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Traditionally, there is no scheme for modeling continuous random network (CRN) con-

figurations of amorphous silicon (a-Si) that was not based upon the use of inter-atomic potentials,

and molecular dynamics or Monte Carlo. Such schemes are known as forward modeling schemes.

In this dissertation, we demonstrate how a reverse modeling scheme, known as reverse Monte Carlo

(RMC), which employs information from experiments and appropriate a priori network topology

constraints, can be used to model realistic atomistic configurations of a-Si without necessarily using

inter-atomic potentials. The RMC approach is flexible and we have used it to form new models of

a-Si that are consistent with fluctuation electron microscopy (FEM) experiments (which measures

the amount of medium range order in a material), which the conventional CRN model of a-Si fail

to satisfy.

Defects in covalent materials display a host novel properties and fully understanding their

behavior is important from a fundamental and technological point of view. We systematically stud-

ied the localization of dangling bond defect electron states in silicon by performing ab initio static

lattice calculations. Using defected models of amorphous and crystalline silicon, and a localized

basis density functional Hamiltonian, we studied the dependence of wave function and spin local-

ization on exchange-correlation functionals and localized basis sets. We observed that the minimal

basis set tends to overestimate measures of localization, and we came to the conclusion that to ac-

curately represent of the localization dangling bond defect electron states, a larger basis set is nec-



essary. Then, we added thermal disorder to the underlying topological disorder of the lattice and,

assuming the harmonic approximation, showed that the electron-phonon coupling is large for local-

ized defect electron states. We deduced analytic expressions connecting a static property, that is,

wave function localization [gauged by the inverse participation ratio (IPR)] and a dynamic property,

that is, mean square thermal fluctuations of the electronic eigenvalues, for localized electron states.

In particular, both the variance of the electronic eigenvalues and the square of the electron-phonon

coupling are linearly related to the IPR of the localized states. We verified this from first principles

thermal molecular dynamics simulations.
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Chapter 1

Introduction

Understanding the properties of disordered or amorphous systems is one of the major

challenges in condensed matter physics. Amorphous semiconductors in general and amorphous

silicon (a-Si) in particular have vast existing and promising future applications as electronic devices

and large area flat displays. Today, the photostructural properties of the chalcogenide glass GeSbTe

is used in CD and DVD technology. Amorphous silica a-SiO , major dielectric material in electronic

circuits, is also used in fiber optic cables [1].

According to the US Department of Energy forecasts, domestic use of energy will grow

by about 25% in the year 2025. Oil, no longer cheap, may soon decline in availability. One of the

several adverse effects of the process of oil consumption is the massive emissions of carbon dioxide,

which is primarily responsible for global warming. It is therefore imperative to generate alternative

sources of energy, particularly energy from renewable sources like water, wind, sunlight, and heat

from the ground to supplement the increasing energy demand by an increasing population and also

by industries [2].
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So what role can amorphous silicon play to alleviate this energy crisis? First of all, silicon

is a major material for manufacturing photo-voltaic solar devices. Typical example of these devices

are wrist watches, calculators, and solar cell panels. For solar cell panels, a-Si is preferred over

crystalline silicon (c-Si) because it absorbs solar radiation more efficiently and so only thin films

(and therefore a relatively small amount) are needed. Also, there is an economic advantage for using

a-Si because of the low cost of production and its deposition on inexpensive substrates. However,

as promising as this may sound, there are some major hurdles that need to be cleared. The bad news

is that prolonged exposure of a-Si to light degrades the material, and hence the performance of the

solar cells, because of the creation of defects. The creation of defects in amorphous silicon upon

exposure to light is known as the Staebler-Wronski effect [3]. Defects degrade the performance of

devices as they act as centers for electron-hole recombination and thereby limit the flow of current.

This is one of the several reasons why we have to understand defects in amorphous silicon. Most

semiconductors, be it amorphous or crystalline, have some form of defect. There are several kinds

of defects and the study of defects in semiconductors is a broad field.

1.1 Atomic Ordering

The nature of atomic arrangements in a material characterizes the type of order possessed

by the material. In solids and liquids, atomic ordering may be short, medium, or long. Short

range order (SRO) describes the order that involves atoms and their first nearest neighbors. Typical

examples of SRO parameters are atomic bond lengths and bond angles which involve two and three

atoms respectively. Medium range order (MRO) describes atomic order beyond the first nearest

neighbor shell. MRO corresponds to the 5-20 Å length scale. The concept of MRO in a network
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is not easily defined. Here, we give some examples using the definition by Elliott [4]. Elliott [4]

categorizes MRO into 3 groups: short MRO (SMRO) which typically spans a length scale of 5

Å, intermediate MRO (IMRO) which corresponds a length scale of 5-10 Å, and long range MRO

(LRMRO) which corresponds to 10-20 Å length scale. An example of SMRO parameter is the

dihedral angle which involves 4 atoms1. An example of IMRO parameters in a network is the

presence of ‘super-structural’ units (consisting of several basic SRO units). Such structural units

may be clusters of atoms or rings2 of particular shapes and sizes, which occur in a considerably

higher proportion than would be expected on a purely random basis. Finally, long range order

(LRO) defines order on an infinitely long length scale. Only crystals possess such an order.

1.2 Structure of Amorphous Materials

Amorphous materials do not possess LRO and consequently lack the periodicity charac-

teristic of a crystal. The absence of LRO or periodicity in amorphous materials has been proved in

diffraction experiments [5]. In X-ray diffraction experiments for amorphous solids, broad diffuse

halos are observed instead of the periodic array of sharp Bragg spots or rings produced by a sin-

gle crystal or polycrystalline material [4]. Hence, the structure of crystals can be unambiguously

defined using a unit cell and a set of symmetry operations. The structure of amorphous materials

cannot be described this way [1]. Nevertheless, to say that amorphous materials have no well-

defined structural order would be incorrect. Even though amorphous materials do not possess LRO,

To define the dihedral angle, consider 4 atoms such that A is bonded to B, B is bonded to C, C is
bonded to D, and A is not bonded to D. The dihedral angle is defined as the angle between the plane passing through the
atoms A,B,C and the plane passing through the atoms B,C,D.
An -fold ring is the shortest closed path of atomic bonds involving n-atoms. The closed path begins on a particular

atom and ends on the same atom.
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they have an appreciable amount of SRO and to some degree an amount of MRO, which is quite

controversial and a subject of intense investigation.

Disorder in real materials is manifested in different forms. These include topological

or geometric disorder, magnetic disorder, and compositional disorder. Topological disorder is a

direct consequence of lack of LRO or absence of translational periodicity. In this work, we will

consider topologically disordered networks of amorphous silicon. To interpret experiments, the

theorist must make models whose properties agree with experiments. The theorist can further use

the models to make predictions that are not yet realized in experiments. One successful and widely

used theoretical model for topologically disordered networks is the continuous random network

(CRN) model proposed by Zachariasen [6] in 1932. The CRN model has the simplicity that each of

the atoms should satisfy its local bonding requirements and should have as small strain as possible

in the network, which is generally characterized by having a narrow bond angle as well as bond

length distribution. For a-Si in particular, the CRN model should satisfy the following conditions:

1. LRO should be absent from the network.

2. Every atom should be fully coordinated3 to meet its ideal bonding requirements. For cova-

lently bonded materials, the general rule for determining coordination is Mott’s rule [7],

where is number of valence electrons. This translates to coordination number of 4 for Si.

3. Disorder should be uniform in the network. In particular, ordered crystalline zones and voids

should be absent.

The structural modeling of tetrahedral amorphous semiconductors appears to be quite difficult. The

first CRN model of a-Si was hand-built using balls and sticks [8]. This process was quite cumber-

The coordination number of atom is the number of atoms it is bonded to.
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some and time-consuming. Since 1976, CRN models were built via computers. The first computer

CRN model was generated by Guttman [9]. From then on, models were designed using computers,

and enormous progress has been made in that direction. CRN models have successfully described

the electronic and structural properties realized in experiments. We will discuss the computer mod-

eling methods for the continuous random network in Chapter 3.

In Fig. 1.1, we show pictures of a 1000-atom CRN model of amorphous silicon (top pic-

ture) and a 1000-atom model crystalline silicon (bottom picture). The LRO absent in the amorphous

matrix is obvious. At zero temperature, the bond length distribution of the crystal is idealized to be

a Dirac delta function centered on its length whereas the distribution for the CRN would be much

broader. It can clearly be seen that the variations in the bond lengths and bond angles in the CRN

results in the lack of order over long range distances.

1.3 Mathematical Description of Structural Properties

Several important properties of amorphous materials are determined by the structure of

the material on the microscopic level. Mathematically, the structural properties can be described in

real space and reciprocal space. As stated earlier, the structure of crystals can be uniquely defined

using a unit cell and its periodicity. The structure of amorphous materials cannot be described this

way because of the random variations in its structure. Rather, statistical analysis is used to describe

their structural properties. The analysis are performed using atomic distribution functions [1]. We

briefly discuss below, the distributions of structural properties that are frequently used to charac-

terize disordered systems. For the derivations of the associated formulas, the reader may refer to

Ref. [10].



19

Figure 1.1: Top: topological disorder exhibited by a 1000-atom model of amorphous silicon. Bot-
tom: LRO and periodicity exhibited by a 1000-atom model of diamond crystalline silicon.
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1.3.1 Real Space

One of the most important and simplest real space distributions is the pair correlation

function (PCF). PCF measures the probability of finding an atom at position relative to an atom

located at the origin [10]. It is written as

(1.1)

where is the average number density. Physically, PCF is the simplest atomic distribution function

that tells us how, on the average, atoms are distributed around each other. If we assume that a

disordered system is isotropic, then we can integrate out the angular dependence and to obtain

a purely radially dependent function called the radial distribution function (RDF). The RDF is

given by [10]

(1.2)

where . It follows that the distribution

(1.3)

is the probability of atoms that are at a distance from each other [4]. It can clearly be observed

that grows as the surface area of the sphere. The total number of atoms in a spherical shell

beginning at and ending at is given by

(1.4)

(and subsequently ) cannot be measured directly from experiment. They are obtained

indirectly from the Fourier transform of the static structure factor which is obtained experimentally

from X-ray diffraction, neutron diffraction or electron diffraction. We will briefly discuss the static

structure factor in the next subsection.
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In Fig. 1.2 we show the RDF of amorphous and crystalline silicon. The RDF of the

crystalline structure, shown in the bottom figure, has well-defined sharp peaks corresponding to the

atomic coordination shells. For the crystal, the value of the inter-atomic separation at the n

peak is the n nearest neighbor distance. In the top figure, we show the RDF of amorphous silicon

obtained from X-ray diffraction experiments using ion implantation [11]. As increases beyond the

first shell, the peaks broaden and ultimately vanish at around Å. This makes the extraction

of information about MRO particularly difficult. In short, the RDF gives us rich information about

SRO but not MRO. The first peak in RDF in each figure is sparse sampling of the bond length

distribution. Other important material properties that can be directly computed from real space

as far as theoretical models are concerned are the distribution of bond angles, the distribution of

dihedral angles, and the distribution of rings.

1.3.2 Reciprocal Space

Experimentally, some of the properties of amorphous silicon can be measured using

diffraction techniques like X-ray, neutron, and electron scattering. For more information on the

experimental techniques, the reader may refer to Ref. [4]. The most widely measured experimental

quantity in reciprocal space is the static structure factor (SSF). The SSF, which gives information

about the scattering properties and internal arrangement of a material, is defined as [4]

(1.5)

where is the scattering vector. Again, if we assume that amorphous materials are isotropic i.e.,

is independent of the direction of the scattering vector but depends only on its magnitude ,
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Figure 1.2: Top: RDF of amorphous silicon obtained via Fourier transform of experimental static
structure factor data due to Laaziri and co-workers [11]. Bottom: RDF of computer generated model
crystalline silicon. The distribution in the region are artifacts of the data analysis.
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then it can be shown that

(1.6)

To extract the RDF, from the experimentally measured , one inverts equation 1.6:

(1.7)

We must mention that the RDF or the SSF are necessary but not sufficient to fully char-

acterize the information inherent to the structure of a material. In practice, one can come up with

many hypothetical (unrealistic models) that have RDF and SSF matching closely with experiments.

One always has to go a step further to probe the electronic and vibrational spectra of the model.

1.4 Vibrational Properties

Vibrational excitations in amorphous materials and crystals are quite important as they

determine the thermal properties of a material. Lattice vibrations occur in amorphous materials

just as in crystals. By exploiting the periodicity of the lattice, vibrational modes of a crystal are

well described using the Bloch wave vector. Dispersion relations are therefore used to express the

phonon frequencies in terms the wave-vector [13].

For amorphous systems, vibrational bands cannot be described this way since the wave

vector is no longer a good quantum number. However, the modes in amorphous systems are well

defined. The vibrational bands can be described using the vibrational density of states (VDOS). If

is the frequency of vibration, then is the number of modes in the interval ,

where denotes the VDOS. For a system with atoms, the VDOS is defined as

(1.8)
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where are the vibrational eigenvalues. Experimentally, the VDOS is measured using inelastic

neutron scattering and it is connected to the Raman spectroscopy, but they are different in detail as

the Raman spectrum involves transition matrix elements. The Raman spectra tells us a lot about the

scattering properties of a material and it has been used to experimentally estimate the width of the

bond angle distribution of a-Si [12].

The eigenstates of dynamical matrix are the vibrational modes. To compute , the

model is well relaxed structurally to obtain the ground state configuration. Next, the harmonic ap-

proximation to the inter-atomic potential is used to compute the dynamical matrix elements. To

construct a matrix element of , begin by first displacing a single atom by an infinitesimal dis-

placement along a coordinate direction and then compute the forces on all

atoms (including ) along a given direction . The dynamical matrix element between atoms

and having masses and respectively is the defined as [13, 14]

(1.9)

For a given atom, there are matrix elements, where N is the total number of atoms. This implies

that the dimension of is . The eigenvalues of are and there

are vibrational modes, each with dimension . If the inter-atomic forces are obtained from

direct diagonalization of a first principles Hamiltonian, then computing scales as since

the force computation scales as and the construction the matrix elements in equation 1.9

scales as . Therefore computing for large systems from first principles can be quite de-

manding. However, Ordejón et al. [15], and quite recently Biswas [14], have used the decay of the

dynamical matrix elements to develop first principles ( ) methods for computing . For forces
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derived from empirical and semi-empirical potentials, the dynamical matrix computation is far less

demanding.

