonded with two additional Si atom and then four coordinated;

or two nearby H atoms each connected to a Si atom as Si-H H-Si where each of the

Si atoms are bonded with three more Si atoms.

In order to study these different structures, we have generated different mod-

els which include these structures embedded in the network. We used aSi62H8(a) and

aSi61H11 discussed in Chapter 1 for studying the silicon dihydride structure of the

form SiH2. We have considered four configurations for each model in our calculation.

Each configuration in the respective models was constructed by selecting different

(typically tetrahedral) sites of the SiH2 conformations in the cell. We performed our

calculations of SiH2 structure and dynamics on each of the four configurations of

aSi62H8(a) and also on each of the four configurations of the aSi61H11 model.

For the first group of four configurations (aSi62H8(a)), our results are sum-

marized in Table 2.1. In all these configurations, for different initial proton dis-

tances, we see a consistent approach to near the measured proton-proton separation

of (2.3±0.2 Å) as the basis set improves from SZ to more complete DZP. Though the

shift is smaller, there is also an improvement in agreement with the experiments in
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going from LDA to GGA functionals. There is a strong message in these results that

high-quality calculations are needed to properly describe the structure.

Table 2.1: The H-H distance before and after relaxation for aSi62H8(a) using LDA and
GGA exchange correlation functional for four different configurations. The GGA (DZP)
calculation is expected to be the most accurate [16].

H-H distance H-H distance
Config- before relax- after relaxation (Å)
urations ation (Å) LDA (SZ) LDA (DZP) GGA (DZP)

1 1.58 2.51 2.40 2.38
2 2.27 2.38 2.36 2.35
3 3.02 2.69 2.46 2.42
4 3.30 2.59 2.47 2.42

Average 2.54 2.42 2.39

The same calculation has also been done for the aSi61H11, and, the results

are given in Table 2.2. As before, a DZP basis set and GGA appears to be necessary.

Consistent with the first configuration, aSi61H11 also gives proton separations well

within the tolerance of the experiments of Su et al.. In these results we show that SiH2

configurations in the solid state are consistent with the experimental observations.

We also find that the details of basis set and density functional are important for

accurately representing these structures.

Using accurate methods (a double-zeta polarized basis and a GGA) and

supercells properly representing the disorder of a-Si:H, it has been shown that SiH2

yields the proton-proton distance [16] inferred from the experimental work of Su et
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Table 2.2: The H-H distance before and after relaxation for aSi61H11 using LDA and GGA
exchange correlation functional for four different configurations. These models contain one
dangling bond. The GGA (DZP) calculation is expected to be the most accurate [16].

H-H distance H-H distance
Config- before relax- after relaxation (Å)
urations ation (Å) LDA (SZ) LDA (DZP) GGA (DZP)

1 1.61 2.39 2.35 2.34
2 2.20 2.59 2.51 2.46
3 2.35 2.34 2.33 2.32
4 3.29 2.56 2.47 2.44

Average 2.47 2.42 2.39

al. [7] Extending this to other silicon dihydride units is necessary for completeness

and comparison to experiments [7] and other modeling [5].

We therefore generated two additional models, aSi62H8(b) and aSi62H8(c)

, which contain the same number of atoms but different dihydride structural units

as discussed in Chapter 1. Each configuration in the models is constructed by se-

lecting different (tetrahedral) sites of the 2(Si-H) conformations in the cell. We then

repeated this supercell surgery at other sites to generate an ensemble of models (3

configurations). Our objective here is to investigate whether these structures also

exhibit a metastable structure with an H-H distance of 2.3 Å or not as we obtained

for the SiH2 structure that is discussed in the previous section.

To investigate the two silicon dihydride structural units, we relaxed aSi62H8(b)

and aSi62H8(c) with pre-existing (H-Si-Si-H) and (H-Si Si-H) respectively. After re-

laxation we obtained an average H-H distance of 2.21 Å for paired hydrogen in
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(H-Si-Si-H) units of the aSi62H8(b) model with a total energy of -6735.86 eV and

1.88 Å for paired hydrogen in (H-Si Si-H) units of the aSi62H8(c) model with a to-

tal energy of -6734.88 eV. This shows that the (H-Si-Si-H) structure has lower total

energy by ∼980 meV as compared with the (H-Si Si-H) unit for these particular

conformations. This number must be taken with a grain of salt since repeating the

calculation at different sites would yield somewhat varied results. Nevertheless, in

both cases the proton distance is somehow shorter than the 2.3 Å experimental result

and with our previously reported theoretical result of 2.39 Å in SiH2 structural unit.

However, in the case of (H-Si-Si-H) with relatively larger initial H-H separation (∼

3.0 Å), we have obtained larger final H-H distances (3.5 Å - 4.5 Å). The result for

the calculation of the paired hydrogen distance in the three different configurations

of aSi62H8(b) and aSi62H8(c) using both LDA and GGA are summarized in Table

2.3 and Table 2.4 respectively.

Table 2.3: H-H distance before and after relaxtion for “aSi62H8(b)” using LDA and GGA
exchange correlation functional for three different configurations. The GGA (DZP) calcu-
lation is expected to be the most accurate.

H-H distance
before after after
relax relax (LDA) relax (GGA)

Configurations (Å) (Å) (Å)

1 1.08 2.187 2.192
2 1.40 2.196 2.212
3 2.00 2.195 2.211

Average 2.193 2.205
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Thus we conclude that the dihydride structure SiH2, and H-Si-Si-H are the

best candidates for the experimental measured proton-proton distance of 2.3±0.2 Å.

In the case of SiH2 we obtained a distance of 2.39 Å and in the case of H-Si-Si-H

we obtained a distance of 2.21 Å. However, for H-Si-Si-H, we need to mention that

there are cases where the proton-proton distance in the H-Si-Si-H becomes larger

(3.5-4.5 Å) as compared with experiment.

Table 2.4: The H-H distance before and after relaxtion for “aSi62H8(c)” using LDA and
GGA exchange correlation functional for three different configurations. The GGA (DZP)
calculation is expected to be the most accurate.

H-H distance
before after after
relax relax (LDA) relax (GGA)

Configurations (Å) (Å) (Å)

1 2.935 1.871 1.876
2 3.450 1.873 1.889
3 4.305 1.891 1.893

Average 1.878 1.886

Most of the aforementioned models of the SWE invoke paired-hydrogen sites.

These models associate the SWE with the conversion of isolated H into paired-

hydrogen sites, for which SiH2 must be considered a prime candidate. The exper-

iments of Su et al. [7] provide direct evidence that light soaking creates structures

with a proton-proton separation of about 2.3 Å.

Given that the various models proposed [30, 31, 32, 33, 34, 35] all appear to

be at least consistent with our calculations for SiH2, the link between our calculations



42

and the NMR experiments is a very important step. On the other hand, what we have

not done is provide any explanation of the light-induced formation of the SiH2, which

is certainly a key missing piece to the puzzle that we will address in the next section.

This is not an easy process to simulate, since the (diffusive) time-scales for simulation

are presumably vastly longer than what is directly accessible from our simulation.

Using accurate methods and supercells properly representing the disorder

of a-Si:H, we determined dihydride structures that are credible candidates for the

proton-proton distance inferred from the work of Su et al.. We have seen that accurate

methods (including a double-zeta polarized basis and a GGA) are needed to properly

describe the bonding in this system.

2.2 Hydrogen dynamics and its consequences to light ex-

posed a-Si:H

In the previous section, the dihydride structural units are assumed to exist in

the network a priori. In the next section we investigate if these dihydride structural

units form upon light soaking starting from a network with no dihydride structure

in the beginning of the simulation. We have performed extensive MD simulations

of network dynamics of a-Si:H both in an electronic ground state (“light-off”) and

a simulated light-excited state (“light-on”) using different models. We present a

detailed calculation of hydrogen diffusion, its mechanisms and consequences on the
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structural electronic and vibrational properties in both electronic ground state and

light excited state [38, 39].

2.2.1 Hydrogen motion: Electronic ground state

To analyze the diffusion mechanism in the ground state we performed a MD

simulation for five different temperatures, and tracked the trajectories and bonding

information of all the H and Si atoms in the network. In all the cases, the MD

simulations show diffusion of hydrogen in the cell and as a consequence, the network

exhibits a complex bond-breaking and forming processes. The pattern of diffusion

differs for individual H atoms depending upon the geometrical constraints around the

diffusing H atom. A more detailed investigation of thermally stimulated hydrogen

diffusion and its mechanisms will be given in detail in Chapter 3.

In order to illustrate the trajectories of H diffusion in the ground state, we

have selected two diffusive H atoms, (H219 and H220), and plotted their trajectories

at T=300K in Fig. 2.1. The trajectories for both H219 and H220 atoms show diffusion

in which the H atoms spend time being trapped in a small volume of the cell near a

bond center which is followed by rapid emission to another trapping site. In order to

examine how the bond rearrangement takes place in the network while the H atom is

diffusing, we tracked each hydrogen atoms and computed its bonding statistics.

In Fig. 2.2 we show the Si-H bond length between one of the diffusing H

atoms (namely H219) and relevant Si atoms (Si90 and Si128) with which it forms a
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Figure 2.1: Trajectory for two different hydrogen atoms (H219 and H220) in the ground
state, which shows the diffusion and trapping of the atom for aSi214H9 model. The total
time for the trajectory is 10ps [39].

bond while diffusing and Si208. As we can see from Fig. 2.2, in the first 4ps H219 is

bonded with Si90 with a bond length of 1.5 Å and trapped for a while until it breaks

and hops to form another bond with Si128. In the first ∼4 ps, the bond length between

H219 and Si128 fluctuates between 3.8 Å and 2.5 Å. However, after ∼4 ps we observed

a swift bond change in a very short period of time ∼0.1 ps when the H219 atom comes

out of the trapping site and hops to form a bond with Si128 and becomes trapped

there for ∼6 ps. This process of trapping and hopping appears to be typical for the

highly diffusive H atoms.
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Figure 2.2: The Si-H bond length between the diffusing H (H219) and three different Si
atoms, (Si90, Si208, and Si128 as a function of time in the electronic ground state for
aSi214H9. The total time for the trajectory is 10ps [39].

To study atomic diffusion we computed the time average mean squared dis-

placement for both H and Si atoms for a given temperature using

〈σ2(α, T )〉time =
1

NMD

1

Nα

NMD∑
t=1

Nα∑
i=1

|�ri
α(t) − �ri

α(0)|2, (2.1)

where the sum is over particular atomic species α (Si or H), Nα and �ri
α(t) are total

number and coordinates of the atomic species α at time t respectively, and NMD

is the total number of MD steps. The time average mean square displacement for

aSi61H10 for five different temperatures was calculated using Eq. (2.1) for H atoms

in the supercell in the electronic ground state (“light-off”) and it is shown in Fig. 2.3.



46

We have observed a temperature dependence of H diffusion. This result will help us

to compare the diffusion of H in the electronic ground state with the light excited

state to be discussed in the next section.
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Figure 2.3: Time average mean square displacement for H as a function of temperature of
MD simulation in electronic ground state for aSi61H10 [39].

2.2.2 Excited state dynamics and promotion of carriers

Defects in an amorphous network may lead to localized electron states in

the optical gap or in the band tails. If such a system is exposed to band gap light,

it becomes possible for the light to induce transitions from the occupied states to

unoccupied states.
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The stimulated light excited state (“light on”) is achieved by starting from

the well relaxed model, we add an electron to the system just above the Fermi level.

The system is effectively in the excited state for ∼ 400 fs until the electron recombines

back to the top of the valence band. Since there is a strong electron-phonon coupling

for a localized state, the additional electron causes local heating at a site where the

state is localized. The local heating in turn introduces enhanced atomic diffusion in

the vicinity of the localized site which eventually allow the atoms to diffuse out to

the nearby sites.

2.2.3 Hydrogen motion: Light excited state

Similar to the case of electronic ground state, we analyzed the diffusion of H

in the light excited state by performing a MD simulation. We tracked the trajectories

and bonding statistics of Si and H atoms in the supercell. Our MD simulation in

the light excited state show slightly enhanced hydrogen diffusion and consequently

increased bond breaking and formation that leads to structural changes in the net-

work.

For the purpose of analyzing the difference in the diffusion mechanism of

H in the light excited state case as compared with the ground state, we performed

similar calculations described in the previous sections for the light excited state case.