In Fig. 1.3, we depict the experimental VDOS of polycrystalline silicon and amorphous

silicon obtained inelastic neutron scattering [16]. The top figure depicts the VDOS of a-Si which

is compared with a 216-atom CRN model (open circles). The VDOS of polycrystalline silicon,

shown in the lower figure, consists of well-defined sharp peaks and has marked discontinuities in

the first derivatives known as Van Hove singularities [17] due the the periodicity of the lattice.

For a-Si, the sharp peaks become broadened, smoothing out the singularities. However, there is a

significant overlap between the transverse acoustic and transverse optical peaks of the amorphous

and crystalline structure. This implies that the vibrational features of both crystalline and amorphous

materials depends to a large extent on SRO. The disorder in the amorphous network usually leads

to localized vibrational modes whereas crystalline vibrational modes are extended in real space.

1.5 Electronic Properties

Electrons in a crystal move in a periodic potential and their wave-functions are extended

Bloch states. The periodicity results in gaps in the well-defined electronic band structure. The band

structure tells us whether a crystal is a conductor or an insulator. In an amorphous network, the

absence of periodicity does not allow the wave-functions to be expressed in terms of Bloch waves

due to the fact that the translation operator does not commute with the Hamiltonian. However, the

eigenenergy of electron states is a good quantum number and the electronic density of states

(EDOS) remains a valid description of electronic eigenstates for both crystalline and amorphous

systems [4]. We define as the number of electrons in the energy interval ,
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Figure 1.3: (a) Experimental VDOS of a-Si (solid line with crosses) due to Kamitakahara et al. [16].
Open circles correspond computer generated 216-atom CRNmodel of a-Si. (b) VDOS for c-Si. The
picture was take from Ref. [16].
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where the EDOS, , is defined as

(1.10)

where is total number of occupied states, are the energy eigenvalues of the electronic

Hamiltonian, and is the number of atoms in the material. This implies that is the

total number of electrons per atom, where is the Fermi level. Structural disorder in the form of

topological irregularities and defects lead to spatially localized electron wave-functions in the tails

of the band gap and sometimes inside the band gap. Experimentally, the electronic spectrum can be

probed using photo-emission spectroscopy, electron spin resonance, and other techniques [4].

1.6 Defects

Many properties of amorphous and crystalline semiconductors can be controlled by de-

fects. These include magnetic, opto-electronic, vibrational and transport properties [4]. Unlike

crystals, the disordered nature of amorphous systems makes the concept of defect not a clearly

defined one. One can generally make ad hoc provisions to define a defect. Drabold [19] defines

a defect as departure from the typical disorder of an amorphous network. The most recognizable

defect in single component amorphous materials is a coordination defect. A coordination defect is

either under-coordination, i.e. an atom with a missing neighbor, or over-coordination, i.e. an atom

with more than enough neighbors. In binary glasses with stoichiometric compositions, defects may

exist in the form of homopolar bonds but they do not necessarily impact the optical gap.

In tetrahedral covalently bonded amorphous networks like a-Si, the predominant coordi-

nation defect is the under-coordination defect known as a dangling bond. A dangling bond defect

is an atom with three nearest neighbors instead of four or equivalently, a dangling bond state is a
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valence electron that cannot pair up with another electron to form a covalent bond. In a crystal,

the analogous defect is called a vacancy. To identify the dangling bond defect, one can analyze the

RDF.

It is well known that the dangling bond defect introduces states in the electronic band gap

(optical gap) whose wave-functions are spatially localized. Identifying defects using the electronic

spectrum is more reliable than just computing atomic coordination numbers. In the case of thermal

disorder, the EDOS will tell more about the nature of disorder that exists in the network. Other

structural irregularities in the network (e.g. bond angles far from the tetrahedral angle) can also lead

to exponential localized states in the tails of the gap even if coordination is perfect. This implies

that there is not a one-to-one correspondence between coordination defects and electronic defects

(localized gap and tail states to be precise). The presence of unpaired electrons spins detected in

electron spin resonance experiments, is the most informative measure of dangling bond defects and

possibly floating bonds.

So why study defects in semiconductors? Defects are responsible for many of the impor-

tant properties of semiconductors. For example, silicon would be useless for transistors and mi-

crochips without defects in the form of dopant impurities having shallow donor and acceptor energy

levels [18]. Defects exist naturally in crystalline and amorphous semiconductors alike, some desired

and some unwanted. To understand and optimize the performance of semiconductors, it is essential

to understand the behavior of defects in them [18]. The Staebler-Wronski effect (SWE) [3], i.e. the

creation of metastable dangling bond defect when a-Si:H is exposed to light, degrades the perfor-

mance of photo-voltaic devices made of a-Si:H. The atomistic origin of SWE is still not exactly

known. This is a challenge to experimentalists and theorists.
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1.7 Outline of the Dissertation

The outline of the dissertation is as follows. Chapter 2 reviews approximate first princi-

ples electronic structure methods with particular emphasis on the Kohn-Sham formalism of density

functional theory. In chapter 3, we first briefly examine existing computer modeling techniques

for generating periodic CRN supercell models of a-Si. Then, we devote the rest of the chapter to

the best modeling scheme for generating CRN models of a-Si, the WWW modeling method. The

structural, electronic, and vibrational properties of the WWW-generated CRN models are briefly

discussed and compared to experiments.

In chapter 4, we propose a new reverse Monte Carlo (RMC) approach to modeling a-Si.

Unlike old RMC techniques in which atomistic configuration are modeled using static structure fac-

tor data (obtained from X-ray and neutron diffraction experiments), resulting in unrealistic models,

we stress on the use of key topological constraints in addition to experimental data as a necessary

factor to generate realistic atomistic models.

A recent electron microscopy experiment known as fluctuation electron microscopy (FEM)

suggests that the conventional CRN model of silicon has little or no medium range atomic order.

To interpret FEM experiments, the para-crystalline (PC) model, which consists of nanometer-sized

crystalline grains embedded in a CRN was proposed. Besides satisfying FEM experiments, the PC

model has all the structural, vibrational, and electronic properties of amorphous silicon. In chapter

5, we use RMC and the WWW scheme to model new CRN models of silicon having experimental

FEM signature that is otherwise absent in the conventional model.

In chapter 6, we systematically perform calculations to examine the localization proper-

ties of dangling bond defect electron states in a realistic model of a-Si for a static (zero temperature)
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lattice. The calculations are performed using an ab initio DFT code SIESTA. We examine the depen-

dence of localization of wave-function and spin on exchange correlation functionals and localized

basis functions. Then, in chapter 7, thermal disorder (lattice motion) is added to the underlying topo-

logical disorder of the lattice to demonstrate that the electron-phonon coupling is large for localized

states. We also show within the harmonic approximation that a static property (wave-function lo-

calization) and a dynamic property (thermal fluctuations of the electronic eigenvalues) are linearly

related for eigenstates near the electronic band gap. Concluding remarks are presented in chapter 8.
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Chapter 2

Electronic Structure from First

Principles

A large fraction of the current problems in condensed matter physics would be solved if

the electronic structure of atoms, molecules, and compounds were to be exactly computed. This

amounts to solving the many-body problem in quantum mechanics to obtain the many-body wave-

function describing the system. Currently, obtaining such a solution is almost impossible. Practical

solution to the many-body problem relies on several approximations. In this chapter, we will review

practical approximate methods for computing ab initio1 or first principles electronic structure.

ab initio is a Latin phrase which translates as “from the beginning.”
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2.1 The Hamiltonian for Interacting Electrons and Nuclei

Consider a system with electrons and nuclei. The Hamiltonian (non-relativistic)

for the system is given by [20]:

(2.1)

where

(2.2)

is the kinetic energy operator for the electrons,

(2.3)

is the kinetic energy operator for the nuclei,

(2.4)

is the Coulomb electrostatic repulsion between electrons2 ,

(2.5)

is the electron-nucleus Coulomb attraction, and

(2.6)

is the nucleus-nucleus Coulomb repulsion. In writing down the Hamiltonian, we have used atomic

units (a.u.), that is

(2.7)

For we will consider Coulomb electrostatic repulsion as the interaction between electrons. Later we will include
additional terms to the electrostatic repulsion and explain why.
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where , respectively denote the mass and charge of an electron and other symbols have their

usual meaning.

(2.8)

are the electron coordinates (spatial coordinates plus spin). , , and

(2.9)

are respectively the nucleus mass, nuclear charge, and nuclei coordinates. The many-body wave-

function for the system is a function of the positions of the nuclei, position and spin of the

electrons and it is given by

(2.10)

Solving the many body problem for a system amounts to solving time dependent and time indepen-

dent Schr dinger’s equation. We will mostly focus on the time independent Schr dinger equation:

(2.11)

where is the total energy of system.

2.1.1 The Born-Oppenheimer Approximation

Certain important approximations can be made in the Hamiltonian given by equation (2.1)

to reduce the difficulty in solving the many-body problem. The first approximation is the Born-

Oppenheimer (BO) approximation [21]. The approximation states that the nuclei are much heavier

compared to the electrons and so the electrons instantaneously adjust their positions to the motion

of the nuclei. As an analogy, consider lots of flies (electrons) around a gigantic wedding cake
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(nucleus) [22]. If you move the cake, the flies instantaneously adjust their positions relative to

the cake. The approximation allows the positions of the nuclei to be made stationary relative to

the motion of the electrons and hence, the kinetic energy operator for the nuclei motion given by

equation (2.3) can be omitted from the many-body Hamiltonian. The nuclei can now be considered

as a fixed external potential for the electronic motion:

(2.12)

where

(2.13)

The term given by equation 2.6 is the nucleus-nucleus classical electrostatic repulsion which is sim-

ply added to the Hamiltonian. It will be ignored for now and will be added to the total electronic

energy at the end of the calculation (that is, after the solution to the Schr dinger’s equation for elec-

trons have been found). Using the BO approximation and ignoring the classical nucleus-nucleus

repulsion term, the many-body Hamiltonian given by equation (2.1) reduces to the many-body elec-

tronic Hamiltonian

(2.14)

The BO approximation now allows us to decouple the electronic degrees of freedom in the many-

body wave-function from the nuclear degrees of freedom:

(2.15)

where and respectively denote the electronic and nuclear parts of the many-

body wave-function . The Schr dinger equation for the electrons is given by

(2.16)
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where is the total electronic energy. Equation 2.16 is the starting point for most ab initio predic-

tions of electronic properties of atoms, molecules, and solids [20]. It should be noted that the BO

approximation is not always valid in electron structure calculations. There are cases in which the

BO approximation is known to fail. The reader may refer to Refs. [23, 24, 25, 26] for details.

2.1.2 Physical Quantities of Interest

We will now define physical quantities that play key roles in the theory of electronic

structure. We will adopt the scheme in Parr and Yang [27]. For the rest of this chapter, we will

assume that the wave-function describing a given state is normalized, that is

(2.17)

(2.18)

For a system in the state (which is not necessarily a solution to equation 2.16),

the expected value of an observable corresponding to the Hermitian operator is given by

(2.19)

Another important physical quantity in electronic structure is the electron density. It is defined as

the expected value of the electron density operator [20],

(2.20)

Using the definition of the delta function and the symmetry of the wave-function, equation 2.20

simplifies to

(2.21)
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Integrating each side of equation 2.21 over , we obtain electron number conservation:

(2.22)

2.1.3 Variational Principle for the Ground State

Before explicitly stating the variational principle for the ground state, let us briefly define

a functional. In simple terms, a functional is a function of a function but not in the usual sense.

A function is defined by an element for a given element

but a functional is defined by an element (square brackets are used to

distinguish a functional from a function) for all values of the function defined at each

point . In short, a function maps a point in a domain to a point in a co-domain but a functional

maps a function defined over an entire domain to a point in a co-domain.

The differential of the functional is given by

(2.23)

where the quantity is defined as the functional derivative of with respect to . The functional

derivative of a functional F can be easily derived by performing a first order binomial expansion of

in terms of [27].

From the definition of the expectation given by equation (2.20), we can define the expected

value of the total energy as a functional of the wave-function for a given state:

(2.24)

The variational principle for the energy:
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If is a trial wave-function for the true ground state wave-function , then the ground state energy

satisfies the condition

(2.25)

(2.26)

with equality holding if and only if

(2.27)

For the proof of this principle see Ref [28]. The variational method consists of minimizing

with respect parameters on which depends. We can use the method of Lagrange multipliers [29]

to show that the variational principle is in fact equivalent to

(2.28)

The solution to equation (2.28) yields a supremum of the ground state energy and the corresponding

wave-function is the best estimate for the ground state. In addition, the wave-function must exhibit

all fermionic properties.

2.2 Approximate First Principles Electronic Structure Methods

By first principles or ab initio electronic structure, we mean a solution to the many-

electron Schr dinger’s equation without any assumptions. As stated earlier, it is not practical to

find an exact eigenstate for the many-electron Hamiltonian nor is it necessary. Virtually all the

information in many-body wave-functions, if we had them, is irrelevant. Here, we will consider
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two major approximations to first principles electronic structure methods; the Hartree-Fock (HF)

approach [30, 31] and methods based density functional theory (DFT). HF methods are popular in

the Quantum Chemistry community because it affords quantum chemists the luxury of computing

the properties of small systems, usually molecules, with a high degree of accuracy [32]. For most

modern electronic structure work, DFT-based methods are preferred over HF methods because (1) it

is relatively easier to code as a computer program, (2) it can handle much larger systems compared

to the HF method, (3) it is computationally less demanding, and (4) it is flexible with respect to its

applications to different systems [32]. In the following sections, we will review the HF approach

and for the rest of this chapter, we will focus on Density Functional methods and its applications.

2.2.1 Hartree-Fock Methods

TheHFmethod was an extension of the single-particle approximation proposed by Hartree [33].

In the Hartree approximation, the many-electron wave-function is written as a product of or-

thogonal single-electron orbitals ,

(2.29)

However, this form of the wave-function within the Hartree approximation has a serious flaw. Elec-

trons are fermionic particles with a non-integer spin of . Fermions obey Pauli’s exclusion principle

which states that: In a system of identical fermions, no two particles can be in the same state. For

a system of electrons, the principle implies that no two electrons have the same set of quantum

numbers . As a consequence of the principle, the permutation operator should have an

eigenvalue of -1 when it acts on the many-electron wave-function, that is, the many-electron wave-

function should be antisymmetric (change sign) when two electrons are interchanged (the exchange

constitute spatial coordinate as well as spin). It is obvious that the form of the wave-function in
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equation 2.29 does not change sign when two electrons are exchanged. The antisymmetry condition

that the wave-function must satisfy results in a contribution to the total electronic energy known

as the electron exchange energy. The HF method corrects the lack of antisymmetry in Hartree’s

approximation by expressing the many-electron wave function as an antisymmetric product of

orthogonal single-electron wave-functions using the Slater determinant

...
...

...
...

(2.30)

This form of the wave-function in the HF theory contains all the possible antisymmetric combina-

tions of the single electron wave-functions and it exactly treats the electron-exchange energy that

is missing in the Hartree total energy. The electron exchange energy is therefore defined as the

difference between the Hartree and Hartree-Fock energies.

This dissertation does not use HF approach so we will not give detailed derivation of the

important equations in the theory. However, it necessary to state the problem with HF theory and

the need for an alternate and more reliable method. The problem with the HF method (and also the

Hartree method) is the way in which the electron-electron interactions are treated. Besides the BO

approximation which assumes that electrons moves in an external potential due to the nuclei, the

HF methods treats interaction between electrons by assuming that each electron moves in an mean

potential field due to the other electrons. This is where the problem with theory stems from.

The fact is that electrons do not really move in an average potential. Rather, electrons monitor

or correlate their respective motions avoiding each other so that there is a minimum amount of

Coulomb electrostatic repulsion and thereby lower the total electronic energy [22]. The shortfall
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of the HF theory is its inability to account for electron correlations. The difference between the

exact total energy (corresponding to the correlated electron system) and the Hartree-Fock energy

(corresponding uncorrelated electron system) known as the electron correlation energy.

The electron correlation energy is usually about one percent of the total (electronic plus

nuclear) energy. In terms of absolute value, this is a fairly small fraction but it is crucial, especially

for calculations involving light atoms. The amount of energy that is usually required for chemical

processes like bond formation and bond dissociation are quite small when compared to the cor-

relation energy. Hence to make accurate predictions of system properties via electronic structure

calculations it is necessary to treat the correlation energy3. There are post Hartree-Fock methods

that seek to include electron correlations in the original HF theory. These include Configuration

Interaction (CI), Moller-Plesset (MP) perturbation theory, and Coupled cluster (CC) theory. These

methods have huge computational demands so there is a serious limitation on the size of the systems

that these methods can handle. For example CI scales as . HF methods and post HF methods

are described in some landmark publications [34, 35] and in detail many in quantum chemistry and

electronic structure textbooks [20, 27, 28, 36, 37].

For the rest of this chapter we will focus an alternative formulation, density functional

theory, which also adopts the independent electron approximation to treat many-electron systems

and exactly treats electron exchange just like the HF method, but treats in addition, the electron-

electron correlation, albeit in an approximate manner.

A well known example of the lack of the HF theory’s to include electron correlations is the prediction by the theory
that jellium is an insulator instead of a metal [32].
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2.2.2 Density Functional Theory

Density functional theory (DFT) methods are the most widely used approximate first prin-

ciples approach to computational material science today. DFT is in principle an exact formulation

for the ground state of many-electron systems and it expresses ground state properties– such as equi-

librium positions, total energies, and magnetic moments as functionals of the electron density

(see equations (2.21) and (2.22)) [38]. The formulation avoids the computation of many-electron

wave-function. So why do most modern electronic structure Practitioners prefer DFT-based meth-

ods? The answer lies in the extreme reduction in the difficulty of the many-body problem. The

electron density is a scalar defined on whiles the many-body function is a scalar defined on ,

so by avoiding the many-electron wave-function, DFT reduces the original problem by

degrees of freedom.

The first attempt to formulate a density functionals was based on the Thomas-Fermi model

due to Thomas [39] and Fermi [40]. Within the model, the total energy is expressed as a functional of

the electron density. However, the model suffered from inaccuracies stemming from the crude for-

mulation of the kinetic energy functional and the mean field approximation to the electron-electron

interaction, which failed to include exchange and correlation effects [38]. Later on, Dirac included

electron exchange contributions to the Thomas-Fermi functional but then, it still suffered from elec-

tron correlation effects [41]. Extended discussions on the Thomas-Fermi and Thomas-Fermi-Dirac

models can be found in Refs. [20] and [27].

Two elegant theorems by Hohenberg and Kohn [42], which made the Thomas-Fermi

model and similarly the Hartree theory exact, brought DFT theory to the forefront of electronic

structure theory. The theorems and associated corollaries clearly show how the ground state energy

and other ground state properties can be exactly expressed as functionals of only the ground state
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electron density . Before we proceed to state the theorems, let us note that the expression for

the total electronic energy given by equation 2.24 in conjunction with equation 2.20 simplifies to

(2.31)

We now state the two Hohenberg-Kohn theorems for a system of N interacting electrons in a non-

degenerate ground state associated with an external potential .

Theorem I: The external potential is (to within a trivial additive constant) uniquely deter-

mined by the ground state electron density .

The proof of this theorem is disarmingly simple. The reader can refer to the original paper by Ho-

henberg and Kohn [42] for the proof. Notice that if a solution to Schr dinger’s equation is known,

then the density can be easily constructed using the many-body wave-function. This is the con-

verse of the first Hohenberg-Kohn theorem. The first Hohenberg-Kohn theorem and its converse

guarantees the existence of a bijection from to . Since completely yields ,

a consequence of the theorem is that completely determines all ground state properties of the

system [43].
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Theorem II: A universal functional of the density for the energy can be defined for all

electron systems. Furthermore, for any trial electron density associated with some external po-

tential , the ground state electron density minimizes and the corresponding minimum

energy is the ground state energy.

Again, the proof for the theorem can be found in Ref. [42]. The second Hohenberg-Kohn theorem

suggests that the energy functional is sufficient to determine all ground state properties of the

system.

From equation 2.31 we re-write electronic energy as unique functional of ,

(2.32)

where

(2.33)

is the Hohenberg-Kohn (HK) functional.

So far, both the exact ground state density and the density functional are unknown.

So we cannot use the HK theorems to compute material properties. We now decompose the electron-

electron interaction in equation (2.33) into the classical electrostatic repulsion between the

electrons (Hartree energy) and the non-classical contribution (which is a major

part of the electron exchange and correlation),

(2.34)

where the Hartree energy is defined as

(2.35)
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and the Hartree potential

(2.36)

(2.37)

At this point, is known, is unknown, and is unknown.

2.3 The Kohn-Sham Formulation of Density Functional Theory

In a paper published by Kohn and Sham (KS) [44] in 1965, they proposed a formulation

for mapping the full interacting system with the real potential, onto a fictitious non-interacting

system whereby the electrons move within an “effective” KS single-particle potential . The

KS method is still exact since it yields the same ground state density as the real system, but greatly

facilitates the calculation by partially treating the unknown kinetic energy functional . Starting

with a set of independent electron orbitals, 4 the Kohn-Sham (KS) kinetic energy of

a non-interacting system of electrons is defined as

(2.38)

and electron charge density as

(2.39)

where is number of electrons occupying each orbital. = 1 for energies below the Fermi level,

= 0 for energies above the Fermi level, and .

The Kohn-Sham orbitals are constructed to be orthogonal, that is, . In fact the orbitals are not
orthogonal in our calculations and the normalization condition is , where is the overlap matrix.
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Using equation (2.38), we can re-write equation (2.37) in terms of ,

(2.40)

where

(2.41)

is the exchange-correlation energy functional which is unknown so far.

The expression for the energy functional given by equation (2.32) now becomes

(2.42)

Now, depends on Kohn-Sham orbitals so using the second HK theorem which is essen-

tially a variational principle for the ground state, we will minimize with respect to subject

to the constraint that

(2.43)

In particular, we require that

(2.44)

where

(2.45)

and are Lagrange multipliers.
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This implies that

(2.46)

Apart from the unknown / , we can simplify all the individual functional derivatives

on the right hand side of equation (2.46) using the definition of the functional derivative in equa-

tion (2.23). Now from equation (2.38)

(2.47)

From equation (2.39)

(2.48)

From equation (2.35,

(2.49)

(2.50)

Substituting equations (2.47), (2.48), (2.49), and (2.50) into equation (2.46) and using equation (2.44),

we obtain the single particle Kohn-Sham equations

(2.51)

where the Kohn-Sham potential

(2.52)

with and . Thus the KS formulation reduces the -electron problem

to single-electron problem. The solution of the system of KS equations yields the ground state
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electronic charge density and hence the ground state energy and other ground state quantities which

can be obtained. Most modern electronic structure calculations are based on the Kohn-Sham formu-

lation of DFT. However, we still do not know the exact form of the exchange-correlation potential

(since the exchange correlation functional is unknown). plays a crucial

role in the exactness of the Kohn-Sham formulation of density functional theory. So far the exact

analytical form for is unknown. However, approximations to exist. We briefly

discuss below, the well known approximations.

2.4 Approximations to the Exchange-Correlation Functional

Finding an exact form for the exchange and correlation functional is the unsolved

“holy grail” of electronic structure and, the success of DFT depends on it to a great extent. The

most commonly used approximations for are the local density approximation (LDA) ( or

the local spin density approximation (LSDA) if it includes spin polarization) and the generalized

gradient approximation (GGA).

2.4.1 The Local Density Approximation

Within the LDA, is constructed based on the assumption that exchange-correlation

energy per electron at point in the electron gas is the same as that of an electron gas with

uniform density (a uniform electron gas). can be further broken into two parts:

(2.53)
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where is the exchange part and is the correlation part. For a homogeneous electron gas,

has an analytic form [41] given by

(2.54)

Within LSDA, it can be shown that

(2.55)

where , respectively denote the electron up spin and down spin densities [27]. LSDA is

particularly useful for systems with non-zero net spin and non-collinear spins.

The correlation part cannot be derived analytically. However, it has been calculated

numerically with high accuracy using quantum Monte Carlo simulations by Ceperly and Alder [47].

These numerical values have been fitted to derive analytic forms for by Vosko et al [48], and

by Perdew and Zunger [49]. Once is known, the exchange-correlation functional is given by

(2.56)

(2.57)

2.4.2 Beyond the Local Density Approximation

Besides the LDA, a number of non-local approximations for the exchange-correlation

functional has been proposed. The first step beyond LDA is the use of exchange and correlation

functionals involving the magnitude of the gradient of the density, known as the generalized gra-

dient approximation (GGA). Within the GGA, is constructed as functional of both and

( ) at each point in the electron gas,

(2.58)
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GGA functionals generally give more accurate results compared to LSDA although not in a con-

sistent manner [20]. For example; LDA methods generally underestimate the electronic band gap

compared to experiments and GGA generally does better. We will not talk about the constructions

of GGA functionals. The reader may refer to Refs. [20] and [27] for detailed discussion. The

most widely used GGA functional are parameterizations of Becke [50], Perdew and Wang [51], and

Perdew Burke and Enzerhof [52].

It is worth making brief mention of other well known approximations. There is a pertur-

bation Green’s function approach called the GW5 approximation which treats dynamic correlation

effects due to the screened Coulomb interaction between electrons [38]. GW methods generally

improves LSDA, GGA total energies and treats the excitation spectrum as well. Then, there is

the LDA-type (or GGA-type) calculations coupled with an additional orbital-dependent interaction

known as LDA+U i.e., LDA plus a Hubbard term which attempts to correct errors known to be large

in the usual LDA or GGA calculations [20, 54, 55].

2.5 Solution of the Kohn-Sham Equations

The solution of the system of KS equations given by equation (2.51) yields the ground

state electronic charge density, from which ground state energy6 and all other ground state quantities

can be derived. We note that the Kohn-Sham potential depends on which in turn depends

on the . Thus the equations can be solved either self-consistently or non-self-consistently.

G stands for a the representation of the self-energy as a convolution of the self energy and W stands for the screened
Coulomb interaction function
The total energy will now be the sum of the the total KS electronic energy and the classical Coulomb repulsion

between the nuclei given by equation (2.6).
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2.5.1 Self-Consistent Solution

We will briefly outline the self consistent algorithm for the solution to the KS equations:

1. Begin with some input trial density which is usually the superposition of neutral pseudo-

atomic charge densities.

2. Construct the Kohn-Sham potential according to equation (2.52) by computing the

individual components. is simple to compute; is computed using Poisson’s

equation ; is computed from known approximations (LSDA,

GGA, e.t.c., discussed above).

3. Solve the KS equations (2.51) to obtain the eigenstates , occupation numbers ,

and eigenvalues .

4. Use from step 3 to construct the new output density .

5. Check convergence criterion: if , where is some convergence parameter,

then compute ground state properties of the system. Otherwise, replace with , go to

step 2 and repeat the process until convergence is achieved.

6. After convergence is achieved, compute the total KS energy, which is given by

(2.59)
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2.5.2 The Non-Self-Consistent Harris Approximation

Self consistent solutions to the KS equations described above can be time-consuming.