To understand the trajectories of H in the light excited state, we have again selected

two diffusive H atoms, (H219 and H220) from the larger aSi214H9, and plotted their
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trajectories in the light excited state in Fig. 2.4. The trajectories show the diffusion

of H in the presence of different trapping centers, a region where the H atom spends

more time before it hops and moves to another trapping site. However, in this case

we observed enhanced diffusion and more trapping sites and hopping probably from

local heating. These trapping and hopping processes continue until two hydrogens

form a bond to a single Si atom to form a metastable SiH2 conformation or until two

hydrogens form a bond to (a) two different Si atoms which are bonded to each other,

to form (H-Si-Si-H) structure or (b) two different Si atoms which are not bonded but

close to each other to form (H-Si Si-H) structure. This is in agreement with a basic

event of the H collision model [5] and other H-pairing models [35].
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Figure 2.4: Trajectory for two different hydrogen atoms (H219 and H220) which shows the
diffusion and trapping of the atom for aSi214H9 in the light excited state. The total time
for the trajectory is 10ps [39].
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By tracking each H atom, we monitored its bonding and examine bond rear-

rangements. In Fig. 2.5 we show Si-H bond length as a function of time between one

of the diffusing H atoms (H219) and three other Si atoms (Si90, Si128, and Si208) with

which it forms a bond while diffusing in the network. As we can see from Fig. 2.5,

the pattern of diffusion is quite different from the ground state: In the light excited

state case we observed a) more number of trapping sites and less trapping time with

frequent hopping, b) enhanced hydrogen diffusion, and c) increasing number of bond

rearrangements and newly formed dihydride structural units. The atomic diffusion
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Figure 2.5: The Si-H bond length between the diffusing H (H219) and three different Si
atoms (Si90, Si128, and Si208) with which H219 forms a bond (one at a time) while it is
diffusing as a function of time for aSi214H9, in the light excited state. The total time for
the trajectory is 10ps [39].
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in the light excited state case has also been examined using the time average mean

squared displacement for both H and Si atoms for different temperatures using Eq. 2.1

for both aSi214H9 and aSi61H10. The results from aSi61H10 are shown in Fig. 2.6.
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Figure 2.6: Time average mean square displacement for H as a function of temperature of
MD simulation in the light excited for aSi61H10 [39].

For all the temperatures considered, our simulation results show enhanced

diffusion of Hydrogen for the case when the light is “on” as compared with the case

where the light is “off”. The enhanced diffusive motion of H in the photo excited

state relative to the electronic ground state arises from the strong electron-lattice

interaction of the amorphous network, and an effect of “local heating” and subsequent

thermal diffusion [40] initially in the spatial volume in which the state is localized. The
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same calculations has also been performed on the larger model aSi214H9 at T=300K

in which, the time average mean square displacement for H is 2.66 Å2 for the light

excited state and 1.10 Å2 for the electronic ground state. These results again show

and confirm a slightly enhanced hydrogen diffusion for the case of light excited state.

2.3 Consequences of hydrogen diffusion

2.3.1 Formation of dihydride structure

In the two scenarios that we considered, MD simulation in electronic ground

state (“light off”) and simulated light-excited state (“light on”) we have observed an

important difference. In the locally heated light-excited state, in addition to bond

rearrangements and enhanced hydrogen diffusion, we have observed a preferential

formation of new structure: SiH2, with an average distance of 2.39 Å for the pair of

hydrogens in the structure, (H-Si-Si-H) and (H-Si Si-H) with H-H separation which

ranges from 1.8 Å to 4.5 Å. However, in the electronic ground state, we have ob-

tained rearrangement of atoms including hydrogen diffusion, without formation of

SiH2 structure in the supercell. The mechanisms for the formation of these structures

in the light-excited state follows breaking of H atom from Si-H bond close to the

dangling bonds (DB) and diffusion to the nearest weakly bonded interstitial sites (or

dangling bonds). This mobile H atom then collides (forms a metastable bond) with

another Si+DB structure or breaks a Si-Si bond to form another Si-H bond. This

is attributed to the fact that the dangling bond site is moving to accommodate the
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change in force caused by the additional carrier and also because hydrogen is moving

through weakly bonded interstitial sites with low activation barrier for diffusion until

it is trapped by a defect [41].

In Fig. 2.7(a)-2.7(f), we have shown the snapshots [42] taken for intermediate

steps in the dynamics of the whole cell, in the presence of charge carrier, where empha-

sis is given to the two hydrogens, which eventually be part of the SiH2 conformation.

For instance, considering the first configuration of aSi61H10, the two hydrogens that

involved in the formation of the SiH2 structure initially were about 5.50 Å apart and

bonded to two different Si atoms (Si-H) which were separated by about 4.86 Å. When

we performed MD simulations, the two hydrogen atoms dissociate from their original

host Si and becomes mobile until they form the SiH2 structure, in which the H-H

distance is 2.37 Å which barely changes upon relaxation to 2.39 Å. We have observed

similar pattern of H diffusion, bond rearrangements and formation of SiH2 structure

near the DB for the other two configurations considered in the simulation. We have

summarized the results that show H-H distance (in SiH2 structure) in Table 2.5.

We find that there are two different modes of bond formation for the mobile

hydrogen. The first is when two mobile hydrogen atoms, Hm, collide with two Si

atoms and form a metastable (H-Si-Si-H) or (H-Si Si-H) structure and the second

one is when the mobile hydrogen moves until it encounters a preexisting Si-H+DB

structure and makes a bond to form a SiH2 structure. Consequently, our calculations

show two basic ideas for the diffusion of H in the light-excited state: 1) the diffusion
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(a) (b)

(c) (d)

(e) (f)

Figure 2.7: A pathway to SiH2 formation. Thermal MD simulation for the first configuration
of aSi61H10 in the presence of carriers in the formation of SiH2 conformation. a) The initial
configuration in which the two hydrogens (that eventually form SiH2) are initially attached
to two different Si atoms forming Si-H bond. b) One of the hydrogens dissociates from Si-H
and form mobile hydrogen and leaves a dangling bond. c) the mobile hydrogen forms a bond
with another Si(db) atom. d) the other H atom also leaves a dangling bond and becomes
mobile e) rearrangements of bonds near the defect sites f) The formed SiH2 structure after
being relaxed to the minimum energy. (The two hydrogens that form the SiH2 structure are
shown in red while the Si atom in this structure is shown in yellow, and also we represent
the initial defect sites with green and the final defect sites with blue.) [38].
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Table 2.5: The H-H distance in the SiH2 configurations of the system before and after MD
simulations in the light excited case [39].

H-H distance
Config- before MD after MD

-urations (Å) (Å)

1 (aSi61H10) 5.50 2.39
2 (aSi61H10) 3.79 2.36
3 (aSi61H10) 4.52 2.36
4 (aSi214H9) 3.29 2.45

Average 2.39

of hydrogen doesn’t only break a Si-H bond but it also breaks a Si-Si bond and 2) the

possibility that two mobile H atoms might form a bond to a single Si atom to form a

metastable SiH2 structure in addition to the formation of (H-Si-Si-H) and (H-Si Si-H)

structures.

In aSi61H10, the two hydrogens involved in the formation of the SiH2 struc-

ture initially were 5.50 Å apart and bonded to two different Si atoms (Si-H) which

were separated by 4.86 Å. With thermal simulation in the light excited state, the two

hydrogen atoms dissociate from their original Si atoms and become mobile until they

form the SiH2 structure, in which the H-H distance becomes 2.39 Å. We have observed

similar pattern of H diffusion, bond rearrangements and formation of SiH2 structure

near the DB for the other two configurations considered in the simulation. The same

phenomenon is observed in the case of aSi214H9. The two hydrogens involved in the

formation of the SiH2 structure initially were 3.29 Å apart and bonded to two differ-
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ent Si atoms (Si-H), which were separated by 3.92 Å. With thermal simulation in the

light excited state, the two hydrogen atoms dissociate from their original host and

become mobile until they form the SiH2 structure, in which the H-H distance becomes

2.45 Å. We have summarized the results that show before and after MD calculations

of H-H distance (in SiH2 structure) for aSi214H9 and three different configurations of

aSi61H10 in the case of light excited state in Table 2.5.

We have calculated the time average probability distribution of proton dis-

tances for (H-Si-Si-H), (H-Si Si-H), and SiH2 structures which is shown in Fig. 2.8.

From the distribution we obtained that a SiH2 structure has a higher proton distance

of 2.3 Å, the (H-Si-Si-H) has an H-H distance of 2.1 Å, and the (H-Si Si-H) has a lower

proton distance of 1.8 Å. This suggest that the recent experiment with the lower value

of proton distance is due to a metastable structure of (H-Si-Si-H) and (H-Si Si-H). As

we reported in our earlier results the SiH2 structure has an H-H distance of 2.3 Å.

2.3.2 Change in the electronic properties

In order to understand the electron localization we used the inverse partici-

pation ratio, IPR,

IPR =
N∑

i=1

[qi(E)]2 (2.2)

where qi(E) is the Mulliken charge [43] residing at an atomic site i for an eigenstate

with eigenvalue E that satisfies
∑N

i [qi(E)] = 1 and N is the total number of atoms in

the cell. For an ideally localized state, only one atomic site contributes all the charge
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Figure 2.8: Probability distribution for proton separation. Inside we have shown the basic
structures with their corresponding average proton distances.

and so IPR=1. For a uniformly extended state, the Mulliken charge contribution per

site is uniform and equals 1/N and so IPR = 1/N . Thus, large IPR corresponds

to localized states. With this measure, we observe a highly localized state near and

below the Fermi level and a less localized state near and above the Fermi level. These

states, highest occupied molecular orbitals (HOMO) and lowest unoccupied molecular

orbitals (LUMO), are centered at the two dangling bonds in the initial configuration

of the model. The energy splitting between the HOMO and LUMO states is 1.08 eV.

Figure 2.9 (a) shows the Fermi level and IPR of these two states and other states as

a function of energy eigenvalues in the relaxed electronic ground state.
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Figure 2.9: The inverse participation ratio of the eigenstates versus the energy eigenvalues,
(a) in the relaxed electronic ground state and (b) in the relaxed simulated light-excited
state (light excited MD followed by relaxation), with their respective Fermi energy in the
first configuration of relaxed aSi61H10. The inset (c) shows the electron density of states
with the Fermi level shifted to zero for the relaxed simulated light-excited state [39].

This picture changes for the simulated light excited state in which we ob-

serve enhanced diffusion of hydrogen and subsequent breaking and formation of bonds.

Since electron-phonon coupling is large for localized states [11], the change of occu-

pation causes the forces in the localization volume associated with the DB to change

and the system moves to accommodate the changed force. Consequently, the hydro-
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gen atoms close to the DB sites start to move in the vicinity of these defects either

to terminate the old DB’s or to break a weak Si-Si bond and by doing so, create new

DB defects on nearby sites. As shown in Fig. 2.9 (b) we observe the formation a

highly localized state and appearance of three less localized states, that correspond to

the newly formed defect levels after simulated light-soaking. These processes induce

transition of electrons from the top of the occupied states to the low-lying unoccupied

states, which is reflected in the smaller value of the initial IPRHOMO and an increase

in the IPRLUMO.

IPRHOMO, where the state is initially localized, decreases from 0.158 to

0.060 after photo-excitation, while the IPRLUMO increases from 0.045 to 0.142. The

splitting energy between the HOMO and LUMO states has also declined to 0.723 eV.

The newly formed defects with lower energy splitting between the HOMO and LUMO

states suggest a presence of carrier induced bond rearrangements in the supercell. The

comparisons for the energy and IPR of the system before MD (as relaxed) and after

MD is given in Table 2.6.

In addition, analysis of the spatial distribution of the configurations shows

that the H atoms close to the dangling bonds (< 4.0 Å) are most diffusive and the

Si atoms which make most of the bond rearrangements including the Si atom in the

SiH2 configurations are close (< 5.50 Å) to the dangling bonds. These show the

additional charge carrier induces change in the forces around the dangling bonds and

consequently rearranges the atoms around the dangling bond sites and eventually
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Table 2.6: The energy and the inverse participation ratio IPR of localized states HOMO,
LUMO, LUMO+1 and LUMO+2 before and after the MD for aSi61H10 [39].

Eigenvalue IPR

before MD after MD before MD after MD
(eV) (eV)

HOMO -4.32 -4.40 0.158 0.060
LUMO -3.24 -3.68 0.045 0.142

LUMO+1 -2.88 -3.08 0.037 0.064
LUMO+2 -2.66 -2.87 0.030 0.042

forming an SiH2 structure. On average the newly formed defect sites are 3.80 Å and

4.70 Å far away from the two initial defect sites. The newly formed SiH2 structure is

(on average) 4.11 Å away from the initial defect sites. It is probable that limitations

in both length and time scales influence these numbers, but it is clear that the defect

creation is not very local because of the high diffusivity of the H.

The same calculation has been performed on aSi214H9. In Fig. 2.10 we have

plotted both energy density of states and inverse participation ratio as a function of

energy in the light excited state case before and after the MD simulation. As can

be seen from the figure we obtained more localized states in the middle of the gap

which are caused due to an increase in the number of defects upon light excitation.

This supports that the diffusion of hydrogen not only forms preferential dihydride

structures but also increase the number of defects in agreement with our findings for

the smaller cell aSi61H10.
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Figure 2.10: The energy density of states and the inverse participation ratio IPR of the
eigenstates versus the energy eigenvalues for aSi214H9, (a) in the relaxed electronic ground
state and (b) in the relaxed simulated light-excited state (light excited MD followed by
relaxation), both the electron density of states and the inverse participation ration are
plotted with the Fermi level shifted to zero [39].