Alternative approaches that seek to reduce the time-consuming self-consistent cycles and yet give

reasonable solutions are of great importance in practice. Harris proposed a scheme which is suitable

for covalent bonded systems where charge transfer between atomic orbitals is not too large [53]. We

briefly outline Harris’ method.

1. Begin with some input electron density for the the ground state. An obvious choice

input density in step 1 of the self-consistent solution above. Similarly, One can also start with

some optimized input density.

2. Proceed just as in steps 2 and 3 in the self consistent case but in step 3, compute only

and . The Harris energy functional does not depend on and so there is no need for

its construction using .

3. The expression for the total energy due Harris energy , simply replace with

in equation (2.59).

The beauty about the Harris approximation is that convergence is usually achieved in a

single step and this greatly enhances the computational efficiency, especially for large systems. Also

note that Poisson’s equation must be solved again to obtain the Hartree potential in order

to obtain the self-consistent total energy in equation (2.59) but the Harris energy does not require

this. The Harris functional is particularly suitable and works well for methods that use localized

basis sets (which we have exclusively used for this work). It has been shown in principle that, the

Harris energy is an approximation to the Kohn-Sham energy, accurate to first order in , where

is the difference between the Kohn-Sham self-consistent field density and the Harris density [56].
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2.5.3 Interpretation of the Kohn-Sham Eigenvalues

We now wish to stress that unlike the Hartree-Fock orbitals, the KS orbitals do not have

a clear interpretation as single particle functions. In principle, they are mere mathematical enti-

ties designed to make the kinetic energy of the non-interacting system easy to evaluate. Similarly,

the individual KS energies corresponding to the Kohn-Sham orbitals have no physical interpreta-

tion (they do not correspond to true electron addition and removal energies) except for the highest

occupied orbital of a finite system, whose eigenvalue has been shown to be the negation of the

ionization energy [45]. However, the eigenvalues have a well-defined meaning within the theory

and they can be used to construct physically meaningful quantities. Chapter 7 of Richard Martin’s

book [20] discusses this in detail. Physical interpretation of the KS eigenenergies is a subject of

intense research [46].

2.6 Basis Set Expansion of the Kohn-Sham Orbitals

To solve the KS eigenvalue problem, the electron wave-function can be expanded using

a given basis set. The choice of an appropriate basis set is crucial to the quality of the results from

electronic structures calculations and predictions.

Consider a basis set with functions in the Hilbert space. The basis func-

tions may or may not be orthogonal. We define the overlap matrix element between two basis

functions and as

(2.60)
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We define the Hamiltonian matrix element as

(2.61)

where is the Kohn-Sham Hamiltonian.

If we expand a Kohn-Sham orbital using the basis functions

(2.62)

the Kohn-Sham equation reduces to

(2.63)

where are the expansion coefficients.

The basis sets can be either extended, localized, or mixed (extended plus localized). Most

DFT implementations utilize extended basis sets consisting of plane-wave basis or localized basis

set consisting of numeric orbitals. In this section will briefly review the two basis set types and

discuss their advantages and disadvantages.

2.7 Plane Wave Basis

For periodic systems, Bloch’s theorem reduces the many-electron problem by restricting

the problem to electrons in a unit cell and then determine the wave-functions of the other electron

states using translational symmetry.

Bloch’s theorem [5] states that the wave-function of an electron state in a periodic poten-

tial is given by

(2.64)
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where is function that possesses the periodicity of the potential i.e. , is

the length of the unit cell, is the band index, and is the wave vector in the first Brillouin zone.

The periodicity of allows us to express it as a Fourier series

(2.65)

where the reciprocal lattice vector and the real space lattice vector satisfy the relation

, is an integer and are Fourier expansion coefficients. The wave-function now becomes

(2.66)

The reciprocal space representation of the Kohn-Sham equations 2.51 and 2.52 for Kohn-Sham

orbital expressed in terms of plane-wave basis above is

(2.67)

where . For an exact solution, infinitely many plane wave basis ele-

ments would be needed but fortunately, plane waves having high kinetic energies are not

of much importance so we have the freedom to truncate the kinetic energy at some cut-off , that

is,

(2.68)

2.7.1 Advantages of Plane Waves Basis

1. Plane wave basis are orthogonal and are independent of atomic positions. This makes it quite

convenient to code in computer programs.

2. A single parameter, that is, the plane wave energy cut-off, , is used to determine the

completeness of the basis set. Increasing improves the accuracy of the results.
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2.7.2 Disadvantages of Plane Waves Basis

1. Plane waves are not suitable for non-periodic systems like molecules, clusters and surfaces.

Application of plane waves to such systems require them to be placed in periodic supercells,

leaving empty an space around the system. Since the entire supercell must filled with plane

waves, it makes their application to such system computationally costly.

2. Despite their completeness, planes waves calculations are costly for large systems as several

basis elements are needed to obtain well-converged results.

3. Because of the extended nature of basis functions, implementing algorithms that scales lin-

early the system size, the so-called methods, where is the size of the system, is not

possible.

2.8 Localized Basis

Localized basis sets are spatially compact atom-centered functions. They strictly confined

real space i.e. orbitals that vanish in real space beyond a certain radius, and this increases the number

of sparse matrix elements. The basis is obtained from a linear combination of the atomic orbitals

(LCAO). If we expand the Kohn-Sham wave-function in terms of a local basis set for a

system with atoms and basis centered on each atom , we get

(2.69)

where labels the index of the atomic site, labels the index of an orbital centered on a given

atom. There are different kinds of localized basis orbitals. Some do have direct analytic forms

(for example; Slater-type orbitals and Gaussian orbitals) and some are obtained using numerical
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methods. The basis set that we have used for our work were generated using numerical atomic

orbitals. We will discuss how these orbitals were obtained in detail in section 2.10.

We briefly list the advantages and disadvantages of localized basis functions.

2.8.1 Advantages of Localized Basis Orbitals

1. Generally, fewer localized basis orbitals are needed to expand a Kohn-Sham wave-function

compared to plane wave basis. For example, solving DFT electronic structure calculations for

amorphous silicon using plane-wave basis would require plane-wave basis

functions which reduces drastically to localized basis functions if a localized basis

set is used [57].

2. The strict confinement of the basis orbitals in real space generally leads to sparse Hamiltonian

and overlap matrices. Sparse matrix elements can be used to achieve calculations

i.e. linear scaling system size electronic structure calculations. techniques are almost

impossible to implement with plane waves because of their extended nature.

3. Localized basis set offer a natural way of quantifying electron properties such as atomic

charge, orbital population, bond charge, charge transfer, e.t.c through the Mulliken population

analysis [58]. They are also particularly suitable for describing topological and chemical

defects in a network [57].

2.8.2 Disadvantages of Localized Basis Orbitals

1. There is a difficulty in choice of localized basis set for a given problem since results of calcu-

lation are basis set dependent. For example; we will demonstrate later that accurate descrip-
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tion of dangling bond defects in amorphous silicon using localized basis methods is basis set

dependent.

2. Unlike plane wave calculations in which the accuracy of results is controlled by a single

parameter (the kinetic energy cut-off ), there are many parameters that have to adjusted

to optimize localized basis calculations. This usually ends up in a very cumbersome and

non-systematic trial and error process. In short, systematically improving plane wave basis is

easier than devising a localized basis [57].

2.9 Ab Initio Pseudopotentials

Electrons in a solid or molecule are divided into core electrons and valence electrons.

Core electrons occupy the filled inner shells and valence electrons occupy the outermost shell. Most

chemical properties of solids depend mostly on valence electrons and slightly on the core electrons

that are tightly bound to the nucleus. What core electrons mainly do is to screen the nuclear charges

from the valence electrons. It is, therefore, tempting to eliminate them from electronic structure

calculations and to replace them instead with an effective potential acting the valence electrons [38].

All-electron computations are prohibitively costly and so if core electrons can be cleverly removed

from the calculations, it would dramatically reduce the enormous computational cost. Also, valence

electrons states oscillate rapidly in the region the core electrons due to the orthogonality between

valence electron states and core electron states [38]. A lot of basis functions are needed to expand the

valence wave-function in the region of the core electrons and this makes the calculations extremely

costly.

The expensive nature of all electron calculations be reduced in the following way:
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1. Freeze the core electrons in electronic structure calculations and replace the Coulomb po-

tential by an effective weak potential acting only the valence electrons. The weak potential

should completely agree with the effective Coulomb potential outside the core re-

gion.

2. because core electrons are no longer considered, the orthogonality requirement for the valence

states is relaxed and so the nodes can be removed by replacing with a pseudo wave-function

that is smoothly varying (nodeless) inside the core region. We also require the pseudo and

true wave-functions to completely agree outside the core region [38].

3. The weak potential in (1) will act on the pseudo-valence electron states.

This is the pseudopotential [59, 60] approximation in electronic structure. What it seeks

to do is to replace the deep Coulomb potential of the nucleus and the effects of the tightly bound

core electrons by a weak effective potential acting on a nodeless pseudo valence electron state. This

greatly reduces the computational effort as fewer basis function are needed to expand the pseudo

valence wave-function. A good pseudopotential should reproduce basic properties of an element

and also have the ability to work well in different chemical environments. This implies that a

pseudopotential so constructed must satisfy certain conditions to make it useful. The conditions

will be given in section 2.9.3.

2.9.1 A Simple Qualitative Picture

In Fig. 2.1, we show a simplified picture for neutral Si atom ( ). Within

the pseudopotential approximation, we remove all the core electrons that are bound to the nucleus

leaving an effective ionic potential acting on the 4 valence electrons. Next replace with
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effective ionic potential with a a weak pseudopotential acting on the 4 valence states. In constructing

a pseudopotential, we require the pseudopotential to agree with the ionic potential outside the core

region i.e. . This can clearly be seen in the upper panels of the graph in Fig. 2.2, where we

have plotted the pseudopotential for the and valence electrons states for the angular momenta

. Inside the core region, the pseudopotential is smooth and well-defined at the origin (it

does not diverge as ). Similarly, in the lower panels of the graphs, we see a match between

the radial components of the all-electron (AE) wave-function and the pseudo wave-function

outside the core. Due to the orthogonality between valence and core states and the strong

nuclear potential within the core, the all-electron valence electron states oscillate rapidly, and as

stated earlier, a lot basis functions are needed to capture the states within these regions. Clearly,

we see that the valence pseudo wave-function varies smoothly inside the core region and its

description in terms of basis size reduces significantly.

2.9.2 A Simple Quantitative Picture

In this section, we will show that it is possible to construct a pseudopotential such that

the pseudo valence wave-function has the same eigenvalue as the true valence wave-function [38].

Consider an arbitrary valence wave-function . Decompose into a smoothly vary-

ing pseudo valence wave-function and the rapidly varying orthogonal core states with

energy eigenvalues

(2.70)
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Figure 2.1: A picture for a neutral silicon atom. The tightly bound core electrons and the nucleus are
replaced an effective ionic core, leaving the 4 valence electrons that mainly contribute to bonding
and other properties in solids. should completely match the weak pseudopotential outside
the core. The figure was taken from Ref. [61].
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Figure 2.2: Plots for the pseudopotential versus the ionic potential and the pseudo
wave-function versus the all-electron wave-function for Silicon 3s and 3p respectively. The cut-off
radius bohr and it is denoted by the dotted vertical line. The data was generated using the
atom program, a utility program in SIESTA.
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Multiply each side with a core eigenbra and use the fact that and

to obtain . Hence we get

(2.71)

where is the unit operator. Now, since the left hand side of equation (2.71) satisfies Schrodinger’s

equation, that is, so must the right hand side,

(2.72)

This simplifies to

(2.73)

where

(2.74)

Hence we have constructed a pseudopotential such that eigenvalue of the pseudo valence wave-

function equals that of the true valence wave-function. It must be stated that the construction of

the pseudopotential and pseudo wave-function is not uniques. We can clearly see that the pseudo

Hamiltonian is the original Hamiltonian plus . cancels the effect of the strong Coulomb

interaction so the resultant potential is a weak. This form of the pseudopotential is non-local (ex-

plicit dependence on the angular momentum for the core electrons) and energy dependent. Energy

dependent pseudopotentials are not very helpful when the valence orbitals and core orbitals ex-

hibit different symmetries [38]. It is convenient therefore to construct pseudopotentials that will act

differently on electrons with different angular momenta.
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2.9.3 Constructing Non-Local Ab Initio Pseudopotentials

We now briefly look into the construction of pseudopotentials for ab initio electronic

structure calculations. Pseudopotentials have been studied extensively. Most Pseudopotentials are

norm conserving. Then there are also ultra-soft pseudopotentials. Later, will explain the meaning

of “norm conserving” and “ultra-soft pseudopotentials.”

We now state the requirements that a pseudopotential should satisfy [63].

1. The pseudo valence wave-function and the all-electron wave function should

have the same set of eigenvalues.

2. All-electron wave-function and pseudo wave-function should match outside the core.

3. The logarithmic derivatives of all-electron and pseudo wave-function should match at :

.

4. The integrated charge inside the core for each wave-function should agree:

Point (4) is the norm conservation requirement for the pseudopotential which simply

means that the pseudo core charge must equal the true core charge. This guarantees that the pseu-

dopotential scatters valence electrons and has the same phase-shift as the true potential. If the norm

conservation condition is added to point (2), it leads to total charge conservation. Point (3) de-

termines the transferability of the pseudopotentials. As we stated earlier, transferability refers to
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the ability of the pseudopotential to work properly in atomic arrangements (e.g. a pseudopotential

for silicon should perform equally well in SiO and a-Si:H). Several schemes for generating norm

conserving pseudopotentials exist [62, 63, 64, 65, 66, 67, 68, 69, 70]. Norm conserving pseudopo-

tentials can be very accurate, but they are usually not very smooth.

The larger the cut-off radius , the softer the pseudoptential and the smoother the pseudo

wave-function but usually at the expense of norm conservation. Soft pseudopotentials can be de-

scribed well with fewer basis functions. In the Vanderbilt ultra-soft pseudopotentials [71] method,

the norm-conservation requirement is relaxed and pseudo wave-functions can be made as smooth

as possible. This means that only few plane waves are needed to expand the pseudo wave-function.