2.3.3 Change in the vibrational properties

For an amorphous solid, the vibrational density of state is a sum of 3N

(N is the number of atoms) delta functions corresponding to the allowed frequency

modes. Starting with the relaxed aSi61H10 subsequent to MD in the light excited
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state, we computed the vibrational energies (vibrational modes) from the dynamical

matrix, which is determined by displacing each atom by 0.02 Å in three orthogonal

directions and then performing ab initio force calculations for all the atoms for each

displacement to obtain the force constant matrix, and with diagonalization, phonon

frequencies and modes.

In our calculations, the VDOS shows H modes of vibrations in the range (600-

900) cm−1 and also in the range (1800-2100) cm−1. We have examined the vibrational

modes to pick out those modes arising only from SiH2. We reproduce the vibrational

modes of SiH2 and their corresponding experimental values [44, 45, 46] in Table 2.7.

The first mode is the rocking mode at 629 cm−1 and 625 cm−1; the second is the

scissors mode at 810 cm−1 and 706 cm−1 and the last is the asymmetric stretching

mode that occurs at 2025 cm−1 and 2047 cm−1 for the first and second configurations

respectively. These results are in good agreement with the IR absorption spectra

for the SiH2 structure. The comparison of our results for the vibrational modes of

SiH2 with the experiment is summarized in Table 2.7. The results shown in Table 2.7

are sensitive to the basis sets used in the calculation, in agreement with other work

emphasizing the delicacy of H dynamics [47].

In conclusion, we have presented a direct ab-initio calculation of network

dynamics and diffusion both for the electronic ground state and light-excited state for

a-Si:H. We computed the preferential diffusion pathways of hydrogen in the presence

of photo-excited carriers. In the light-excited state, we observe enhanced hydrogen
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Table 2.7: Frequency for some of the Si-H vibrational modes of the SiH2 conformation for
the first two configurations of the aSi61H10 obtained from our MD simulations and their
corresponding experimental values [44, 45, 46] [39].

Rocking Scissors Stretch
Configurations cm−1 cm−1 cm−1

1 629 810 2025
2 625 706 2047

Experiment 630 875 2090

diffusion and formation of new silicon dihydride configurations, (H-Si-Si-H), (H-Si Si-

H), and SiH2. This enhanced hydrogen diffusion which introduces a structural change

in the network is attributed to the local heating. The two hydrogens in the SiH2 unit

show an average proton separation of 2.39 Å. The results are consistent (a) with the

recent NMR experiments and our previous studies, and (b) with the hydrogen collision

model of Branz and other paired hydrogen model in the basic diffusion mechanism and

formation of dihydride structures. In contrast, simulations in the electronic ground

state do not exhibit the tendency to SiH2 formation. Undoubtedly, other H diffusion

pathways exist, and the importance of larger simulation length and time scales as

well as effects of promotions involving different states (which could include strain

defects and floating bonds [48]) should be undertaken. For the first time, we show

the detailed dynamic pathways that arise from light-induced occupation changes, and

provide one explicit example of defect creation and paired H formation.
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Chapter 3

Thermally stimulated hydrogen

emission and diffusion in

hydrogenated amorphous silicon
This work has been submitted for publication: T A Abtew, F. Inam, and D A Drabold,

submitted (2007).

As one of the materials used in many applications, hydrogenated amorphous

silicon has been extensively studied for the last decades. The presence of hydrogen

and its diffusion has been connected to the generation of defects and also linked to

light induced degradation in these materials [49, 50, 51, 52]. Although there have

been number of studies, a complete picture on mechanism for hydrogen diffusion is

still missing.

There are number of reports on the diffusion mechanism of H in a-Si:H. The

breaking of H from a Si-H and diffusion through a weak interstitial Si-Si bond center,

which is followed by hopping among transport sites before it gets trapped at a dangling

bond site is the widely accepted model [2, 53, 54, 55, 56, 57]. The existence of an

intermediate low-energy pathway which involves a metastable dihydride structure has

also been reported [58]. However, by calculating a rate of hopping for different cases
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of trapping sites, Fedders argued that thermal motion of hydrogen does not proceed

from dangling bond to dangling bond via bond center sites and showed diffusing

through the intermediate levels is insignificant [59]. Recently, floating bond assisted

H diffusion is also reported. In this model Su et al[60] proposed that Si-H bonds do

not spontaneously release H, rather with the mediation of a floating bond.

In crystalline Si, the importance of lattice dynamic activated diffusion has

been reported [61, 62]. Buda et al. [63] has shown diffusion of H in the form of jumps

from bond center (BC) site to another BC via intermediate hexagonal or tetrahedral

sites.

In this chapter, we present an ab initio simulation which reveals the key role

of thermal motion of Si atoms in driving H diffusion. We have undertaken accurate

simulations including static lattice simulation (in which Si atoms were frozen) and

extended thermal simulation. The static lattice shows negligible diffusion as compared

with the dynamic lattice case. A key feature of our work is that we determine diffusion

mechanisms directly from thermal MD simulation, not by imposing a conventional

hopping picture among wells (traps) with varying depths. The principal result is that

the dynamic lattice (particularly the motion of pairs or triples of Si atoms with a BC H

present) is a primary means for ejecting atomic H into the network. This mechanism

could not be easily inferred from phenomenological kinetic equation models of H

transport [59], though it should readily emerge using a method devised to discover
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rare (long time scale) events like the Activation-Relaxation Technique implemented

with ab initio interactions [64].

To understand the diffusion of H at different temperatures we have used

three different models: a 71 atom model aSi61H10, a 138 atom model aSi120H18, and

a 223 atom model aSi214H9 described in Chapter 1. Most of the results presented

here are from aSi61H10 at T=1000K. The simulations were performed using SIESTA

[21]. We used a single ζ polarized basis set for Si valence electrons and double ζ

polarized basis for H. We solved the self-consistent Kohn-Sham equations by direct

diagonalization of the Hamiltonian. The Γ point was used to sample the Brillouin

zone in all calculations. The total MD simulation time is 10ps for aSi214H9, 5ps for

aSi120H18, and 1ps for aSi61H10.

3.1 Toy models

Before analyzing the results from the real models, we present a simple illus-

tration of dependence of Si-H-Si bond angle and Si-Si distance on the energetics of

the bond center configurations. Previous work suggests that BC sites are important

traps. To elucidate this point we introduce two toy models: a) two silicon atoms with

hydrogen near their bond center as shown in Fig. 3.1a and b) two silicon atoms with

hydrogen molecule near their bond center as shown in Fig. 3.1b. Dangling bonds of

the Si are terminated by H. We generated 170 different configurations by varying the

Si-Si distance R ∈ (2.26-5.40 Å), and Si-H-Si angle θ ∈ (90◦ − 180◦). The H (H2) is
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maintained equidistant from both Si’s. By fixing the two silicons and fixing the H

(H2) at suitable R and θ, we relaxed the configuration to minimize the energy using

a double ζ polarized basis for both H and Si. In this way we extract a local picture

of the potential surface for H (H2) near the BC basin.

(a) (b)

Figure 3.1: Toy models (a) with two Si atoms and seven H atoms where one of the H is
kept near the bond center and (b) two Si atoms and eight H atoms where H2 is kept near
the bond center.

As expected, in the case of H at the bond center, a well defined minimum

exists, with significant dependence upon both R and θ. In real a-Si:H parameters R

and θ depend upon the local geometry (and its time-dependence arising from thermal

motion of the atoms). Such motion may push the H into an unfavorable part of the

R − θ configuration space, thus inducing emission. To quantify this, in Fig. 3.2a, we

show the total energy surface of the system as a function of R and θ. The probability

of hydrogen diffusion is highest on the red region and lowest on the green region. The

energy spectrum shows a broader range of Si-H-Si angles (θ ∈120◦-180◦) with a range

of Si-Si bond length R ∈ 3.5-4.5 Å to have a stable bond center configuration. In

the case of H2 at the bond center, a large flat region with energy minima shown in
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green (light grey) exist in the R − θ configuration space as shown in Fig. 3.2b. The

presence of the large local energy minima in the R− θ configuration space allows the

H2 molecule to easily diffuse and explore the network with large degree of freedom

unlike the H.
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Figure 3.2: The projection of the total energy surface of (a) the Toy Model (Fig. 3.1a) and
(a) the Toy Model (Fig. 3.1b). The potential well is deepest for green and shallow for red.
Units of energy are eV.

3.2 Diffusion mechanism

To analyze the role of thermally induced Si motion in driving H diffusion,

we considered results from aSi61H10 both at T=300K and T=1000K. The higher

temperature simulation help us to see many more events of lattice vibration in a decent

amount of time keeping the solid phase.The difference in the H diffusion for these two

cases is clearly observed from the time average mean squared displacement (〈σ2〉)

of H which yields an average mean square displacement of 0.14 Å2 and 0.74 Å2 for

T=300K and T=1000K respectively. The same analysis for Si gives an average mean

square displacement of 0.06 Å2 and 0.56 Å2 for T=300K and T=1000K respectively.
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These results show that the thermal motion of Si atoms are crucial in enhancing the

diffusion process of H. The MSD of Si and H for two different temperature 300K and

1000K is shown in Fig. 3.3.
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Figure 3.3: The average mean square displacement of Si and H in the aSi61H10 for two
different temperatures.

The results from the dynamic lattice clearly show the effect of thermal motion

of Si atoms on neighboring H. These Si atoms determine the fate of H either to diffuse

out or to get trapped. There are basically three parameters defining the diffusion

mechanisms: neighboring Si-Si distance (RSi−Si), Si-H-Si bond angle and formation

of H2 molecule.

We determine one essential mechanisms for H diffusion in the dynamic lat-

tice namely, “Fluctuating Bond Center Detachment” (FBCD) diffusion: if the H is

initially covalently bonded to a Si atom, it stays bonded with it until another Si
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comes in the vicinity and makes an instantaneous or fluctuating BC configuration.

This event is followed by a switching of H from the covalent bond to the new Si to

either form another Si-H bond or hop, depending upon the local environment. This

process is important both as a means for the network to generate free H and to create

dangling bonds. The mechanisms we report here are undoubtedly not the sole means

of obtaining H diffusion, but are predominant in accurate and relatively extended

MD simulations.

MD simulation reveals various traps: the bond center site (BC), a geometrical

center site (GC), which is analogous to the T site in the crystalline Si, and a weakly

bonded Si site. By BC, we refer to a H configuration with θ ∈ (120◦-180◦), and RSi-Si

∈ (3.0-5.0 Å). The GC site is a region where four or more Si atoms in close proximity

form a closed loop (ring) that attracts H to the center. In Fig. 3.4, we have plotted,

ρ(R, θ) =
∑

i

∑
j

δ(R − Ri(t))δ(θ − θj(t)), (3.1)

a distribution function indicating time spent in different parts of the R − θ configu-

ration space, where Ri(t) is the distance between two Si atoms at a time, and θj(t) is

a bond center angle (Si-H-Si) formed by two silicons and a central H at a given time,

by considering only those H positions which fall near the BC of the two neighboring

Si atoms sampled over all H. These results show preferred values of R, ranging from

3.0-4.0 Å and θ (Si-H-Si bond angle) in the range of 110◦-170◦ where the H atoms

spends more time. The hydrogen trapping time is highest on the red and lowest on
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the green regions. Note that the result in Fig. 3.4 is qualitatively consistent with the

energy surface from the toy model Fig. 3.2a.
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Figure 3.4: The normalized temporal distribution of RSi-Si as a function of Si-H-Si bond
angle from aSi61H10 for a total of 1ps at T=1000K: red, most frequent visitation and green
least frequent.

A hydrogen atom near a bond center will remain there with only local fluc-

tuations so long as preferred R and θ are maintained. However, thermal fluctuation

in the positions of neighboring silicon atoms induces instability in the Si-H-Si con-

figurations. As a consequence, the thermal motion of Si squeezes out H to enable

subsequent motion (transfer to passivate a dangling bond, hop to another trapping

center, or possibly merge with another free H to form H2). Substantial thermally-

induced fluctuation of local Si bonding at modest temperatures has been observed in

earlier work [66].

We have counted the number of bond breaking events and the pattern of

diffusion. In the case of aSi61H10, for T=1000K, we have observed 3 bond breaking
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events which are accompanied by rapid bond switching in 1ps simulation time. For

aSi214H9 at 300K we have observed 5 major bond breaking events in the 10ps simu-

lation time; all are FBCD assisted. After the bond breaking, all of the events lead to

the hydrogen passivating a dangling bond.

The details of BC related hopping events depend upon the distance between

the two Si atoms and the Si-H-Si angle formed by this configuration. The the prob-

ability of breaking Si-H bonds increases with the average MSD of Si and enhances

the probability of FBCD. To illustrate this point, in Fig. 3.5, we have plotted the

probability of finding H in BC site versus the average displacement of Si for different

temperatures using three models, aSi61H10, aSi214H9, and aSi120H18 with a simulation

time of 1ps, 10ps and 5ps respectively. The results show that the probability to form

a bond center falls on a linear curve revealing a model-independent mechanism of H

hopping which is controlled mainly by the motion of Si.

3.3 FBCD assisted diffusion

To discuss the FBCD mechanism in detail, we have selected three H from

aSi61H10 model namely H67, H68, and H71 which diffuse through via FBCD. To analyze

the role of the thermal motion of the neighboring Si atoms we tracked all nearby Si

pairs correlated with the motion of H in all the three cases for 1ps at T=1000K.

In Figure 3.6(a), we show a situation in which H67 initially bonded to Si35

switched to Si46. This event follows the close approach of Si5 to the Si35-H67 bond and
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Figure 3.5: The probability of occupying a BC site.

forms a fluctuating bond center conformation. As the bond length Si35-Si5 changes

from 4.0 Å to 2.9 Å as shown in Fig. 3.6(b), the bond angle Si35-H67-Si5 changes from

a bond center configuration 130◦ to 85◦ as shown in Fig. 3.6(c), compelling the H to

diffuse and form a bond with another Si. This process happened twice (at 0.20ps and

0.63ps).

A second case for the FBCD assisted diffusion involves H68 similar to the

previous example. As shown in Fig. 3.7(a), we observe a bond breaking process in

H68, a situation where H68 which was initially bonded to Si48 and later switched to

Si36. The switching occurs due to the close approach of Si39 to the Si48-H68 bond and

forms a fluctuating bond center conformation. As the bond length Si48-Si39 changes

from 4.2 Å to 3.0 Å as shown in Fig. 3.7(b), the bond angle Si48-H68-Si39 changes
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Figure 3.6: The distance between selected H-Si bonds, Si-Si bond and bond angle Si-H-Si
which represent FBCD assisted diffusion mechanisms for the case of H67 in aSi61H10.

from a bond center configuration 150◦ to 89◦ as shown in Fig. 3.7(c). Once the BC

environment is lifted the configuration is no more a local minima which forces the H

to diffuse out.
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Figure 3.7: The distance between selected H-Si bonds, Si-Si bond and bond angle Si-H-Si
which represent FBCD assisted diffusion mechanisms for the case of H68 in aSi61H10.

The third case involves H71, where we have observed the FBCD mechanism

to switch a bond from Si54 to Si49. This event occured when Si54-Si49 bond length

changes from 3.5 Å to 2.5 Å which allow Si49 to break the bond center configuration

formed by Si54-H71-Si54 by changing the bond angle from 120◦ to 80◦. This process
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is shown in Fig. 3.8(a)-(c). The FBCD assisted diffusion is the same in the other

models.

0.7 0.8 0.9
1

2

3

4

5
D

is
ta

nc
e 

(A
) H

71
-Si

54

H
71

-Si
49

0.7 0.8 0.9
2

2.5

3

3.5

4

D
is

ta
nc

e 
(A

) Si
54

-Si
49

0.8 0.9
Time (ps)

40

80

120

160

Si
-H

-S
i a

ng
le

 (
de

gr
ee

)

Si
54

-H
71

-Si
49

(a)

(b)

(c)

Figure 3.8: The distance between selected H-Si bonds, Si-Si bond and bond angle Si-H-Si
which represent FBCD assisted diffusion mechanisms for the case of H71 in aSi61H10.
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The FBCD mechanism is reminiscent of that of Su et al. [60], also depending

upon the intercession of a Si not part of the initial conformation. However, the FBCD

is a more general process that may or may not increase the Si coordination. We found

many cases of H detachment in which no Si was overcoordinated. Ejection of H is a

more subtle process than just changing coordination, and depends on the the local

geometry (R, θ). Finally, all such FBCD conformations arise from fluctuations, and

are thus short lived [66]. The mechanism of Su et al is a special case of FBCD.

In conclusion, we have demonstrated the nature of H diffusion in a-Si:H by

direct simulation and with the aid of a model to develop a fairly simple picture of H

motion. H emission is stimulated by Si motion, and the FBCD mechanism is shown

to be important both for stripping off H chemically bonded to Si (thus creating “free”

atomic H), and of course for creating Si dangling bonds. Our work is consistent with

analogous studies in c-Si [63], and is a generalization of the work of Su and Pantiledes

[60].
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Chapter 4

Ab initio models of a-Si1−xGex:H

alloys
The results presented in this chapter are published: T A Abtew and D A Drabold, Phys.

Rev. B (75) 045201 (2007).

Hydrogenated amorphous Si-Ge alloys are important materials for uncooled

microbolometer applications, especially “thermal” night vision and IR sensing [69, 70].

The materials are of basic interest as they exhibit a mild form of alloy disorder (here

“mild” refers to the chemical similarity of the two species) juxtaposed with topological

disorder. Since the band gap of these alloys can be tuned by changing composition,

they are being used and explored for photovoltaic applications [71, 72, 73]. The

electrical, optical and vibrational properties have been studied from experiment [74,

9, 75, 76].

There are a number of experimental investigations on the bonding in amor-

phous Si1−xGex alloys (both with and without hydrogen). Using extended x-ray

absorption Nishino et al [77] found the Ge–Ge and Ge–Si bond lengths to be inde-

pendent of composition (2.46 Å and 2.41 Å respectively). This is consistent with

another X-ray absorption measurement by Incoccia et al [78] a few years before. On

the other hand, for the non-hydrogenated alloys researchers showed a linearly increas-
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ing bondlength as a function of concentration [79, 80, 81, 82] opposing the idea of

“composition independent” bond length. However, there is limited understanding of

whether the difference is connected to the presence of hydrogen in the alloy or not.

There are many simulations of a-Si and a-Si:H [83, 84, 85, 86, 87, 88]. Most

of these studies provide networks in reasonable agreement with experiment, using a

variety of different approaches. Our aim here is to offer small but reliable models of

a-SiGe:H alloys, studying the effect of Ge concentration on bond length and on the

structure of the amorphous network. Wherever possible, we compare the models to

experiment, and to make new specific predictions of the structural origins of defect

states appearing near the Fermi level. It seems likely that because of delicate ener-

getics of alloy disorder, relaxation effects and (mild) charge transfer, a first principles

approach is needed.

In this chapter we describe procedures for generating a-Si1−xGex:H alloy

models, and discuss the approximations and parameters used in the ab initio code

employed. We present a thorough analysis of structural properties by studying partial

pair correlations, atomic coordination and bond angle distributions. The electronic

properties of localized mid-gap and band-tail states are also analyzed. From the

standpoint of band gap engineering, we describe the evolution of state density as a

function of composition. The dynamical properties and vibrational density of states

are also studied with a comparison to existing experiment.
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The density functional calculations in the present work were performed within

the generalized gradient approximation [26] (GGA) using the first principles code

SIESTA [21]. Calculations in this paper employed single ζ basis with polarization

orbitals (SZP) for Si and Ge and a double ζ polarized basis (DZP) for hydrogen [89].

The structures were relaxed using conjugate gradient (CG) coordinate optimization

until the forces on each atom were less than 0.02 eV/Å. We solved the self-consistent

Kohn-Sham equations by direct diagonalization of the Hamiltonian and a conven-

tional mixing scheme. The Γ(�k = 0) point was used to sample the Brillouin zone in

all calculations.

After relaxation of aSi214H9 model as described in Chapter 1, we replaced

some of the Si atoms by Ge atoms at random, and then again relaxed the newly

formed alloy using conjugate gradient minimization to generate a-Si1−xGex:H alloys,

with the Ge fraction x being 0.1, 0.2, 0.3, 0.4 and 0.5. We note that our models

have the advantage that they are a minimum for an accurate energy functional. On

the other hand, because of the a priori assumption of a tetrahedral a-Si network,

and no possibility for modeling diffusive processes because of the rapid descent into

a minimum, it is likely that our models will tend to underestimate disorder effects

associated with alloying. Like other calculations of this sort the justification is partly

a posteriori: namely agreement with a variety of experiments.
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4.1 Structure

4.1.1 Bond length and pair correlation functions

For a given Ge atomic composition, x, we obtained the average bond lengths

between Si–Si, Si–Ge, and Ge–Ge. In Fig. 4.1 we show these bond lengths as a

function of Ge composition. The experimental data which are obtained for Ge com-

position x ≥ 0.3 from Nishino et al are shown in Fig. 4.1. For these compositions, our

result shows linear bond length distribution as a function of composition. By taking

an average value of each type of bond for all the compositions, we obtained mean

bond length value of 2.42 Å for Si–Ge and 2.46 Å for Ge–Ge bonds which are in good

agreement with the experimental values of 2.46 Å and 2.41 Å [77, 81]. Our result

give a mean bond length of 2.37 Å for Si–Si bond which is again in the experimental

range of 2.35–2.37 Å [90].

The topology of models may be analyzed by partial pair correlation functions

gαβ(r) of atomic species α and β. The partial pair correlation gαβ(r) can be written

as

gαβ(r) =
1

4πr2ρNcαcβ

∑
i�=j

δ(r − rij) (4.1)

where N is the total number of particles in the system; ρ = N
V

is the number density ,

cα = Nα

N
and cβ =

Nβ

N
. We have used a Gaussian approximation for the delta function

with broadening σ = 0.1 Å.
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Figure 4.1: Si–Si, Si–Ge and Ge–Ge bond lengths as a function of Ge concentration. The
straight lines with triangle up and triangle down symbols are experimental values of Si–Ge
and Ge–Ge bond lengths respectively taken from Nishino et al [77].

We have analyzed the five alloy compositions, and a first nearest neighbor

peak with subsequent deep minimum is always evident. These features imply strong

short-range ordering in the models. In Fig. 4.2 we plot the partial pair correlation for

Si–Si, Ge–Ge, and Si–Ge in the a-Si1−xGex:H alloy for x=0.1 and x=0.5. For Ge–Ge

we obtained a first peak at ro ∼2.46 Å which is the same for the two compositions

considered. Similarly, the partial correlation for Si–Ge has a first peak at 2.42 Å and

Si–Ge has first peak at 2.37 Å. We observed considerable similarity in first nearest

neighbor peaks for the various Ge concentrations. These results support and repro-
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duce values observed in experiment [77, 81, 90]. Our models retain an essentially

tetrahedral structure for all Ge concentrations.
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Figure 4.2: Partial pair distribution function gαβ of a-Si1−xGex:H alloys for two composi-
tions (x=0.1 and x=0.5): (a) Si–Si, (b) Ge–Ge, and (c) Si–Ge.

4.1.2 Geometry of bonding

The tetrahedral a-Si (WWW) model ancestral to the alloy models we present

here is fully coordinated (fourfold coordination for all the Si atoms). Thus, random
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substitution of Ge without relaxation preserves the fourfold tetrahedral structure.

The essential difference between the model with random substitution (without relax-

ing) and the fully relaxed case (the models we present in this paper) is that we see

a decrease in the number of fourfold atoms (through creation of both threefold and

fivefold atoms) as the Ge content increases. There is also an increase in weak (long)

bonds. These changes influence all physical properties of the alloy systems. Like any

ab initio simulation, the detailed numerics of our calculations must be taken with

a grain of salt: the systems, while large by the standards of first principles studies,

do not provide statistical error bars on coordination and defects. It is reasonable

however to expect general trends to be reproduced as a function of x.

We obtained partial nGe, nSi, nH, and average coordination numbers, n, based

on the nearest neighbor distance determined in the preceding section; first neighbor

coordination numbers nSiSi, nSiGe, nSiH, nGeGe, nGeSi, and nGeH are obtained by integrat-

ing the pair correlation function 4πr2ρgαβ(r). The results are shown in Table 4.1. The

total coordination numbers for Ge, Si and H are, nGe = nGeGe + nGeSi + nGeH, nSi =

nSiSi + nSiGe + nSiH, and nH = nHSi + nHGe respectively. The observation of higher co-

ordination number for composition x=0.5 is due to a net increase in over-coordinated

(fivefold) bonds vs. under-coordinated (threefold) bonds. It is not obvious that total

coordination of 4.09 at x = 0.5 is statistically significant; this will be checked in future

work with extended annealing studies. The salience of these changes to the electronic

structure of the alloy is discussed in section 4.2.
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Table 4.1: The value of ro in the first peak of the g(r) and the first neighbor coordination
number nαβ in a-Si1−xGex:H alloys for five different Ge atomic compositions x=0.1–0.5.
The integration ranges are from 0.0–2.8 Å for Si–Si, Ge–Ge, Si–Ge, Ge–Si, and 0.0–1.8
Å for Si–H, Ge–H, H–Si, and H–Ge.

nαβ for first shell
Bond
type ro(Å) (x=0.1) (x=0.2) (x=0.3) (x=0.4) (x=0.5)

Si–Si 2.37 3.47 3.07 2.70 2.37 2.06
Si–Ge 2.42 0.50 0.86 1.22 1.54 1.97
Si–H 1.53 0.04 0.05 0.05 0.05 0.06

nSi 4.01 3.98 3.97 3.96 4.09

Ge–Ge 2.46 0.16 0.71 1.11 1.58 1.92
Ge–Si 2.42 3.80 3.22 2.80 2.34 2.04
Ge–H 1.60 0.04 0.02 0.03 0.02 0.03

nGe 4.00 3.95 3.94 3.94 3.99

H–Si 1.53 0.89 0.89 0.78 0.78 0.67
H–Ge 1.60 0.11 0.11 0.22 0.22 0.33

nH 1.00 1.00 1.00 1.00 1.00

To investigate the effect of Ge composition on the structures, we analyzed and

obtained all types of bonding and structures in the network for each Ge compositions

considered. For x=0.1, about 96.81% of Si and 95.83% of Ge are fourfold, only 1.06%

of Si and 4.17% of Ge are threefold coordinated, 2.13% of Si are fivefold. No fivefold

coordination is obtained for Ge. Where fourfold Si is concerned, Si4 (a Si atom bonded

with four Si atoms) is a dominant structure which is followed by Si3Ge (a Si atom

bonded with three Si and one Ge atoms). We observed a similar pattern in the Ge

fourfold coordination that Ge bonded to Si4 structure is highly dominant which is

followed by Ge bonded with Si3Ge. The detailed results are shown in Table 4.2.
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Table 4.2: Average percentage mα(l) (bold characters) of atoms of species Si and Ge, l–fold
coordinated at a distance of 2.68 Å for both Si and Ge, and 1.55 Å for H in a-Si1−xGex:H
alloy for Ge atomic composition x=0.1. We also give the identity and the number of Ge
and Si neighbors for each value of mα(l).