This surprisingly leads to pseudopotentials with very good transferability in plane wave calcula-

tions. For localized orbital methods (which we have used for all our first principles calculations),

ultra-soft pseudopotentials are irrelevant.

Pseudopotentials are obtained from all-electron calculations. This is done by assuming a

spherical screening approximation and solving the fully self consistent radial Kohn-Sham equations.

Since the potential acting on the electron has spherical symmetry we can write

(2.75)

Next, we solve the all-electron radial Kohn-Sham equations

(2.76)

We then parametrize the all-electron wave-function to obtain the pseudo wave-function us-

ing a well known scheme, (for example the Troullier-Martins scheme [70]) and invert Schrodinger’s

equation to obtain the screened pseudopotential

(2.77)
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Finally subtract the Hartree and exchange-correlation energies to get the unscreened pseudopotential

(2.78)

where is the pseudo-charge density obtained from pseudo valence wave-function .

For our work, we have used pseudopotentials generated using the Troullier-Martins pa-

rameterization [70]. The pseudopotentials are computed in an efficient manner using the separable

form due to Kleinman and Bylander (KB) [72], in which matrix elements computational demand

scales as . One only has to make sure that the KB form of the pseudopotential does not

lead to unphysical ghost states. A ghost state is an unphysical state above or below the valence band

with radial nodes. A ghost state can be detected by a marked deviation of the logarithmic deriva-

tives of the KB pseudopotential. Gonze et al. [73] have developed a method to track ghost states in

pseudopotential calculations.

2.10 SIESTA: A Localized Basis Pseudoptential DFT Method

SIESTA is a DFT-based first principles pseudopotential code that utilizes a flexible linear

combination of atomic orbitals (LCAO) as basis set [74, 75, 76]. It has the ability to accurately

treat large systems in a relatively small time compared to plane wave codes. But the efficiency

of a local basis method like SIESTA over plane waves-based codes does not necessarily make it

better. Increasing the size of the basis set in a plane wave calculation guarantees the convergence

of physical properties. Of course, increasing the number of localized basis functions improves the

basis set but the level of basis needed can be system dependent and rarely diffuse functions may

be required. However, once a well optimized LCAO basis set has been obtained, there is no reason

why one can not perform highly accurate ab initio calculations with it [57].
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SIESTA has been tested on hundreds of systems. Since we have used it exclusively for

our ab initio electronic structure calculations, we find it necessary to discuss its main features. A

detailed description of the method can be found in Ref. [76].

2.10.1 Basis Set

The basis orbitals centered on an atom located at is a product of numerical radial

function and a spherical harmonic [76],

(2.79)

where . In general, there will be several orbitals (labeled by ) with the same angular

momentum dependence but different radial dependence. In quantum chemistry, this is convention-

ally called a ‘multiple ’ basis. The individual basis elements are called first , second , third ,

etc. and the basis set are referred to as single (SZ)7, double (DZ), triple , etc. We will briefly

describe how the basis functions used in SIESTA are generated.

In the case of SZ basis set, the basis functions (that is the first ) are the eigenfunctions

of an isolated atom in some confined within spherical potential wells of different shapes [77]. The

first is the solution to the radial Schr dinger equation

(2.80)

where is a confining potential.

There several kinds of confining potentials [77, 78, 79]. Here, we will discuss two con-

fining potentials that are used to strictly localize the basis functions. The first potential is due to

Sankey and Niklewski [79] and the second is due Junquera et al. [77].

By SZ basis, we mean a single radial function per angular momentum channel, and only for the valence orbitals with
substantial electronic population
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The confining potential in the Sankey-Niklewski approach is a hard-sphere potential of

the form

(2.81)

where is the orbital confinement radius. In general, one can specify for each angular mo-

mentum channel. For strictly localized basis orbitals, the major problem is finding a well balanced

and systematic way of defining the different cut-off radii , since the accuracy and computational

efficiency of the calculations depend on them. A scheme was proposed in which the confinement

radii of different orbitals were defined by a single parameter, the orbital energy shift , i.e., the

energy increase suffered by the orbital due to the strict confinement [80]. It defines the radii in

a well balanced way and allows the systematic convergence of physical quantities to the required

precision.

(2.82)

Note that in the limit as , the true pseudo-atomic orbitals, which are not strictly localized but

decay to zero at infinity are recovered [80].

The hard nature of confinement potential the Sankey-Niklewski method [79] results in

strictly localized basis but it suffers from a discontinuity in the first derivative of the basis function

at . The discontinuity is more pronounced for smaller values of and tend to disappear for larger

values [77]. Junquera et al. [77] proposed the generation of pseudo-atomic orbitals using a relatively

soft confining potential

(2.83)
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with the following properties: it vanishes in the core region, starts off at some radius , and diverges

smoothly at . The pseudo-atomic functions resulting from this relatively soft potential are well

localized and do not suffer from the discontinuity in their first derivatives at . In both methods,

the shape of the orbital can be changed by the ionic character of the atom. Orbitals tend to shrink in

cations, and swell in anions [77].

We have briefly described above, how one can generate one radial function per angular

momentum, the first . The set of first functions, the single basis set, is sometimes not sufficient

to accurately predict material properties. A second radial function can be added to each angular

momentum channel in the SZ basis to obtain the DZ basis with two radial functions per channel.

Several Schemes have been proposed to generate the second . To generate the second , SIESTA

uses the idea of the split valence [28, 81] scheme in quantum chemistry.

In the split valence scheme adaptation by SIESTA, the second function must

reproduce the tail of the first function within a matching radius called the split radius,

and continue smoothly toward the origin as , that is,

(2.84)

where the constants , are obtained by ensuring continuity and differentiability of at .

is determined by fixing the norm of for , the so called split norm. Typically, the

split norm is set to 0.15 with exception of hydrogen whose split norm is set to 0.5. After is

generated, SIESTA actually defines the second as

(2.85)
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instead of . As we can see, this gives rise to a strictly localized orbital having confinement

radius smaller than that of the single orbital and hence reduces the number of non-zero matrix

elements, without any loss of variational freedom. This process can be repeated easily to generate

multiple basis set.

To achieve well converged results, in addition to the pseudo-atomic valence orbitals, it

is generally necessary to also include polarization orbitals, to account for the deformation induced

by bond formations. Also, using pseudo-atomic orbitals for higher angular momenta is quite un-

satisfactory because they tend to be too extended. Instead polarization orbitals can be included by

applying a small electric field in the -direction and using first order perturbation theory [76].

We require that valence pseudo-atomic orbital should not have any valence

orbitals with angular momentum . The polarized functions are obtained from the lower

angular momentum functions by solving the equation [76]

(2.86)

It has been demonstrated elsewhere that addition of polarization orbitals to the multiple sets results

in well-converged calculations [76].

2.11 Electronic Structure Analysis

2.11.1 Mulliken Charge Analysis

As we stressed earlier, a localized basis set offers a natural way of quantifying electron

properties such as atomic charge, orbital population, bond charge, charge transfer, whereas plane

wave basis do not possess this advantage. Such a quantification could be very helpful if we want

to know how electron and spin densities populate basis orbital centered on individual atomic sites
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in solids and molecules. However, there is not a unique approach to analyzing orbital electron

and orbital spin populations in atoms. Mulliken [58] and L wdin [82] have introduced methods to

perform such analysis. These methods are quite arbitrary. The Mulliken analysis is much simple

and convenient for practical situations than the L wdin analysis.

The Mulliken method assumes that electron population due to overlap is equally divided

between the overlapping orbital. The arbitrariness in the method stems from this assumption. We

will now demonstrate how the Mulliken charges are computed.

Consider the single particle Kohn-Sham orbitals . Suppose that each is

expanded in terms of basis orbitals . From the electron number conservation in equa-

tion (2.22), we have

(2.87)

where

(2.88)

is interpreted as the electron population in the basis orbital . For an atomic site , we define

the electron charge as the sum of the electron contributions from all basis orbitals centered on

,

(2.89)
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We refer to as the Mulliken charge of the atom . We can clearly see that the Mulliken charge

is meaningful if the basis functions are atom-centered, that is if they are localized.

In a similar fashion, we can construct the Mulliken charges at each atomic site for a single

Kohn-Sham by summing the electronic charge contributions over all basis orbital centered on

that atom. In this case, the sum of the Mulliken charges over all the atomic sites equals unity.

Within the Mulliken analysis, the electron spin density is the difference between the sum

of the up spin electron charges and the sum of the down spin electron charges for all occupied

Kohn-Sham orbitals.

2.11.2 Quantifying Wave-Function Localization

We now describe ways of quantifying the degree of localization of an eigenstate of an

electronic Hamiltonian.

The first measure of localization is the inverse participation ratio (IPR). The concept of

IPR was introduced by Bell and Dean [83] in their study of vibrational modes in SiO . For a given

Kohn-Sham eigenstate , the IPR measures wave-function localization of an electron state via

the Mulliken charge concentration at each atomic site. It tells us how the Mulliken population at

individual atomic sites participate in localizing an electronic wave-function. We define the IPR for

a given eigenstate as

(2.90)

where is the amount of Mulliken charge at an atomic site with index and

. For a completely localized state, all the Mulliken charge will sit at one site so . For

a completely extended state, the Mulliken charge population is the same at each atomic site so

. IPR is an ad hoc measure because it does not tell us anything about the real space
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picture of a localized or extended eigen wave-function. Nevertheless, it has proved to be a powerful

tool [84, 85, 86] for localization analysis in disordered systems.

We define a second quantity to characterize the spatial extent of the wave-function using

the information entropy of a quantum state [87, 88]. This method has been used by Lewis et al. [89,

90] to measure the localization of DNA electron wave-functions. In this case, we define the measure

of wave-function localization corresponding to a Kohn-Sham orbital as

(2.91)

where is the entropy and is defined above. In information

theory, the entropy is a measure of disorder or randomness in the . As such, it has a more

a priori justification for use as a measure of localization. This is especially true if we interpret

localization as a departure from randomness 8. We interpret as the number atomic sites the

state can reach. It follows that ranges from the total number of atoms for a uniformly extended

state (that is, all the atoms can be reached) to unity for an ideally localized state (that is, only one

atom can be reached).

The next measure of localization that we have used is a real space measure. In this case,

we compute the spread of the Kohn-Sham wave-function in real space as defined in the con-

text of localized wave-functions in molecules [91] and maximally localized wannier functions in

solids [92, 93]. This definition assumes that the wave-function has a well-defined center, and that

the expected value of the position operator can be defined. We compute the spread as

(2.92)

The information entropy functional is the only form which consistently represents our state of knowledge in a prob-
ability theoretic sense. For a discussion of the functional versus (as for the IPR), see Jaynes (Ref. [88]) and
references therein.
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where is the position operator and the integration is performed over the supercell volume centered

on a defect site. tells us how much the wave-function decays in real space. The smaller the

spread, the more localized the wave-function. We also compute the amount of the norm of the wave

function that is around the defect center, by integrating over a sphere centered on the defect

site and which has the same diameter as the lattice constant of the periodic supercell (so it is the

largest sphere that fits into the supercell volume)

(2.93)

Clearly, a localized state will not completely sit in the sphere and therefore .

measures the amount of the norm of the wave-function outside the volume of integration . For an

extended state, since encloses approximately of supercell volume. In this case, we

characterized the wave-function as localized if .
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Chapter 3

Review of Existing Computer

Simulation Techniques for a-Si

Computer simulations is a primary tool for the theoretical studies of physical, chemical

and biological systems. It is mainly used to test the validity of proposed theoretical models, to

confirm experiments, and make predictions yet to be realized in experiment. The advent of fast

computers has dramatically increased the systems sizes and accuracy of results pertaining to the

physics of disordered systems. However, there will always be practical limits to what properties of

the system can be simulated, taking into account the nature of the algorithm and computation time.

Broadly speaking, there are two families of computer techniques for modeling amorphous

silicon: deterministic methods and stochastic methods. In deterministic methods, one starts with a

set of initial conditions and advance the system by integrating the equations of motion with respect

to time. Starting with some initial trajectory, the future trajectory is completely determined. In most

deterministic methods, the forces acting on the atoms are determined using Newton’s second law.

Deterministic methods that use classical Newtonian dynamics are known as Molecular Dynamics
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(MD) [94, 95, 96]. On the other hand, the stochastic approach to computer modeling mainly in-

volves probabilistic methods that takes the configuration from one point in phase space to another

such that some condition is satisfied (e.g. using a stochastic scheme to advance a system from one

conformation to another until it reaches the minimum of the inter-atomic potential describing the

system). The most common stochastic modeling method is the Monte Carlo (MC) method. There

are different types of Monte Carlo methods [94, 95, 96]. Before discussing MD and MC simulation

methods for a-Si, we describe below, different inter-atomic potentials used in modeling and discuss

their pros and cons.

3.1 Inter-atomic Potentials for a-Si

The most important ingredient in modeling amorphous silicon is the potential that de-

scribes the inter-atomic interactions. Ideally, we want a potential that

1. can accurately reproduce key structural, electronic and vibrational properties as measured in

experiment,

2. has the ease model systems with sizes closer to the bulk,

3. is transferable, i.e. it should work well in different chemical environments, and

4. is computationally fast.

Different prescriptions of potentials for modeling a-Si exists. They range from highly accurate and

transferable first principles potentials to empirical potentials. Each potential has its strengths and

practical limitations.
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3.1.1 Empirical Potentials

Empirical potentials estimate the interactions between the ions in a system. They are

simple and straightforward to implement in a computer code and computationally cheap. In com-

parison to ab initio and tight-binding schemes, they have the ability to model very large systems

and are several orders of magnitude faster. Empirical potentials usually have a parameter-dependent

analytic form, where the parameters are obtained by fitting the potential to experimental data for

different phases of the system and also to highly accurate first principles calculations. By so doing,

the potential inherits the ability to describe atomic bonding properties. However, they do not give

any information about the electronic structure. Most empirical potentials suffer from transferability.