Si l = 3 1.06
Si3 0.53
Si2Ge 0.53

l = 4 96.81 l = 5 2.13
Si4 52.67 Si5 1.06
Si3Ge 32.98 Si4Ge 1.06
Si2Ge2 6.91
Si3H 3.72
Si2GeH 0.53

Ge l = 3 4.17 l = 4 95.83
Si3 4.17 Si4 79.17

Si3Ge 12.50
Si2GeH 4.17

In the case of x=0.5, we observed ∼10.47% fivefold bonds for Si. About

87.21% of Si and 99.04% of Ge are fourfold, only 2.33% of Si and 0.96% of Ge are

threefold coordinated. The dominant structure in this case is a Si atom bonded with

Si2Ge2, followed by Si3Ge. A similar pattern is observed in the Ge fourfold atoms.

The results are shown in Table 4.3. Comparing the bonding statistics of the relaxed

network with the initial configuration (in which we randomly substituted Ge for Si),

we see a significant decrease in the number of four-fold atoms. Also, we observe an

increase in the number of weak bonds (∼ 9.5%) for the case of x=0.5. The increase in

weak bonds in this case is relative to the number of such bonds in the case of x=0.1.
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Here, weak bond refers to a Si–Si or Si–Ge bond with bond length between 2.5 Å to

2.7 Å.

Table 4.3: Average percentage mα(l) (bold characters) of atoms of species Si and Ge, l fold
coordinated at a distance of 2.68 Å for both Si and Ge, and 1.55 Å for H in a-Si1−xGex:H
alloy for Ge atomic composition x=0.5. We also give the identity and the number of Ge
and Si neighbors for each value of mα(l).

Si l = 3 2.32
Si2Ge 1.16
Si3 1.16

l = 4 87.21 l = 5 10.47
Si2Ge2 51.16 Si4Ge1 3.49
Si3Ge1 19.77 Si3Ge2 5.81
Ge4 8.14 Si4H 1.16
Si4 5.81
Si3H 1.16
Si2GeH 1.16

Ge l = 3 0.96
Si2Ge 0.96

l = 4 99.04
Si2Ge2 40.38
Si3Ge 26.92
SiGe3 21.15
Si4 3.85
Ge4 3.85
Ge2SiH 1.92
Ge3H 0.96

Angular distribution

We calculated the partial angular distributions for a-Si1−xGex:H with x=0.1,

x=0.3, and x=0.5 Ge compositions and plotted them in Fig. 4.3(a)-(f). Though
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we report only three Ge compositions, the trends are similar for the other two Ge

compositions x=0.2 and x=0.4. The partial pair correlation functions for α–Si–γ are

plotted in the upper panel and the partial pair correlation functions for α–Ge–γ are

plotted in the lower panel. In each of the cases considered, we found total angular

distribution peaks centered near the tetrahedral angle with θ in the range 103◦-110◦.

The broader angular distributions for Ge–Si–Si and Ge–Ge–Si as the Ge concentration

increases represent departures from the highly tetrahedral network we began with.

We also report information on partial angular distributions for H. The mean of the

distribution of H–Si–Si and H–Ge–Ge is close to the tetrahedral angle 109.47◦ while

the other two partials, H–Ge–Si and H–Si–Ge, deviate from a tetrahedral angle and

range from 100.0◦–116.0◦.

In general, our results show broader angular distributions (far from a tetra-

hedral angle of 109.47) in the case of H-Ge-Si and H-Si-Ge, where atoms of three

different species form an angle. This is presumably connected to the asymmetries

in bonding associated with the distinct species. This feature has also been observed

in the case of structures, Ge-Si-Si and Ge-Ge-Si. As shown in Fig. 4.3 we observe a

broader angular distribution for the two structures as the Ge composition increases.

The probability density for cos(θ) is normal (Gaussian), which is characteristic of all

WWW models (and may indeed be more general). As reported elsewhere, normally

distributed cosines of bond angles lead easily to exponential (Urbach) band tails in
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the electron density of states near the valence and conduction edges [91]. We return

to this point in the discussion of the electronic density of states.
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Figure 4.3: The partial bond-angle distribution function as a function of bond angle θ in
a-Si1−xGex:H for x=0.1 (left panel), for x=0.3 (middle panel), and for x=0.5 (right panel).
(a), (b) and (c) are partial angular distribution for three possible angles centering Si and
(d), (e), and (f) are partial angles taking Ge as a center.

4.2 Electronic structure

4.2.1 Density of states

Electronic structure has been described by the electronic density of states

(EDOS), which was obtained by summing suitably broadened Gaussians centered

at each Kohn-Sham eigenvalue [92]. The results showed a band-gap (∼1.6 eV for
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x=0.1), that becomes narrower as the Ge composition increases (∼0.8 eV for x=0.5).

As usual, the reader should remember that the LDA gaps reported in this paper are

significantly smaller than experiment. It is expected that trends with composition

should be reproduced, however.

In this section, we present the results of one of the alloys (for a-Si1−xGex:H

with x=0.4) among the five different Ge atomic compositions. The electron density

of states (EDOS) shown in Fig. 4.4 shows a narrow gap. The band tails of the

spectrum which we take in the region (-0.7–0.0 eV ) fits exponential with ∼ e−E/Eo

with Eo = 192 meV as shown in the inset of Fig. 4.4. We analyze these defect states

in the spectrum in detail in the next sections.

4.2.2 Localization: Inverse participation ratio

In order to understand the electron localization we used the inverse partici-

pation ratio, IPR,

IPR =
N∑

i=1

[qi(E)]2 (4.2)

where qi(E) is the Mulliken charge residing at an atomic site i for an eigenstate with

eigenvalue E that satisfies
∑N

i [qi(E)] = 1 and N is the total number of atoms in the

cell. For an ideally localized state, only one atomic site contributes all the charge

and so IPR=1. For a uniformly extended state, the Mulliken charge contribution per

site is uniform and equals 1/N and so IPR=1/N . Thus, large IPR corresponds to

localized states, small IPR to extended states.
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Figure 4.4: The electron density of states for a-Si1−xGex:H for x=0.4. The exponential fit
in the inset for the valence band tail is 2.5×e−E/Eo with Eo = 192 meV for x=0.4. The
Fermi level is shifted to E=0.

To investigate how the electronic properties evolve with composition in the

gap, we have calculated the IPR of a-Si1−xGex:H alloy for two different Ge composi-

tions, x=0.1 and x=0.4. We have determined the individual atomic contributions to

the total IPR for localized eigenstate, to associate that state with particular structural

irregularities. This provides a “spectral signature” for the various defect structure

that emerge in our models. Since we are interested in states near the Fermi level, we

limit our presentation here only to eigenvectors conjugate to eigenvalues which are

mid-gap or near the band-tails of the spectrum. We plotted the inverse participation
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ratio and the contributions of each of the atoms to the IPR for x=0.1 in Fig. 4.5

and Fig. 4.6 respectively. For the IPR, we only chose those atoms which contribute

10% or more for a particular state labeled (a–f). Those structures in the alloy which

correspond to the selected mid-gap and band-tail states labeled (a–f) are shown in

Fig. 4.7. As we can see from Fig. 4.5, there is one mid-gap state and about five

band-tail states. We estimated the mobility band-gap in this case to be ∼1.6 eV.
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Figure 4.5: Inverse participation ratio (IPR) in the a-Si1−xGex:H alloy for x=0.1 versus
energy. The dashed line is the Fermi level.

The structures which are responsible for the mid-gap state labeled c, arise

from a threefold Si, a fivefold Ge, and defects. Note that the state is not entirely

centered upon one obvious defect (there is resonant mixing) as predicted by the

resonant cluster proliferation model [93]. We have also determined the structures
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Figure 4.6: The contribution of atoms to the IPR (10% and above) of a given state in
a-Si1−xGex:H alloy for x=0.1. The labels from a-f corresponds to different mid-gap and
band-tail states of Fig. 4.5.

corresponding to the band-tail states (a, d, and e). The large IPR derives primarily

from a structure involving three fourfold Si but non-tetrahedral sites ( δθ ≈15◦). The

other two mid-gap states come from a fivefold Si atom together with a strain defect

(b), and a threefold Si bonded with a fivefold Si and a geometrical defect (f).

In the case of x=0.4, the inverse participation ratio as a function of eigenvalue

is plotted in Fig. 4.8, while the contributions of each of the atoms to the IPR (only

those atoms which contribute 5% and more) for a particular state labeled (a–f)

and the different structures associated with these states are plotted in Fig. 4.9 and

Fig. 4.10 respectively. As we can see from the IPR plots in the two cases, x=0.1 and
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Figure 4.7: Representation of selected electronic eigenstates labeled in Fig. 4.5 from a–f in
the a-Si1−xGex:H alloy for x=0.1. The color code is blue for Si and red for Ge. Numbers
indicate selected site contributions to the eigenstate.

x=0.4, as the Ge content increases, we observed an increasing number of band-tail

states close to the conduction band edge and hence a narrow bandgap spectrum.

By comparing the models for various x, we observe that strain defects become

important in accounting for the band tail states for increasing Ge content. As shown
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Figure 4.8: Inverse participation ratio (IPR) versus energy in a-Si1−xGex:H alloy for x=0.4.
The dashed line is the Fermi level.

in Fig. 4.10, large contributions to the state labeled (a and b) come from geometrical

defects, a fivefold Si, and a threefold Ge structure. States labeled d and f in this case

are dominated by a geometrical defect which has three fourfold Si atoms connected to

each other with strained bond with angular distribution off from a tetrahedral angle

by ±20◦. The dominant contributions to the mid-gap state arise from a fivefold Si

atom bonded with two strain defects.

To emphasize the effect of Ge concentration in the mobility band gap, we

have estimated the mobility gap as a function of the Ge concentration x in Fig. 4.11

(f). The mobility gaps are extracted from Fig. 4.11 (a)-(e) which show the inverse

participation ratio as a function of eigenvalues for different x. We observed a decrease
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Figure 4.9: The contribution of atoms to the IPR (5% and above) of a given state in a-
Si1−xGex:H alloy for x=0.4. The labels from a–f corresponds to different mid-gap and
band-tail states of Fig. 4.8.

in the mobility gap as the Ge concentration increase from x=0.1 to x=0.5. The

mobility gap is roughly estimated by examination of the plots of IPR versus energy.

In each case, there is a fairly well-defined energy near the valence and conduction tails

at which the IPR becomes roughly constant reflecting the onset of extended states.

We include “error bars” to convey a rough estimate of uncertainty in our estimated

gaps.
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Figure 4.10: Representation of selected electronic eigenstates labeled in Fig. 4.8 from a–f
in the a-Si1−xGex:H alloy for x=0.4. The color code is blue for Si and red for Ge. Numbers
indicate selected site contributions to the eigenstate.

4.3 Dynamical properties

The lattice dynamics of a-Si1−xGex:H alloys are analyzed with the vibrational

density of states (VDOS) and inverse participation ratio. The vibrational eigenvalues

and eigenvectors are obtained by diagonalizing the dynamical matrix. The dynam-
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Figure 4.11: Inverse participation ratio (IPR) versus energy for different x: (a)-(e) and the
estimated LDA mobility gap plotted versus the Ge concentration x: (f), in the a-Si1−xGex:H
alloy. The red arrows indicate approximate mobility edges in the x=0.1 model.

ical matrix is determined by displacing each atom with 0.03 Å in three orthogonal

directions and then performing first principles force calculations for all the atoms for

such displacement. Each calculation yields a column of force constant matrix.

In Fig. 4.12, the phonon density of states for a-Si1−xGex:H for x=0.4 is

plotted. From our simulation, the three optical mode peaks appear at 31.98 meV

(Ge–Ge), 49.01 meV (Ge–Si), and 57.63 meV (Si–Si). The experimental results re-

ported by Mackenzie et al [76] are 33.48 meV, 45.87 meV, and 58.27 meV for the

three optical modes respectively.

The higher frequency modes in the range (213 meV-236 meV) are associated

with hydrogen atoms with H–Si and H–Ge bonds which is in agreement with the
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Figure 4.12: Vibrational density of states (black) and the inverse participation ratio (blue)
for the a-Si1−xGex:H model for x=0.4.

experimental result (233.96 meV and 249.09 meV) reported by Wells et al. [94]. The

principal hydrogen related features of the spectrum which exhibit higher IPR (highly

localized states) are: stretch modes of Si–H at 252.81 meV, 249.58 meV, 245.49 meV,

and 232.22 meV, and of Ge–H at 236.07 meV, 204.08 meV and a wagging vibration

modes of Si–H and Ge–H dominate in the region of 74.39 meV-111.59 meV.

The important experiments of Aljishi and co-workers [74] provide basic in-

formation about the temperature dependence of the band tail states of these mate-

rials. In subsequent work, we will explore the band tail broadening from thermal

motion [95] and analyze the validity of the model for Urbach tailing in Ref. [91]. The
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temperature-dependence of the band tailing is likely to be of significant interest for

applications.

In conclusion, we have presented an ab initio study of a-Si1−xGex:H al-

loys for five different Ge atomic compositions. Where the structural properties of

a-Si1−xGex:H alloys are concerned, we show (a) a composition independent bond

length, a modest, possibly statistically insignificant change in the total coordination,

and total bond angle distribution, and (b) the emergence of geometrically strained

structures and coordination defects as the Ge content increases. The electronic den-

sity of states shows an associated increase in band-tail state and gap states. This

illustrates the process of ”band gap engineering” with a clear illustration of how the

gap closes (and with which states contributing) in the a-Si1−xGex:H alloy.
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Chapter 5

Carrier transport
In the last decades researchers have been studying electronic transport in

disordered systems. The possibility of doping these materials to modify their conduc-

tivity is of key technological interest. There are number of experimental studies which

reported the conductivity of these materials in a wide range of temperatures which

provide information about transport mechanisms. At low temperatures, much below

room temperature, the idea of phonon induced hopping of electrons through localized

states is considered to be the essential transport mechanism in disorder materials

[96, 97].

In this chapter, we study the dynamics of localized states in the presence of

thermal disorder by solving the time dependent Kohn-Sham equation with Crank-

Nicholson approximation for the evolution operator and density functional Hamilto-

nian obtained from SIESTA [21]. We also present an investigation of electronic trans-

port from first principles ab initio simulation. We have used the Kubo-Greenwood

formula to compute the temperature dependent electronic conductivity of both a-Si

and a-Si:H models at temperatures near room temperature. We also study the effect

of doping (n− type as well as p−type) on the conductivity. Finally we extract activa-

tion energy and pre-exponential factor of the conductivity to study the Meyer-Neldel

rule [98] for the two models.
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5.1 Integrating the time dependent Kohn-Sham equation

To characterize the spatial and spectral diffusion of the electronic state we

track the time evolution of the electronic state by solving the time dependent Kohn-

Sham equation. The spectral and spatial electronic diffusion can be obtained by

tracking the time evolution of the state by solving the time dependent Kohn-Sham

equation

i�
∂

∂t
ψ(t) = H(t)ψ(t) (5.1)

where H is the time dependent density functional Hamiltonian obtained from SIESTA

and ψ =
∑

i Ciφi is the single electron wave function written in the basis of non

orthogonal orbitals {φi}. Löwdin transformation is used to change these basis to

orthonormal basis {ϕi} which is defined by ϕi =
∑

j(S
−1/2)ijφj where Sij =

∫
φ∗

i φjd
3r

is the overlap matrix [99]. With these equations (5.1) becomes

i�
∂

∂t
C ′ = H ′C ′ (5.2)

where H ′ = S−1/2HS−1/2 and C ′ = S1/2C, whose solution can be obtained by using

Crank-Nicholson scheme in the approximation of the evolution operator which gives

a recursive relation (first order in τ) for C ′ between two consequative time steps t

and t + τ , where τ is a small time interval between two consecutive time steps.

C ′(t + τ) = (1 + iτH ′(t)/2�)
−1

(1 − iτH(t)/2�) C ′(t) (5.3)
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The evolution operator approximated with Crank-Nicholson method is unitary and

preserves orthonormality of the states for any τ .

The concept of participation ratio which is a quantity that tells how many

sites a particular eigenstate is associated with, is commonly used to measure the

localization of a state. For an ideally localized state the PR approaches unity and

for extended states the PR could reach the number of atoms N. The inverse PR is

defined as an inverse participation ratio IPR. Given the eigenvector Cj(Ri) for state

j which is defined at each site Ri, the IPR is defined as

(IPR)j = (1/PR)j =

∑
i | Cj(Ri) |4

(
∑

i | Cj(Ri) |2)2 (5.4)

since we are able to get the time evolution of the eigenvector C(t) from equation

(5.3), the time evolution of spatial and spectral diffusion of the localized states can

be calculated from equation (5.4).

5.2 Results

5.2.1 Spectral and spatial diffusion

The first step in the understanding of the spectral and spatial diffusion of

the localized states requires a model with defects giving rise to these states. The
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localization from the IPR for aSi64 and aSi120H18 we used at t = 0, is depicted in

Fig. 5.1. The highly localized defect states are clearly seen at the center with higher

values in their IPR. Away from the center are the extended states with lower values

of IPR.
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Figure 5.1: IPR for most of the states for aSi64 and aSi120H18 at t = 0. The peak in the
value of IPR shows strong localization.

To study the phonon induced delocalization process in these models we chose

two states near the Fermi level: the highest occupied molecular orbital (HOMO) and

the lowest unoccupied molecular orbitals (LUMO). These (localized) edge states are

characterized by their higher IPR values and mainly localized on very few atoms for

both models at initial time t = 0 and diffuse to other states as time goes on. To

illustrate this we calculated the contribution of every individual atoms for the IPR

of each states at t = 0 and t = 0.5ps. In case of aSi64 at t = 0, the HOMO state is
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localized mainly on the 38th and the 21st atoms with 23% and 15% contribution to

the IPR respectively. This picture changes at a later time t = 0.5ps where the contri-

bution from the 38th and 21st atom drops to 6% and 3% respectively. Similarly, for

aSi120H18 at t = 0, the LUMO state is localized mainly on the 41st and 47th atom

with 8% and 10% contribution to the IPR. However, this changes at a later time

t = 0.5ps where the contribution from both atoms reduces to the same value 2.6%.

Understanding how electronic diffusion is influenced by temperature is not

only crucial but also paves the way to get an idea of the electronic dynamics and the

hopping mechanism. Having this in mind we computed the time evolution of the two

localized states, HOMO and LUMO, for three different temperatures 100K, 300K and

500K for both models we used and it’s been plotted in Fig. 5.2. In both models we

observed that increasing temperature, with the range of temperature considered in

our simulation, increases the diffusion. In the case of aSi64 the HOMO takes about

0.2ps and in case of aSi120H18 the LUMO takes about 0.15ps to completely diffuse

to become extended states at a temperature of 300K. This diffusion is explained to

be due to quantum mechanical mixing when another states gets close in energy to

the state that we are tracking. We are still puzzled with the rapid diffusion of the

localized state to create the extended state in a very short time. Further study needs

to be done before additional work is undertaken.
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Figure 5.2: The time evolution for HOMO and LUMO of aSi64 and aSi120H18 at different
temperatures.

5.3 The Kubo-Greenwood Formula

5.4 Methodology

From linear response theory, Kubo [100] originally derived a linear expres-

sion for electrical conductivity for an arbitrary system. Later a simplified version was

developed by Greenwood [101]. An elementary derivation of the electrical conduc-

tivity can be obtained as follows [96, 102]. For the system of volume Ω, the relation

between the power dissipation density P and the real part of the frequency depen-

dent conductivity is P = 2σΩE2
0 where E0 is the electric field. On the other hand a

quantum mechanical expression of P can be obtained using Fermi’s golden rule for
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the transition rate (Wnm) from state n to state m, which eventually yield the real

part of the conductivity to have a form

σxx(ω) =
πe2

�

Ωm2

∑
nm

|〈ψn|px|ψm〉|2 fF (εm) − fF (εn)

�ω

× δ(εn − εm − �ω) (5.5)

where fF is the Fermi distribution, e and m are the electronic charge and mass, px

is the momentum operator, ψi and εi are the eigenstates and eigenvalues. Note that

σ(ω) = 1
3
(σxx + σyy + σzz).

In the dc-limit (ω →0 ) the real part of the conductivity takes the form

σ(T ) =

∫ ∞

−∞

1

3
(σxx(ε) + σyy(ε) + σzz(ε))

⎧⎪⎪⎩−∂fF (ε)

∂ε

⎫⎪⎪⎭ dε (5.6)

where

σxx(ε) =
πe2

�

Ωm2

∑
nm

|〈ψn|px|ψm〉|2δ(εn − ε)δ(εm − ε) (5.7)

For a linear system, where the dissipation is quadratic in the perturbation,

we can replace the matrix element of px with x by using the following transformation

[103]. With [x,H]=(i�/m)px, we have |〈ψn|px|ψm〉|2 = (|εm − εn|2m2/�
2)|〈ψn|x|ψm〉|2,

and using |ψn〉 =
∑

i ani|ϕi〉 Eq. 5.7 can be rewritten as

σxx(ε) =
πe2

Ω�

∑
nm

∑
ij

|εm − εn|2| a∗
ni〈ϕi|x|ϕj〉amj︸ ︷︷ ︸

〈ψn|X|ψm〉

|2

× δ(εm − ε)δ(εn − ε) (5.8)

There are number of studies which use the Kubo-Greenwood formula to

compute the conductivity of amorphous materials [104, 105, 106, 108]. Most of these
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studies are either at higher temperature or low temperature ranges. In this study, we

use the Kubo-Greenwood formula to compute the DC conductivity for a wide range

of temperatures and attempt to understand the microscopic origin of the tempera-

ture dependence. We have also studied the effect of doping on the conductivity by

tracking conductivity with an artificially shifted Fermi level. In order to study the

DC conductivity using Kubo-Greenwood formula [100, 101], we have used aSi64 and

aSi61H10 models. We have prepared these models for six different temperatures 200K,

300K, 500K, 700K, 1000K, and 1500K. In each case we followed the following proce-

dures. The two models were annealed to a particular temperature for 1.5 ps which is

followed by equilibration for another 1.5 ps. Once the models are well equilibrated,

we performed a constant temperature MD simulation for another 500 steps to obtain

an average DC conductivity for the respected models at a given temperature.

The first principle code SIESTA [21] was used to perform the density func-

tional calculations. We solved the self consistent Kohn-Sham equations by direct

diagonalization of the Hamiltonian and a conventional mixing scheme. We used the

Γ(k = 0) point to sample the Brillouin zone in all calculations.
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5.5 Results and discussions

We have studied the electrical properties at different temperature by using

the inverse participation ratio (IPR) which is defined as

IPR =
N∑

i=1

[qi(ε)]
2 (5.9)

where N is the total number of atoms and qi(ε) is the Mulliken charge residing at an

atomic site i for an eigenstate with eigenvalue ε with
∑N

i=1[qi(ε)] = 1. The IPR is 1

for an ideally localized state and 1/N for an extended state.

In Fig. 5.3 we show the IPR as a function of energy eigenvalues for six different

temperatures. As the temperature increases from 200K to 1500K, the optical gap is

reduced and eventually at higher temperature all the states become extended with

no energy gap in the density of states.

The DC conductivity of aSi64 is computed for 500 instantaneous configura-

tions for different temperatures: T=200K, 300K , 500K, 700K, 1000K, 1500K, and

1800K. At a temperature of 1800K, the system is actually a liquid with a diffusion

coefficient of D ∼ 1.6 × 10−4 cm2s−1 and a DC conductivity of ∼ 0.3 × 104 Ω−1cm−1

which is close to the measured value of (1.0−1.3)×104 Ω−1cm−1 [107] and computed

value of 1.75 × 104 Ω−1cm−1 [104].

In Fig. 5.4 we have shown the DC conductivity of aSi64 as a function of

temperature. The results from experiment for selected temperatures are also shown.

As we can see from Fig. 5.3, increase in the temperature of the system enhances
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Figure 5.3: Inverse participation ratio (IPR) (indicating spatial compactness of eigenstates)
versus energy for different temperatures in aSi64 model. LDA states and eigenvalues are
used.

delocalization of the states and eventually eliminating the optical gap to change the

property of the material from semi-conductor to metal. In doing so the DC conduc-

tivity changes from 0.31×10−10 Ω−1cm−1 for T=200K to 0.24×103 Ω−1cm−1 for T=

1000K.

The temperature dependence of DC conductivity can be written as

σ = σoe
(−Ea/kBT ) (5.10)

where Ea is the activation energy (Ea = EC − EF or Ea = EF − EV ) and σo is

the preexponential factor of the conductivity. By dividing the dc conductivity in

two regions of low temperature (T < 450K) and high temperature (T > 450K) we
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Figure 5.4: DC conductivity of aSi64 averaged over 500 configurations computed at dif-
ferent temperatures. The solid symbols are from our work, open symbols are from experi-
ment: open square from Ref. [107], open diamond from Ref. [108] , and open triangle from
Ref. [109]. The solid line is guide to the eye.

extracted the Ea and σo. For low T, we have obtained Ea ∼ 0.34 eV and σo ∼

4 Ω−1cm−1. For high T, Ea ∼ 0.45 eV and σo ∼ 1 × 104 Ω−1cm−1.