Nevertheless, they provide a good starting point for high quality quantum mechanical calculations.

For a-Si, the most frequently used empirical potentials are the Keating potential and

Stillinger-Weber potential. We will briefly describe below the features of each potential.

3.1.2 Empirical Potential I: Keating Potential

The Keating potential [97] is an old and very simple short-range potential whose mini-

mum corresponds to the diamond crystal lattice for Si. The potential consists of two-body (bond

stretching) and three-body (bond bending) terms given by

(3.1)

where is the bond stretching constant, the bond bending constant, and is the zero temperature

bond length of the crystalline silicon. For a-Si, eV/Å , , and Å.

means that atom is bonded to atom and means atom is bonded to both atoms and

. Since crystalline silicon is perfectly tetrahedral, the potential requires every atom to have four
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nearest neighbors. In a configuration with atoms, there is a total of bonds and bond angles

and the energy evaluation scales as . This is because the potential is short ranged. The

scaling implies that the Keating potential can be used on very large systems. The shortcoming of the

potential is that it requires every atom to have exactly four nearest neighbors and that two atoms can

interact if and only if they are bonded. This can lead to unphysical situations in which atoms that

are not bonded to each other can be as close as possible without paying a price in the energy. The

strict bonding requirement also makes the potential unsuitable for molecular dynamics simulations

of dynamic processes.

3.1.3 Empirical Potential II: Stillinger-Weber Potential

The Stillinger-Weber potential (SW) [98] is a more realistic empirical potential for silicon.

Unlike the Keating potential, interaction between the ions goes beyond the first shell (up to the

second shell) and do not require an atom to have a fixed number nearest neighbors making it more

flexible. It is written as

(3.2)

where the two body term is given by

(3.3)

and the three body term is given by

(3.4)
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Here,

if

if
(3.5)

is the unit step function, is the angle between the bonds and , and , , , , , , , and

are the fitting parameters. In the original SW potential, the parameters were obtained by fitting to

the liquid and crystalline phases of silicon so it does not guarantee the right description of the amor-

phous phase. Recently, Vink et al. [99] fitted the potential directly to the amorphous phase. We will

refer to this as the modified SW potential (MSW). The ratio of the three-body coupling parameter

to the two-body coupling parameters in the MSW potential increases by 50% when compared

to the same ratio in the original SW potential. The modified potential yields amorphous silicon con-

figurations that agrees with experimental data compared to the original potential. MSW potential

also produces the correct experimental transverse acoustic peak and transverse optical peak in the

phonon density of states. The values of parameters for each potential is given in table 3.1.

In all empirical methods, the forces are purely ionic. The force experienced by an ion at

position is given by

(3.6)

3.1.4 Semi-Empirical Tight-Binding

Semi-empirical tight-binding (SETB)methods lie between accurate ab intio and empirical

methods. They are computationally cheap compared to ab initio methods and expensive compared

to empirical methods. The phrase “semi-empirical” stems from the fact that the Hamiltonian is
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Table 3.1. Parameters for the original Stillinger-Weber (SW) and modified Stillinger-Weber

(MSW) potentials for amorphous silicon

Parameter SW MSW

7.049556277 7.049556277

0.6022245584 0.6022245584

(eV) 2.16826 1.64833

(Å) 2.0951 2.0951

21.0 31.5

1.8 1.8

1.2 1.2

4 4
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empirical but at the same time has an ad hoc inbuilt quantum mechanical information so that both

the ionic and electronic structure can be modeled. The quantum mechanical information is usually

introduced in the Hamiltonian via parameters obtained from fitting to high quality theoretical and

experimental quantum mechanical information. For systems that are large for ab initio methods to

handle, the next obvious choice is SETB methods. Unlike ab initio methods, most SETB methods

do not properly treat electron exchange and correlations. Also SETB methods can suffer from

transferability in sense that SETB parameters obtained by fitting to one system may not work in

another system.

The idea of the tight-binding scheme was first introduced by Slater and Koster [100].

We will briefly demonstrate how SETB methods work using a simple quantitative picture in which

localized basis functions are used to expand the electronic eigenstates. Start with a single particle

energy eigenstate and expand it in terms of localized basis orbitals :

(3.7)

where is the index of an atom at position and is the index of an orbital centered on the atom.

Let us use silicon for an example. Suppose we are working with a minimal atomic-like basis set (as

described in section 2.10). Here, we have assumed that core electrons can be neglected and only

valence electrons are of interest. Then there will be four orbitals (e.g. orbitals with , , , and

symmetry) centered on each atom. So in a system with atoms, a total of atom-centered basis

functions will be used to expand a given eigenstate. Next, solve the time independent Schr dinger

equation

(3.8)
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Here, is a parameterized single particle Hamiltonian with matrix elements

(3.9)

In most SETB schemes, the overlap between the basis functions is neglected (i.e. basis func-

tions are orthogonal). There are several parameterization schemes for the tight-binding Hamilto-

nian for silicon. The first orthogonal Hamiltonian is due to Chadi [101] who used it compute the

band structure and EDOS of diamond and zincblende Si and Si surfaces. Following Chadi, sev-

eral orthogonal parameterizations schemes [102, 103, 104, 105, 106] as well as non-orthogonal

schemes [107, 108, 109] have been developed.

Within semi-empirical tight-binding, the total energy is the sum of the single electron

energies plus sum of pairwise potential energies

(3.10)

The force experienced by an atom at position is obtained using the Hellmann-Feynman theo-

rem [110]

(3.11)

For a detailed explanation of tight-binding schemes, the reader may refer to an extensive review

article by Goringe et al. [111].

3.1.5 Ab Initio Potentials

The ab initio method has been described in chapter 2. Forces computed using ab ini-

tio potentials are more accurate and reliable than empirical and semi-empirical forces. Also, un-

like empirical and semi-empirical schemes, ab initio potentials are generally transferable. There
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are two major approaches to ab initio modeling: Born-Oppenheimer (BO) methods and extended

Lagrangian (EL) method. We briefly discuss below, the two approaches within the Kohn-Sham

formulation of density functional theory discussed in section 2.3.

Within the BO approach, one has to fully compute the electronic structure at each time

step to obtain information about the potential energy surface for a given ionic configuration. Let

us briefly explain how this works within the Kohn-Sham DFT discussed in chapter 2. Suppose

that is the potential energy surface corresponding to a configuration of ions, where

are the the ionic coordinates. Within the Kohn-Sham DFT, we obtain by minimizing

the total energy functional with respect to the set of singly-occupied orthonormal

Kohn-Sham electron wave-functions , i.e.

(3.12)

We refer to as the Born-Oppenheimer potential energy surface. Next, assume that the ions

obey the laws of classical mechanics (Newton’s law to be precise). Then force on ion at position

is given by

(3.13)

In short, to compute the time evolution of the system of ions using the BO approach, one has to

first compute the potential energy surface from the total energy functional (by minimizing the total

energy with respect to the electron density), followed by the computation of the ionic forces from

the potential energy at each time step, which are then used to compute the ionic trajectories.

The EL approach, which was introduced by Car and Parrinello [112], exploits the con-

tinuity of the dynamical trajectories i.e. the fact that adjacent configurations are very close. The

Car-Parrinello EL approach uses a fictitious classical dynamical system in which the ionic coordi-
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nates and the single particle Kohn-Shame orbitals both act as degrees of freedom 1. The

Lagrangian for the system is constructed in such a way that the two resulting equations of motion

corresponds to Newton’s equation for the ions and for the electrons. This results in the simultaneous

integration of the ionic and electronic motion. However, the electron dynamics do not correspond

to the real quantum mechanical time evolution. All that the Car-Parrinello method does is to avoid

solving the Kohn-Sham equations explicitly and provide a new way to carry out the energy min-

imization. It therefore finds a way, albeit artificially, to include the electronic motion to the time

evolution of the ions. By varying for a fixed ionic position a single minimum on the energy

surface is found, which should in principle equal the minimum BO potential energy surface . We

will not bother readers with the details of the method since we have not used it in this dissertation.

For more on the basics of the Car-Parrinello approach and how it works in practice, the reader may

refer to seminal papers by Car et al. in Refs. [112, 113].

The major problem with ab initio modeling is that it is computationally expensive. There-

fore the system sizes accessible to such methods can be many orders of magnitude smaller that

empirical methods. To realistically simulate device-sized systems, we need systems containing tens

of thousands of atoms. Current ab initio techniques, although accurate, cannot treat such systems.

As a precursor to our modeling methodology for a-Si, which would be presented in the

next chapter, we will review existing computer modeling schemes for amorphous silicon in the

remainder of this chapter. We will briefly present each method and state their advantages and

disadvantages. However, we will place special emphasis on the WWW technique that yields high

quality and large atomistic models.

The dynamical system is fictitious due to the fact that an electron is assigned a fictitious mass, resulting in a fictitious
kinetic energy in the Lagrangian
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3.2 Molecular Dynamics Simulations

3.2.1 Statistical Eechanics Ensembles

As we explained in the introduction to this chapter, an MD simulation is simply the time

evolution of a system of ions in which the atomic positions are advanced using Newton’s second

Law. Generally, one is interested in the macroscopic properties of a system of interacting particles.

Since MD simulates microscopic processes, we should find a way to extract macroscopic informa-

tion from the microscopic information.

Statistical mechanics relates the thermodynamical properties of a microscopic system

such as atomic positions and momenta with the macroscopic informations in the system such as

the free energy, heat capacities, pressure etc. [114]. The explicit description of macroscopic prop-

erties of a system is non-trivial. However, it is easier to describe the macroscopic properties of a

system in equilibrium. To do this, we fix some parameters to describe a statistical mechanical en-

semble 2. The macroscopic parameters that define an ensemble are classified into two categories,

intensive quantities (i.e. system-size independent parameters, namely pressure (P), temperature (T),

and chemical potential ( )) and extensive quantities (i.e. system-size dependent parameters, namely

total energy of the system(E), total volume of the system (V), and total number of particles (N)).

The most basic ensemble is the micro canonical or (N,V,E) ensemble in which N, V,

and E are always constant. Physically, the (N,V,E) ensemble corresponds to an isolated system

surrounded by heat insulating walls so that energy does not leave or enter the system. Another

ensemble is canonical or (N,V,T) ensemble in which N, V, and T are always constant. Physically,

the (N,V,T) ensemble corresponds to a system in thermal contact with a comparably large heat

A statistical mechanics ensemble is a defined as a set configurations in phase-space characterized by the set of
macroscopic quantities
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reservoir. There is no exchange of particles between the system and reservoir but energy transfer is

allowed to keep the temperature of the system constant [114]. This results in large fluctuations in the

energy of the system with respect to time. Finally there is the (N,P,T) ensemble which corresponds

to a system coupled to a heat and pressure reservoir. There are volume fluctuations of the system to

ensure a balance between the external reservoir pressure and the internal system pressure [114]. In

the thermodynamic limit, the equilibrium properties of all ensembles will be the same 3. Detailed

descriptions of the statistical mechanics ensembles and related phenomena can be found in standard

statistical mechanics texts [115, 116] and extensive review articles [114].

3.2.2 MD Simulations in Practice

Now that we have briefly described the ensembles that one can use in MD simulations, we

will describe how a typical MD simulation of an ensemble proceeds. Generally, an MD simulation

consists of three major steps [95]:

Step 1: Initialization

Begin with a set of initial atomic positions that is representative of the system we want to

simulate. Also specify the initial particle velocities 4 and shift the velocities by the center of

mass velocity such that the net momentum vanishes. Depending on the ensemble, one may have to

specify the initial temperature T and other parameters when necessary.

The thermodynamic limit is the limit of an infinite system such that the density is constant
Usually, one draws the initial velocities from the Maxwell-Boltzmann distribution or from the uniform distribution.

The initial choice does not really matter since the velocities will follow the distribution that characterizes the ensemble in
the equilibrium state.
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Step 2: Computations and Equilibration

Compute the forces acting on each atom and integrate Newton’s equations of motion over a small

time interval to obtain the new atomic positions and velocities. We compute the averages of

dynamical and static macroscopic observables of interest from the positions and velocities. Keep

repeating this step for several time intervals until the system reaches equilibration. Equilibration

simply means that the system is in a state whereby certain properties are no longer varying with

time.

Step 3: Production

After the system reaches an equilibrium state, we proceed to analyze the trajectories to compute

observables of interest such as the radial distribution function, diffusive properties etc.

There are several flavors of MD algorithms for simulations in different ensembles. The

reader may refer well-written texts on computer simulations for detailed algorithms for different

MD schemes [94, 117, 96, 118, 119, 120].

We would like to state that choosing the time interval is very crucial to the success of

the simulation. If is too large, the particles will move very far along the trajectory and hence

the atomic motion would be poorly simulated. If is too small, the simulation becomes time-

consuming as several time steps will be required to achieve equilibration [95]. Generally, is

chosen to be a tiny fraction of timescales for atomic processes such as vibrations and collisions. For

most solids and and liquids, this translates to time intervals of the order of a femtosecond. Hence

it is not feasible to use MD to properly simulate atomic processes that occur on timescales greater

than a microsecond.
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3.2.3 Molecular Dynamics Modeling of a-Si

Now that we have briefly described what MD is all about, we would like to describe how

amorphous silicon models were generated using MD and the feasibility of the method. The most

common MD scheme for modeling amorphous silicon is known as the “cook and quench” (CQ)

method. The starting point of most CQ schemes is crystalline silicon. Thermal disorder s introduced

at a high temperature so that the system completes melts. In the liquid state, the energy of the system

is quite high. The liquid is allowed to cook until it reaches equilibration. The liquid is then quenched

rapidly from the high temperature to a desired low temperature to form a solid. The solid can either

be a crystal (or polycrystal) or amorphous. According to Elliot [4], the distinguishing feature of

producing amorphous solids is that the amorphous solid is formed by the continuous hardening

(increase in viscosity) of the melt. Hence, a criterion for generating an amorphous solid from the

liquid is that the cooling rate should be fast enough to introduce topological irregularities and avoid

crystal formation. In computer simulations, quenching is achieved by decreasing the velocity at

each time step. The simplest way to drive the system at an instantaneous temperature to some

target temperature is reduce the velocity by a factor [117]

(3.14)

where is the length of the time step and is the relaxation time, which determines how rapid

the system is to be driven to reach the target temperature . Choosing the relaxation time is very

important in generation of amorphous solids and it currently a subject of intense research [122].