It is well known that doping and temperature change result in a shift in the

position of Fermi level within the optical gap [110, 111]. In our simulation, we have

computed the DC conductivity for a given temperature by shifting the Fermi level

from its intrinsic position towards the conduction band edge as well as towards the

valence band edge towards the mobility edge in steps of 0.1eV. This procedure allows

us to scan the whole optical gap and compute conductivity for different doping levels
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of n-type as well as p-type. The schematic representation of this process is shown in

Fig. 5.5.

Figure 5.5: Schematic representation to show how the doping is performed in our simulation,
where α is an integer. The activation energy, Ea is given by Ea = EC − EF or EF − EV .

The computed DC conductivity for different temperatures as a function of

chemical potential is shown in Fig. 5.6. As the Fermi energy shifts toward either

the valence or conduction band from mid gap the DC conductivity increases. As

the Fermi level gets closer to the mobility edge the conductivity becomes metallic

with higher conductivity. At higher temperature, since the optical gap is almost zero,

shifting the Fermi level (dopping as n-type or p-type) doesn’t yield any significant

change on the conductivity.

In the same way as we analyzed the aSi64 in the previous section, we have

started our analysis of aSi61H10 by computing its electronic properties by calculating
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Figure 5.6: DC conductivity of aSi64 model averaged over 500 configurations computed at
different temperatures versus chemical potential. The ∗ on each curve show the Fermi level
before doping. The solid line is guide to the eye.

the inverse participation ratio. In Fig. 5.7, we have shown the IPR of aSi61H10 for

different temperatures. As can be seen from the figure, the optical gap decreases with

increasing the temperature which is attributed to phonon induced delocalization.

For the case of aSi61H10, increasing the temperature doesn’t close the gap

as fast as what we observed in the case of aSi64. This might be attributed to the

fact the H atoms are highly diffusive at a higher temperature and thereby introducing

structural defects and hence keeps some of the states localized.

The DC conductivity of aSi61H10 as a function of temperature is shown in

Fig. 5.8 with comparison from experimental results from Beyer et al. [112]. As we can

see from Fig. 5.7, increase in the temperature of the system enhances delocalization
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of the states and eventually eliminating the optical gap to change the property of the

material from semi-conductor to metal. In this case, the DC conductivity changes

from 0.54 × 10−10 Ω−1cm−1 for T=200K to 0.83 × 102 Ω−1cm−1 for T= 1000K. The

conductivity at T=1000K is less than of a-Si at the same temperature for the reason

mentioned above.

For low T, we have obtained Ea ∼ 0.31 eV and σo ∼ 5 Ω−1cm−1. For high

T, Ea ∼ 0.36 eV and σo ∼ 5 × 103 Ω−1cm−1. These results are in a reasonable

agreement with the experimental results of Kakalios et al. [113]. By using doped

a-Si:H, Kakalios et al. showed that for low T, the Ea ranges from 0.16 to 0.21 eV

with σo ∼ (5 − 10) Ω−1cm−1.
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different temperatures. The solid symbols are from our work, open symbols are from ex-
periment Ref. [112]. The solid line is guide to the eye.

The computed DC conductivity for different temperatures as a function of

chemical potential is shown in Fig. 5.9. As in the case of aSi64, the DC conductivity

increases as the Fermi energy shifts toward either the valence or conduction band

from mid gap. At higher temperature, since the optical gap is almost zero, shifting

the Fermi level (dopping as n-type or p-type) doesn’t yield any significant change on

the conductivity.

One other important feature of amorphous materials is there is a relationship

between the pre-exponential factor σo and the activation energy Ea, called the Meyer-

Neldel rule which has exponential form as
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σo = σooe
Ea/EMNR (5.11)

By performing a linear fit on the DC conductivity results, we identified the intercept

at (1/T ) = 0 to σo and the slope to the activation energy Ea. There are number of ex-

perimental results on a-Si:H which show this exponential behavior with EMNR=0.067

eV [114, 115]. By plotting σ as a function of 1/T for various dopants (n-type as well

as p-type) we extracted σo and Ea for aSi61H10 and the results are shown in Fig. 5.10.

Our result show exponential behavior of σo as a function of the Ea, Meyer-Neldel rule,

with EMNR= 0.060 eV.
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The other fundamental characteristic of aSi:H is its high temperature coeffi-

cient of resistance, which makes it a candidate for uncooled microbolometer applica-

tions. The temperature coefficient of resistance (TCR) is defined as

TCR =
1

ρo

ρ − ρo

T − To

(5.12)

where ρ is a resistivity at any given temperature T and ρo is a resistivity at a reference

temperature To (usually room temperature). The computed result of TCR with a

definition of Eq. 5.12 using To = 300K for aSi61H10 is shown in Fig. 5.11. The

experimental result of TCR near room temperature in a-Si:H is −2.7%K−1 [116].

Our result show a TCR value of ∼ −2.0%K−1 at T = 350K which is in a good

agreement with the experiment. Close to To the value of TCR is very sensitive to



117

temperature and has a wide range of values −(2.0 − 5.0)%K−1. The fundamental

question of why these materials show such a high TCR will be the focus of future

study.
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Figure 5.11: The temperature coefficient of resistance (TCR) for aSi61H10 as a function of
temperature.

In conclusion, we have presented a study of transport in amorphous materi-

als. We used Kubo-Greenwood formula for computing the DC conductivity of aSi64

and aSi61H10 for different temperatures. We have also presented the effect of doping

on the DC conductivity. As the Ef level gets close to either the conduction edge or

valence edge we observe an increase in the DC conductivity. Once the Ef exceeds the

“mobility edge” we observe a weak temperature dependence on the DC conductiv-

ity. Though it requires further investigation (by using various dopants in aSi64 and
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aSi61H10 ), we observe the Meyer Neldel rule with exponential behavior for the pre-

exponential factor σo. The computed result for TCR is in a very good agreement with

the experiment. Further study of this method involves using a richer basis set and full

k-point sampling in the Brillouin zone. Further, the statistical aspects (convergence

of the conductivity with respect to length of MD simulation and temperature) will

be explored.
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Chapter 6

Conclusion
In this work, a study of light induced effect using a simple implementation of

light excitation, a study of atomic diffusion mechanisms, and a study of carrier trans-

port by computing the DC conductivity of amorphous semiconductors are presented.

Using a direct ab-initio calculation of network dynamics and diffusion both

for the electronic ground state and light-excited state for a-Si:H this work able to

address the light induced effect. Consistent with recent NMR experiments, in the

light-excited state, there is an enhanced hydrogen diffusion and formation of new

silicon dihydride configurations. For the first time, this work shows the detailed

dynamic pathways that arise from light-induced occupation changes, and provides one

explicit example of defect creation and paired H formation. The enhanced structural

change observed in the simulated light excited state is attributed to the local heating

where the strong electron phonon coupling of a localized state locally increases the

kinetic energy of atoms near the vicinity of the site where the state is localized. In

addition, by extending the study to understand the diffusion mechanism of hydrogen

in a-Si:H, it is observed that H emission is stimulated by Si motion, and the FBCD

mechanism is shown to be important both for stripping off H chemically bonded to

Si (thus creating “free” atomic H), and of course for creating Si dangling bonds.
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An ab initio study of a-Si1−xGex:H alloys for five different Ge atomic com-

positions is also presented. Where (a) a composition independent bond length, a

modest, possibly statistically insignificant change in the total coordination, and total

bond angle distribution, and (b) the emergence of geometrically strained structures

and coordination defects as the Ge content increases. The electronic density of states

shows an associated increase in band-tail state and gap states. This illustrates the

process of ”band gap engineering” with a clear illustration of how the gap closes (and

with which states contributing) in the a-Si1−xGex:H alloy.

A simulation of the dynamics of the localized states in the presence of ther-

mal disorder by integrating the time dependent Kohn-Sham equation and density

functional Hamiltonian is presented. A rapid diffusion of the localized state to the

extended state in a very short time step is observed. This diffusion is explained to be

due to quantum mechanical mixing when another states gets close in energy to the

state that is being tracked.

In the study of transport in amorphous materials, Kubo-Greenwood formula

is used for computing the DC conductivity of aSi64 and aSi61H10 for different tem-

peratures. The results from this method are in good agreement with the experiment.

The effect of doping on the DC conductivity for both materials is also presented.

As the Ef level gets close to either the conduction edge or valence edge an increase

in the DC conductivity is observed. Once Ef exceeds the “mobility edge” a weak

temperature dependence on the DC conductivity is observed.
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Appendix A

In this section we present codes that we developed and used in SIESTA

code for solving time dependent Kohn-Sham equation and for computing the DC

conductivity using the Kubo-Greenwood formula. NOTE: Test the codes before doing

any important calculations. The user should be aware of parameters which change

with the number of atoms and basis set and change them accordingly.

A.1 Codes

A.1.1 Time Dependent Kohn-Sham

c
c Subroutine to solve the time dependent Kohn-Sham
c equation using a Crank-Nicolson scheme
c
c T. A. Abtew and D. A. Drabold
c
c

subroutine timeevol(no,Haux,Saux,rpsi,ipsi,dt,istep1)
c
c

implicit none
c
c

integer no,istep1,dimen,invidet
integer mdsteps

c
parameter(dimen = 254, mdsteps = 2000)
parameter(invidet = 01)

c
real*8 Haux(dimen,dimen), Saux(dimen,dimen)
real*8 dt, sumnormal
real*8 HS(dimen,dimen)
real*8 HSL(dimen,dimen), Sauxinvsqr(dimen,dimen)
real*8 rpsi(dimen,dimen), ipsi(dimen,dimen)
complex*16 cpsi(dimen,dimen), newh(dimen,dimen)
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complex*16 cpsic(dimen,dimen), newh2(dimen,dimen)
complex*16 cpsio(dimen,dimen), cpsin(dimen,dimen)

c
save cpsi,cpsic,cpsio

c
c --------------------------------------
c

integer nsiatom, orbSi
integer nhatom, orbH, nat

c
parameter(nsiatom = 61, orbSi = 4)
parameter(nhatom = 10, orbH = 1)

c
c

real*8 h(dimen,dimen), ss(dimen,dimen)
real*8 sso(dimen,dimen), sssqrt(dimen,dimen)
real*8 qsite(300,dimen)
real*8 qsiteav(300,dimen),qsiteavp(300,dimen)
complex*16 qq(dimen, dimen),qqp(dimen, dimen)

c
c

complex*16 qq1(dimen, dimen),qq2(dimen, dimen)
complex*16 qq3(dimen, dimen),qq4(dimen, dimen)
real*8 qsite1(300,dimen), qsite2(300,dimen)
real*8 qsite3(300,dimen), qsite4(300,dimen)

c
integer ii, jj, kk, ll, mu, nu, nm, ipp,kk1
real*8 sumc, sumch,sumcp
complex*16 sum,sump

c
integer unit, unit1, unit2, unit3, unit4
complex*16 sum1, sum2, sum3, sum4
real*8 sumc1, sumch1, spect1
real*8 sumc2, sumch2, spect2
real*8 sumc3, sumch3, spect3
real*8 sumc4, sumch4, spect4

c
integer homom5, homom3, homom2, homom1, homo
integer lumo, lumop1, lumop2, lumop5

c
logical

. frstmd
c
c
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save frstmd
data frstmd /.true./

c
c

integer lda,ldwork,mm,nn,natom
parameter(mm = 254, nn = 254, natom = 71)
parameter(lda = mm)
parameter(ldwork = nn)

c
complex*16 A(lda,nn),workd(ldwork)
real*8 rcond
complex*16 det(4)
integer info,ipivot(nn)

c
external zgefa,zgedi
external dgetrf,dgetri
external dgemm

integer i,j,k,t,job,orb_sin,r,l,m,s
c

integer io1,iu1,ie1,ia1
integer ib1,ic1,id1,ig1
real*8 eye(dimen,dimen)
complex*16 iImag, DD(dimen,dimen)
complex*16 B(dimen,dimen), D(dimen,dimen)
complex*16 F(dimen,dimen)

c

complex*16 DDD(dimen,dimen)
complex*16 aa(dimen), bb(dimen)
complex*16 aac(dimen), bbc(dimen)
complex*16 c(dimen), g(dimen), q(dimen)
complex*16 cc(dimen),fc(dimen),gc(dimen), qc(dimen)

c
real*8 ccc

c
real rhoc(natom)
real rhocpercent(natom,dimen)
save rhocpercent

c
real rho_av(natom,dimen)
real*8 ipr_av(dimen)

c
complex*16 cii(dimen)
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complex*16 ci(dimen),fi(dimen),gi(dimen),qi(dimen)
complex*16 ri(dimen)
save ci,fi,gi,qi,ri

c
real sumipr11, sumipr11nn
real sumiprd11

c
real sumipr11n(dimen),sumipr11np(dimen)
save sumipr11n,sumipr11np

c
complex*16 sumipr1, sumipr2, sumipr3, sumipr4
complex*16 sumipr5, sumipr6
complex*16 sumipr1c, sumipr2c, sumipr3c, sumipr4c
complex*16 sumipr5c, sumipr6c
real rho1,rho2,rho3,rho4,rho5,rho6
real*8 alpha,beta

c
real*8 normal
real*8 tau, h_bar
character*1 jobz,uplo
h_bar = 0.65822d0
nat = nsiatom * orbSi + nhatom * orbH

c
c
c if (istep1 .eq. 1) then

do i = 1, dimen
do j = 1, dimen

ss(i,j) = Saux(i,j)
end do

end do
c end if
c

iImag = (0.d0,1.d0)
c
c
c if (istep1 .eq. 1) then

do i = 1, dimen
do j = 1, dimen

cpsi(i,j) = 0.d0
end do

end do
c
c

do i = 1, dimen
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do j = 1, dimen
cpsi(i,j) = (rpsi(i,j) + iImag*ipsi(i,j))
cpsio(i,j) = (rpsi(i,j) + iImag*ipsi(i,j))

end do
end do

c
c

do i = 1, dimen
do j = 1, dimen

cpsic(i,j) = cpsi(i,j)
end do

end do
c
c

call sqrtmatrix(ss, dimen, sssqrt)
c

do i = 1, dimen
do j = 1, dimen

cpsin(i,j) = 0.d0
do k = 1, dimen

cpsin(i,j) = cpsin(i,j) + sssqrt(i,k)*cpsi(k,j)
end do

end do
end do

c
c added Nov 21. 2005
c
c end if

c
homom5 = (dimen/2)-5
homom3 = (dimen/2)-3
homom2 = (dimen/2)-2
homom1 = (dimen/2)-1
homo = (dimen/2)
lumo = (dimen/2)+1
lumop1 = (dimen/2)+2
lumop2 = (dimen/2)+3
lumop5 = (dimen/2)+5

c
c ------------------------------------------------------------------------
c

do i = 1, dimen
do j = 1, dimen
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eye(i,j) = 0.d0
HS(i,j) = 0.d0
HSL(i,j) = 0.d0

end do
end do

c
c ------------------------------------------------------------------------
c

do i = 1, dimen
do j = 1, dimen

A(i,j) = 0.d0
B(i,j) = 0.d0
D(i,j) = 0.d0
DD(i,j) = 0.d0
newh(i,j) = 0.d0

end do
end do

c
c ------------------------------------------------------------------------

do i = 1, dimen
eye(i,i) = (1.d0,0.d0)

end do
c ------------------------------------------------------------------------

iImag = (0.d0,1.d0)
c ------------------------------------------------------------------------
c

call dgetrf(mm, nn, Saux, lda, ipivot,info)
call dgetri(nn, Saux, lda, ipivot, workd, ldwork,info)

c
call sqrtmatrix(Saux, dimen, Sauxinvsqr)

c
c -----------------------------------------------------------------------
c

do i = 1, dimen
do j = 1, dimen

HSL(i,j) = 0.d0
do k = 1, dimen

HSL(i,j) = HSL(i,j) + Haux(i,k)*Sauxinvsqr(k,j)
end do

end do
end do

c
c

do i = 1, dimen
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do j = 1, dimen
HS(i,j) = 0.d0
do k = 1, dimen

HS(i,j) = HS(i,j) + Sauxinvsqr(i,k)*HSL(k,j)
end do

end do
end do

c
c

do i = 1, dimen
do j = 1, dimen

A(i,j) = eye(i,j) + iImag*0.5d0*(dt/h_bar)*HS(i,j)
B(i,j) = eye(i,j) - iImag*0.5d0*(dt/h_bar)*HS(i,j)

end do
end do

c
job = invidet
call zgefa(A,lda,nn,ipivot,info)
call zgedi(A,lda,nn,ipivot,det,workd,job)

c
c

do i = 1, dimen
do j = 1, dimen

F(i,j) = (0.d0,0.d0)
do k = 1, dimen

F(i,j) = F(i,j) + A(i,k)*B(k,j)
end do

end do
end do

c
c

do i = 1, dimen
do j = 1, dimen

D(i,j) = (0.d0,0.d0)
do k = 1, dimen

D(i,j) = D(i,j) + Sauxinvsqr(i,k)*F(k,j)
end do

end do
end do

c
c ------------------------------------------------------------------------

do i = 1, dimen
do j = 1, dimen

newh(i,j) = (0.d0,0.d0)
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do k = 1, dimen
newh(i,j) = newh(i,j) + D(i,k)*cpsin(k,j)

end do
end do

end do
c
cc

c -----------------------------------------------------------------------
10 continue

nm=nat
do ii = 1, nm

do mu = 1, nm
qq(mu,ii) = 0.0d0
qqp(mu,ii) = 0.0d0

c
do nu=1,nm

qq(mu,ii) = qq(mu,ii) +
. (cpsi(mu,ii))*ss(mu,nu)*conjg(cpsi(nu,ii))

end do
end do

end do
C Compute IPR for all energy points
C ( Including Si and H atoms)

if (istep1 .eq. 1) then
do ii = 1, nm

sumipr11n(ii) = 0.0d0
end do

c
do ii = 1, natom

do jj = 1, nm
qsiteav(ii,jj) = 0.0d0

end do
end do

c
end if

c
ipp = orbSi * nsiatom
do ii = 1,nm

c calculate IPR from Si sites
sumc=0.0
do jj = 1, nsiatom
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sum=0.0
sump=0.0
ll = jj*orbSi
do kk = (ll-orbSi+1), ll

sum = sum + qq(kk,ii)
end do
qsiteav(jj,ii) = qsiteav(jj,ii) + abs(sum)
sumc= sumc+ sum*conjg(sum)

end do

c
c Now add IPR from H sites (if there is any)

if (nhatom .ne. 0) then
do jj = 1, nhatom

sum=0.0
ll = (jj-1)*orbH + 1 + ipp
do kk = ll, ll + (orbH-1)

sum = sum + qq(kk,ii)
end do
qsiteav(jj+nSiatom,ii) = qsiteav(jj+nSiatom,ii) +

. abs(sum)
sumc= sumc+ sum*conjg(sum)

end do
end if

c
sumipr11n(ii) = sumipr11n(ii) + sumc
if ((ii .ge. homom3).and.(ii .le. lumop2)) then

unit = 300 + ii
write(unit,*) ii, sumc

end if
end do

c
c

if (istep1 .eq. 1) then
do j = 1, dimen

do i = 1, natom
rho_av(i,j) = (qsiteav(i,j)/(1.d0*istep1))*100
write(41,*) j, i, rho_av(i,j)

end do
end do

end if
if (istep1 .eq. mdsteps) then

do j = 1, dimen
ipr_av(j) = sumipr11n(j)/(1.d0*istep1)
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write(42,*) istep1, j, ipr_av(j)
end do

c
do j = 1, dimen

do i = 1, natom
rho_av(i,j) = (qsiteav(i,j)/(1.d0*mdsteps))*100
write(43,*) j, i, rho_av(i,j)

end do
end do

end if

c
do i = 1, dimen

do j = 1, dimen
cpsi(i,j) = newh(i,j)

end do
end do

c
do i = 1, dimen

do j = 1, dimen
rpsi(i,j) = real(cpsin(i,j))
ipsi(i,j) = imag(cpsin(i,j))

end do
end do

c
return

end

A.1.2 Conductivity: Kubo-Greenwood formula

cc
c Subroutine to calculate the DC conductivity using
c the Kubo-Greenwood formula in X representation.
c T. Abtew and D. A. Drabold, Nov. 15 2006
c

subroutine conductivity(nspin,eo,no,maxo,maxspn,nk,
. Xaux, Yaux, Zaux,
. temp,tempion,ef,rpsi,istep1)

c
c use precision
c use sys
c use parallel
c use writewave
c#ifdef MPI
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c use mpi_siesta
c#endif
c

implicit none
c
c#ifdef MPI
c integer
c . MPIerror
c#endif
c

integer mbin, Emax, Emin, ii, nn, mm, istep1, maxcond
integer i, j, dop, homo, lumo, nspin, jj, kk, ll
integer orbSi, orbH, nsiatom, nhatom, ipp, mu, nu
integer maxo, maxspn, nk, no

c
parameter(mbin=501)

c
double precision

. kB,temp,tempn,tempion,beta,eV,const,const_delta,dE, sig, pi,

. EE, cond_E(mbin), diff_EmEn, diff_EnEE, diff_EmEE,

. delta_EnEE, delta_EmEE, cond_T, diff_EEf, diff_EfEo,

. fermifun, ef, EEf, EEf_f, EEo, ani_amj, hbar,

. Xmatrix, Ymatrix, Zmatrix, sum, sum2,

. Xmatrix_r(no),Ymatrix_r(no),Zmatrix_r(no),

. Xaux(no,no), Yaux(no,no), Zaux(no,no),ppp,

. eo(maxo,nspin), rpsi(no,no),xx(no,no),

. EEf_a, EEf_d, lx, const1, const2,cond_Tfir,cond_Tsec,

. der_fermi_num, der_fermi_den, der_fermi
character*12 state

c
kB = 8.617339d-5
hbar = 1.05459d-34
pi = 3.14159265
lx = 10.854d-8

c
beta = 1.0/(kB*tempion)
eV = 13.60580
sig = 0.05
ee = 1.6d-19
const1 = (pi*ee**2)/((lx**3)*(hbar))

c 1Bohr=0.53A --> (1Bohr)**2=2.798d-17
const2 = (0.53d-8)**2
const = const1*const2
const_delta = 1.0/(sig*sqrt(pi))
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c
Emax = 10
Emin = -10
dE = (Emax-Emin)/float(mbin-1)
diff_EfEo = 0.1
EEf = ef*eV

c
do nn = 1, no

do mm = 1, no
xx(nn,mm) = 0.0d0
do i = 1,no

do j = 1, no
xx(nn,mm) = xx(nn,mm) +

. abs(rpsi(nn,i)*Xaux(i,j)*rpsi(mm,j))
end do

end do
end do

end do
c

do ii = 1, mbin
EE = Emin + dE*float(ii-1)
cond_E(ii) = 0.d0

do nn = 1, no
diff_EnEE = ( (eo(nn,1)*eV) - EE )**2

delta_EnEE = const_delta*exp(-1.0*diff_EnEE/(sig*sig))
do mm = 1, no

diff_EmEn = ( (eo(mm,1)*eV) - (eo(nn,1)*eV) )**2
diff_EmEE = ( (eo(mm,1)*eV) - EE )**2
delta_EnEE = const_delta*exp(-1.0*diff_EnEE/(sig*sig))
delta_EmEE = const_delta*exp(-1.0*diff_EmEE/(sig*sig))

c
cond_E(ii) = cond_E(ii) + (diff_EmEn)*

. (xx(nn,mm)**2)*delta_EnEE*delta_EmEE

end do
end do

end do
c

EEf_a = EEf
EEf_d = EEf
do dop = 1, 30

if (dop .eq. 1) then
state = ’neutral’
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elseif (dop .le. 16 .and. dop .ne. 1) then
state = ’acceptors’
EEf_a = (EEf_a - diff_EfEo)

elseif (dop .gt. 16) then
state = ’donors’
EEf_d = (EEf_d + diff_EfEo)

end if

cond_T = 0.d0
cond_Tfir = 0.d0
cond_Tsec = 0.d0
do ii = 1, mbin

EE = Emin + dE*float(ii-1)
c

if (dop .eq. 1) then
diff_EEf = EE - EEf

elseif (dop .le. 16 .and. dop .ne. 1) then
diff_EEf = EE - EEf_a

elseif (dop .gt. 16) then
diff_EEf = EE - EEf_d

end if
c

der_fermi_num = beta*exp(beta*diff_EEf)
der_fermi_den = (1.0 + exp(beta*diff_EEf))**2
der_fermi = (der_fermi_num)/(der_fermi_den)

c
if (ii .eq. 1) then

cond_Tfir = 0.5*dE*const*der_fermi*cond_E(1)
elseif (ii .gt. 1 .or. ii .lt. mbin) then

cond_T = cond_T + const*der_fermi*cond_E(ii)*dE
else

cond_Tsec = 0.5*dE*const*der_fermi*cond_E(mbin)
end if

cond_T = cond_Tfir + cond_Tsec + cond_T
cond_Tfir = 0.d0
cond_Tsec = 0.d0

c
end do
if (dop .eq. 1) then

write(44,111) istep1, state, EEf, cond_T
elseif (dop .le. 16 .and. dop .ne. 1) then

write(44,111) istep1, state, EEf_a, cond_T
elseif (dop .gt. 16) then

write(44,111) istep1, state, EEf_d, cond_T



144

end if
end do

c
110 format(2(E16.8E3,2x))
111 format(i8,4x,a12,2x,2(E16.8E3,4x))
c

end


		2007-03-19T13:52:55-0400
	ETD Program
	I am approving this document