Once the cooling process is completed at some desired temperature (usually room temperature), the

configuration is finally quenched at , which simply is the potential energy surface minimiza-

tion.
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The CQ method simulates the process called annealing which is used in experimental

laboratories and industries. Samples are annealed through heating to get rid of any artifacts that

are frozen in the material and rapidly cooled. The annealing process usually takes minutes and

sometimes hours. This translates to cooling rates of . One problem with the CQ

method is immediately apparent; the cooling rate, which is typically around is

too high compared to experiments.

The CQ method is not be the best scheme to model of amorphous silicon but it works

well for many systems e.g. SiO . Several factors are responsible for this. First, the extremely

fast cooling rates does not allow the liquid to fully relax into an amorphous phase. The second

problem is the starting liquid phase is more dense than the amorphous solid phase since the average

coordination number of the liquid is 6 compared to 4 in the amorphous phase. Most MD routines

do not adequately treat the density differences (this implies volume expansion and contraction since

the particle number is fixed or equivalently, pressure is controlled) [123]. Together, these problems

in the CQ method lead to models of amorphous silicon whose structural and optical properties are

generally unsatisfactory compared to experiment

The structural defects in CQmodels of a-Si lead to localized defect states in the electronic

bang gap. CQmethods do not have any feature to enforce bond coordination. Another feature of CQ

models is the strain in the network. Primary measures of network strain are the standard deviation

of the bond angles and the total energy. The average bond angle of CQ model of a-Si lies in the

range 13.6 –16.3 compared to experiments which is in the interval 9.4 –12.0 . The bond angle

standard deviation leads to significant broadening of the second peak in the RDF and introduce

localized gap and band tail states. Generally in MD simulations, the final configuration sits in a

local minimum of the energy landscape which is far away from the global minimum. This leads to



89

Table 3.2. Structural properties of quench-melt CRN models of a-Si. The models are labeled as

follows: SCP- tich, Carr, and Parrinello, CGM-Cooper, Goringe, and McKenzie, KL-Kim and

Lee, UK-Urbassek and Klein, KRR-Kluge, Ray , and Rahman, LL-Luedtke and Landman, and

JBK-Justo et al. is the system size, is the average coordination, and is the root mean

square deviation of the bond angles. The table is taken from Ref. [123].

Model SCP CGM KL UK KRR LL JBK

Ref. [124] [125] [126] [127] [128] [129] [130]

Potential DFT DFT SETB SETB SW SW EDIP

64 64 64 128 216 588 1728

(deg) 15.5 15.2 16.3 – 13.6 14.7 14.0

4.03 3.96 4.28 4.001 4.12 4.12 4.054

high energy configurations. In short, MD modeling methods are not the best as far as amorphous

silicon is concerned. Serge Nakhmanson [123] has carefully documented the structural and optical

properties of CQ models of amorphous silicon in his thesis so the reader may refer to his work for

thorough explanations of the individual approaches. Here, we summarize the structural properties

of CQ models in table 3.2. We generally observe the networks have a high bond angle deviation and

significant coordination defect concentration.



90

3.3 Monte Carlo Simulations

Monte Carlo (MC) methods are stochastic-based simulation methods. Unlike MD which

uses the atomic forces to advance particles in a system over a period of time, MC is not a time

evolution scheme. In MC simulations, the system “hops” from conformation to conformation. The

“hopping’ probability usually depends on the energy difference between the initial and final config-

urations as well as the simulation temperature. One advantage MC has over MD is that it can search

for different trajectories for system and even jump over energy barriers that would be otherwise

difficult for MD to overcome. For example, if we want to find the global minimum potential energy

of a system using MD, the system may get trapped in a local minimum on the energy surface and it

might take a considerable amount of time for the configuration to jump out the local minimum and

settle in the global minimum. But MC can easily push the system out of the local minimum and

eventually find the global minimum. Also, MC methods are useful for computing multidimensional

integrals that is otherwise difficult to compute analytically.

For our work, we are interested in Monte Carlo methods based on Markov chains. By

definition, a sequence of successive events is a Markov chain for any if

the outcome of any event depends on only the preceding event, i.e., an immediate future event is

uniquely determined by the present event, regardless of the past. Mathematically, this translates to

(3.15)

where is the conditional probability that an event will occur given that the event has

occurred [94]. In this case, we refer to as the transition probability from state to state

and would be henceforth denoted by for clarity. For a Markovian chain to reach

equilibrium, it must satisfy ergodicity and detailed balance. Ergodicity means that a state can be
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reached from a state in a finite number of steps. Detailed balance means that the average number

times that a state can be reached from a state is equal to the average number of times can

be reached from [94].

We will now give a general outline of an MC algorithm.

Step 1: Begin with an initial state

Step 2: Randomly change the initial state to obtain a new state . For example, wemay randomly

displace atomic positions, deform the supercell to change its volume or use particle annihilation and

creation operators to change the total number of atoms

Step 3: Compute the probability of transition from to , . If

then replace with and go to step 2. Otherwise, go to step 4 below.

Step 4: Generate a random number . If then replace with

and go to step 2. Otherwise discard and begin again from step 2.

We keep repeating steps 2 through 4 until convergence is achieved.
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One of several Monte Carlo schemes is the Metropolis Monte Carlo method [121]. In this

case, probability of transition follows the Boltzmann distribution 5 given by

(3.16)

where the energy difference , , is the temperature of the

system, and is the Boltzmann constant. Because Monte Carlo methods are not time dependent,

it can not be used to simulate dynamical (time-dependent) quantities. Nevertheless, it is quite useful

and flexible as a modeling scheme compared to MD.

3.4 Metropolis Monte Carlo Modeling of a-Si

As we explained earlier, MC simulations afford us the opportunity to sample the energy

landscape of a given system. It is even more flexible if one simulates a Markov process using the

Metropolis algorithm. All that is needed is the energy before and after an event. A well known

metropolis MC method for modeling amorphous silicon, silicon based compounds, amorphous ger-

manium, and amorphous carbon is the Wooten, Winer, and Weaire (WWW) bond switching al-

gorithm [131] and the modifications to the algorithms due to Barkema and Mousseau [132]. The

modified algorithm is extremely fast compared to the original and it can be used to generate ex-

tremely large and high quality models of amorphous silicon of the order of atoms. We will first

describe the WWW bond switching algorithm in its original form and then focus on the improved

version.

Boltzmann’s distribution describes the energy distribution of possible states a system in thermal equilibrium at
temperature . The Boltzmann probability that a system is in a state with energy is given by ,

where .
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3.4.1 The Original WWWAlgorithm

The starting point of the Original WWW method is crystal diamond structure of silicon.

With periodic boundary conditions imposed, every atom in the supercell has exactly 4 neighbors and

only six-fold rings exist. As we stated in chapter 1, the structure of amorphous silicon is believed to

be a CRN. So the aim of the method is to generate a CRN starting with the diamond crystal. Since

every atom in the crystal has exactly 4 neighbors, a crystal of atoms will consist of exactly

bonds. The interaction between the atoms is described by the classical Keating potential given by

equation 3.1. In this case, a Monte Carlo move is a bond switch.

Before explicitly describing the modeling process, let us explain the bond switching pro-

cess using the cartoon figure in Fig. 3.1. Begin with a chain of 3 bonds - , - , and -

(consisting of four atoms , , , and ) as shown on the left side of Fig. 3.1. Next, delete the

bonds - and - and respectively replace them with bonds - and - as shown on the right

side of Fig. 3.1. In the computer code, all we do when a bond switching event is successful is to

delete the bonds - and - from the of bonds and replace it with the new bonds - and

- . This is an artificial process since for example, two atoms close enough will not be bonded but

two atoms far away can form a bond. All we follow here is what the bond list says. The bond list

addition and subtraction always ensures that every atom has exactly four neighbors so that the Keat-

ing potential is satisfied. The bond switching events leads to the creation of five-fold and seven-fold

rings which is a primary feature of CRN models of a-Si. Now that we know how to switch a bond,

we explain how to generate a CRN model of amorphous silicon starting with crystalline silicon and

using the WWW method. The modeling process consists of two main stages. In the first stage, the

starting crystal is heavily randomized by a large number of bond switches at a temperature which

is of the order of the melting point of the material. A bond switch event is accepted with a Metropo-
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Figure 3.1: WWW bond switching event. Figure on the left denotes the configuration before bonds
are switched and the one on the right is the configuration after bonds are switched.

lis probability given by equation 3.16 i.e. , where ,

is the total energy before the bond switch, is the total energy after the bond switch, followed by

a total energy minimization at zero temperature and, . The initial stage is very crucial

in the sense that a significant number of bond switches should be performed so that the randomized

model has no traces of crystallinity.

In the second stage, we perform some more bond switches whiles annealing the system,

and making sure that thermal equilibrium is achieved at each new temperature. Because of the

nature of the Keating potential, unphysical short and long bonds will eventually become normal as

the simulation proceeds. The final structure is a low strain, defect free CRN model of amorphous

silicon. We will discuss the properties of these models in section 3.4.3.

3.4.2 The Modified WWWAlgorithm

We will begin by briefly explaining the need to optimize the original WWW algorithm.

First, the starting configuration is a crystal and so even after randomizing the system using bond

switches, the system may retain traces of crystallinity. Secondly, after every bond switching event

in the original method, we have to fully relax the structure i.e. minimize the total energy. Then, we
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Figure 3.2: Picture depicting a single step in the artificial tetravalent network construction.

have to decide, using the Metropolis probability, whether or not the event will be accepted. For large

systems, structural relaxations can be time consuming. If a move is eventually not accepted, time

would have wasted on relaxing the structure. Thirdly, there is no scheme that tracks an attempted

bond switch event so we do not have to select that event again. This also makes the modeling

process time consuming.

Recently, Barkema and Mousseau (BM) [132] have optimized the algorithm by elimi-

nating the problems outlined above. We will now explain how the BM method improves over the

original WWWmethod.

1. The starting configuration is completely random. This, unlike the original method guarantees

no trace of crystallinity. To generate the starting structure, atoms are randomly place in a

cubic box at crystalline density using periodic boundary conditions. A constraint that no two

atoms a separated by less 2.3 Å is imposed. Next, we have to artificially make every atom

four-fold by constructing a list of bonds. Artificially, making the network perfectly 4-fold
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is tricky and can be confusing. Let us briefly examine how this works. Ideally, two atoms

separated by a cut-off distance or less should be bonded. Begin by randomly constructing

a loop consisting of four atoms and four bonds such that

each bond length is less than as shown in Fig. 3.2(a). At this point, only these four bonds

exist in the network. No other bonds exist. From this point, some old bonds are broken from

which new bonds are generated. This is achieved by gradually expanding the loop until each

atom is visited twice. The trick here is to know how the loop is expanded. Let us explain this

using a single step in the loop expansion process. Randomly select three atoms , , and

satisfying the following conditions:

(a) atom has at most two neighbors and it is not bonded to neither or (according to

the bond list) but it is within the cut-off distance from both and

(b) atoms and are bonded i.e., the bond exist.

In Fig. 3.2(b) we have depicted how the atoms are selected. We expand the loop by deleting

the bond from the list and replacing it with the bonds and . This is shown in

Fig. 3.2(c). Each time the loop is expanded the artificial bond list is updated. After every atom

is visited twice, the network becomes perfectly fourfold. This final structure is an extremely

strained random network with unphysical bonds and a bond angle standard deviation of about

30 .

2. As we stated earlier, in the original approach, the network is fully relaxed after a bond switch-

ing event and then the Metropolis probability to either accept or fail to accept the new config-

uration. Barkema and Mousseau [132] have devised a smart way to reject a bond switching

event without fully minimizing the total energy. Right after bonds are switched, a threshold
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energy is determined before performing structural relaxation. Vaguely think of this as a re-

verse process. To determine the threshold energy, generate a random number and

equate it to the Metropolis probability , where , is the total

energy before the bonds are switched and is the threshold energy. From the equation, we

obtain

(3.17)

Once is determined, we begin the relaxation process. The relaxation is mostly local as

opposed to global in the original case. Local relaxations are permissible since after bonds

are switched, only a small cluster of atoms around the bond switch site experience significant

changes in forces. Local relaxations are performed up to within the fourth shell of the atoms

involved in the bond switch event. The local moves significantly reduces the computation of

the forces and energy from to [133]. At each step of the local relaxation, the total

energy is given by , where is the energy of the atoms outside the cluster

which is fixed and is the energy of the atoms forming the cluster [133].

For a well relaxed configuration, the potential energy is harmonic about the minimum. We

can use this fact to determine an estimate of the total final energy using the current and

the on the atoms at each step of the relaxation process,

(3.18)

where . A bond transposition is accepted only if . If at any stage in the

relaxation process , the bond switch is immediately discarded and a new event is

attempted. By so doing, time is not wasted to fully relax the system before the decision to

accept or fail to accept is reached. After a bond transposition is accepted, we globally relax
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the system to relieve the system of the strain at the boundary separating the the cluster and

the rest of the atoms.

3. Every attempted bond switch is marked so that an event is not duplicated. For a system of N

atoms, there are possible bond transposition attempts. After all the attempts

are made, the process is complete. The final model is relaxed at zero pressure.

With the optimization procedures mentioned above, the modified WWW algorithm pro-

duces high quality models of a-Si. The final models provide a good starting point for MD simula-

tions using reliable classical potentials and accurate ab initio potentials.

3.4.3 Properties of WWWModels of a-Si

We now discuss the properties of the modified WWW models of a-Si. We will also

compare them to models generated from the original algorithms to see the marked improvements

that the modified algorithm provides.

We begin with the structural properties of the models. As we stated in chapter one, the

structure of an amorphous matrix is characterized by its short range properties, in particular the

distributions of the pair inter-atomic distances (radial distribution function) and the distribution of

the bond angles. The short-range parameters that can be readily computed from the distributions

are the mean bond length , bond length standard deviation , mean bond angle , bond angle

standard deviation. . We also compute the dihedral angle distribution and ring statistics which

we have already defined in chapter 1.

In Fig. 3.3, we show the plots for the bond angle distribution, dihedral angle, and radial

distribution function, of a 1000-atom CRN model of amorphous silicon generated using the BM

algorithm. In Fig. 3.3(a) , we see a nice match of the computed RDF with recent X-ray diffraction
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Figure 3.3: Structural properties of 1000-atom model generated using the modified WWW algo-
rithm. Upper panel is the bond angle distribution, middle panel is the dihedral angle distribution,
and lower panel is the radial distribution function (RDF). Experimental results for the RDF is taken
from Ref. [11].
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experiments by Laaziri et al. [11]. The experiments results were measured from annealed samples

of a-Si prepared by ion bombardment. All the peaks corresponding to the coordination shells are

correctly reproduced. In Fig. 3.3(b), we show a plot for the bond angle distribution. The bond angle

standard deviation can be extracted from the second peak of radial distribution function, using the

relation proposed Beeman et al. [12]. Using the experimental RDF results by Laaziri et al. [11], the

relation yielded bond angle widths of 10.45 and 9.63 respectively for as-implanted and annealed

samples. The configuration presented here has a bond width of 9.0 which compares favorably with

annealed experimental samples. This configuration is expected to be the right structure since it was

well relaxed at zero temperature. In addition to the radial and bond angle distributions, the model

has no coordination defects. In Fig. 3.3(c), we show the dihedral angle distribution for the model.

For the diamond crystal, the dihedral angle is a Dirac delta function centered on . For the

configuration presented here, we see a thermal broadening about . This is expected for

the disordered system and depicts the deviations of bond lengths and bond angles from the ideal

crystalline system.

Even though structural analysis gives us some key information about a system, it does

not tell us all about the local bonding environments. The other major quantities that are used to

confirm how realistic a model is are the electronic and vibrational density of states. We have dis-

cussed the relevance of the electronic and vibrational density of states to amorphous networks in

chapter 1. Strained regions of the network that are not immediately apparent from structural anal-

ysis can be picked up by the EDOS in the form of localized gap and tail states. We have therefore

computed the EDOS of the 1000-atom CRN model from first principles. To do this, we used the

ab initio code SIESTA [74, 75, 76] to relax the network. The exchange-correlation functional was

approximated using LDA, where the correlation functional was obtained from parametrization of
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Ceperly and Alder [47]. Valence electron states were expanded using single basis set described

in section 2.10. Norm conserving pseudopotentials, expressed in Kleinman-Bylander [72] form.

Troullier-Martins [70] scheme was used to parametrize the pseudopotential. The network was re-

laxed using a conjugate gradient optimization scheme such that the maximum force on each atom

is less than 0.04 eV/Å. Even though a 1000-atom model is somewhat large for a first principles

calculation, the energy relaxation converges much faster because of the high quality nature of the

CRN. Structural relaxation is also a way to check the stability of the model. The single-particle

Kohn-Sham eigenvalues were obtained from the direct diagonalization of the Kohn-Sham Hamilto-

nian.

In Fig. 3.4, we show a plot of the EDOS of a fully relaxed network. The distribution

has been smoothed with a Gaussian approximation for the delta function. As can clearly be seen,

the EDOS is devoid of band gap states. A band gap state tells us about the nature of defects in

the network. The clean gap possessed by this model indicates the system is well-relaxed. Defect-

free models are important if one wants to study the role of defects in amorphous semiconductors.

The graph in the inset shows that the decay of the valence states, known as the Urbach tails, is

exponential i.e. it proportional to , where the decay parameter eV. This

value for the decay parameter is in good agreement with a previous calculation on a large model by

Dong and Drabold [134].

We explained in section 1.4 that computing the dynamical matrix scales as if the

force are computed by directly diagonalizing the Hamiltonian. For a 1000-atom model this quite

expensive so we have computed the VDOS for a 216-atom CRN model. The match of the Gaussian

broadened computed VDOSwith the inelastic neutron scattering experimental data [16] in Fig. 3.5 is

not too bad. Apart from the small shift in the transverse optical peak to the right of the experimental
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Figure 3.4: Electronic density of states (EDOS) for 1000-atom model generated using the modified
WWW algorithm calculated from first principles. The main graph details the density of states
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eV.
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Figure 3.5: Vibrational density of states (VDOS) for 216-atom model generated using the modified
WWW algorithm calculated from first from. Experimental data was taken from Ref. [16]. The shift
in the computed transverse optical (TO) peak to the right of the experimental TO peak has been
discussed in the text.

peak, the general features of the distribution are well reproduced. The shift in the peaks can be

attributed to the procedure for preparing the sample in experiments and the difficulty in simulating

the high frequency region of the vibrational spectrum due to the flattening of the phonon dispersion

curve. The gap around is due to the finite size effects in the sense that small values

of correspond to wavelengths that are larger than the length of the simulation cell [123].

Finally, we compare and contrast the energetic and structural properties of modifiedWWW

models to models obtained from the original WWW algorithm. The models generated from the orig-

inal method is are two 4096-atom configurations due to Djordjević, Thorpe, andWooten (DTW) [135].

We will refer these models as DTW4096(a) and DTW4096(b). For the models generated from

the modified algorithm, we use 1000-atom (BM1000), 4096-atom (BM4096), and 10,000-atom

(BM10K) models.



104

In table 3.3, we see that the total Keating energy per atom for the models obtained from

the improved algorithm is smaller than all the DTW models, indicating that besides its efficiency,

the modified algorithm yields models that have a significantly lower strain. Another important

structural property is the bond angle standard deviation . It is clear from table 3.3 that for

the models generated from the improved algorithm agree closely with experimental value of 9.63

while the original models still shown a slightly larger deviation. We also show the ratio of the mean

bond length to the zero temperature crystalline bond length Å. The results clearly

show the deviation of the bond lengths from the is not too large.
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Table 3.3. Structural and energetic properties of models relaxed with the Keating springs.

DTW4096(a) and DTW4096(b) are 4096-atom models are obtained from the original WWW

algorithm and described in detail in Ref. [135]. All other models are due to the improved WWW

algorithm due to Barkema and Mousseau (BM) [132]. BM1000: 1000-atom model; BM4096:

4096-atom model; BM10K: 10,000-atom model.

DTW4096(a) DTW4096(b) BM1000 BM4096 BM10K

(eV/atom) 0.336 0.367 0.250 0.304 0.301

0.996 0.997 0.989 0.98 0.98

109.2 109.3 109.3 109.3 109.3

10.51 11.02 9.00 9.89 9.88

rings/atom

4 0.015 0.000 0.000 0.000 0.000

5 0.491 0.523 0.472 0.490 0.48

6 0.698 0.676 0.761 0.739 0.742

7 0.484 0.462 0.507 0.467 0.512

8 0.156 0.164 0.125 0.148 0.142
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Chapter 4

Reverse Monte Carlo Modeling of

Amorphous Silicon

In chapter 3, we reviewed the existing modeling schemes for generating CRN models of

a-Si and the WWW [131, 132, 135] modeling method was by far, the most efficient and reliable

scheme for generating high-quality CRN configurations of a-Si. All the modeling schemes dis-

cussed in chapter 3 begin with some initial configuration and a potential describing inter-atomic

interactions and the system is then modeled using molecular dynamics or Monte Carlo. The key

properties of the final model are compared to experiments to determine whether or not they are real-

istic. The resulting models can also be used to make predictions. We will refer to all these modeling

schemes as forward modeling. The name forward modeling is so chosen because one begins with

some initial configuration and uses some modeling scheme to generate a final configuration, whose

properties may be consistent or inconsistent with experiments.

In this chapter we develop a reverse modeling approach to model amorphous semicon-

ductors. In general, the starting point for reverse modeling is experimental data sets and some
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initial configuration. The key idea of reverse modeling is to generate output configurations that

satisfy the experimental data used in the modeling process. Generally, reverse modeling methods

have the advantage that no inter-atomic potentials are needed and we are guaranteed that the model

is consistent with experiments whereas forward modeling methods can be expensive and they do

not guarantee models satisfying experiments. Reverse modeling methods also provide a platform

for the interpretation of experimental information via atomistic modeling [136]. However, reverse

modeling methods suffer from the problem of non-uniqueness in the sense that different models

will satisfy the same set of experimental data used in the modeling scheme but may entirely fail to

match experimental data not used in the scheme. So if one uses a reverse model model scheme, one

has to make sure that the basic structural and chemical properties are satisfied.

Here, we focus on a Metropolis Monte Carlo method with reverse modeling known as

reverse Monte Carlo (RMC) [136, 137, 138, 139, 141, 142, 143, 140], for modeling a-Si. Our

primary objective is to produce structural configurations that are consistent with experimental data

but at the same time we go one step further to generate realistic configurations for comparison

with models obtained via other routes. We emphasize that producing realistic models (meaning

models which agree with all experiments) requires more than spatial pair correlations, and identify

additional constraints which lead to realistic models.

The existing RMC models of amorphous semiconductors are found to be inadequate and

fail to produce some of the basic experimental features of amorphous tetrahedral semiconductors.

Gereben & Pusztai [137, 138] have carried out RMC simulation of tetrahedral semiconductors using

a number of models ranging from completely disordered configuration to randomized diamond

structure. Although a certain degree of tetrahedral character in the bond angle distribution was

reflected in their work, most of their models show an unphysical peak in bond angle distribution
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around . The work of Walters and Newport [139] on amorphous germanium made some progress

toward getting the correct bond angle distribution, but the number of 3-fold coordinated atoms were

quite high in their model and in absence of any discussion on local strain and electronic properties

it is difficult to say how reliable their models are when it comes looking at the electronic properties.

The inadequacy of earlier RMC schemes to generate realistic CRN models of a-Si and

the need for a reliable algorithm that will result in realistic CRN models was the motivation for

carrying out this project. In section 4.1, we briefly mention the basic philosophy of reverse Monte

Carlo modeling and some of its salient features. This is followed by role of constraints in RMC

modeling in section 4.2 where we illustrate how a set of judiciously chosen constraints can be used

to construct a reliable model of amorphous silicon. Finally we compare our results with those

obtained from earlier RMC models and a model obtained via the WWW algorithm.

4.1 Basics of RMC

The RMC method has been described in detail elsewhere [140]. Here we briefly outline

the basic philosophy of RMC. At the very basic level, RMC is a technique for generating structural

configurations based on experimental data. The logic is very appealing: any model of a complex

material worthy of further study should, at a minimum, agree with what is known (that is, the

experiments). By construction, the RMC scheme enforces this (and for contrast, a molecular dy-

namics simulation may not). In an ideal implementation, one should find a model agreeing with all

known information, but this is not easy to accomplish. As far as we are concerned, the approach

was originally developed by McGreevy & Pusztai [140, 137] for glassy materials and liquids us-
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ing different experimental data. In recent years however, progress has been made toward modeling

polycrystalline systems as well [144].

We now briefly explain how the original RMC method works.

1. Begin by randomly placing atoms in a periodic supercell at the right number density, and in

addition, impose the condition that no two atoms are closer within a cut-off distance. The

cut-off is of the order of the equilibrium bond length of the material.

2. Compute the non-negative initial cost function using an experimental data of choice. The

most commonly used experimental data in RMC algorithms is the static structure factor

obtained from diffraction experiments. For experimental data points, we have

(4.1)

where is the simulated static structure factor corresponding to the initial configuration

and is the uncertainty associated with each data point.

3. Make a move by randomly displacing a single atom or group of atoms and compute a new

cost function:

(4.2)

where is the simulated static structure factor corresponding to the the new configura-

tion .

4. Compute the cost difference . The Metropolis Monte Carlo begins at this point.

The probability of accepting the new configuration is given by

(4.3)
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If the new configuration is accepted, replace with and with and go to step 3.

Otherwise, keep and , discard and , go to step 3 and make a new move.

Keep repeating steps 3 and 4 until convergence is achieved. We must also mention that the cost

function is not restricted to only a single experimental data. Multiple experimental data sets can be

used.

Besides glasses and liquids, the RMC method has been used to model magnetic materials

and polymers. However, the method has never been accepted without some degree of controversy

and the most popular criticism is the lack of unique solution from RMC. RMC can produce multiple

configurations having the same pair correlation function. This lack of uniqueness, however, is not

surprising, since usually only the pair correlation function or structure factor is used in modeling

the structure, while there exists an infinite hierarchy of higher order correlation functions carrying

independent structural information are neglected. In other words, RMC samples from the space

of all models consistent with some limited body of data – in its simplest form (analyzing a single

experiment) RMC is an ideal gauge of how non-specific the data is with respect to identification of

an atomistic model. If the modeler possesses a priori information independent of that implicit in

the experiment being fit to, it is necessary to add this information to the modeling in some fashion

to receive a model in joint agreement with the experiment and the additional information.

4.2 A New RMC model

We begin by including the minimal information that is necessary to model a configuration

of -Si. In so doing, we use the radial distribution function obtained from a high quality model

of amorphous silicon. This latter model was generated by Barkema and Mousseau [132] using a
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modified form of WWW algorithm [131] having bond angle distribution close to with 100%

4-fold coordination which we have described in chapter 3. In addition to this RDF, we also impose

the conditions that the average bond angle of all the triplets Si-Si-Si should be near and

the corresponding root mean square deviation should be no less than . The number of 4-fold

coordinated atoms is driven to a specified value during the simulation by including a constraint on

the average coordination number. It is to be noted that while there is no limit to the number of

constraints that can be included in the system, there is no guarantee that mere inclusion of more

constraints will necessarily give better results. Forcing a completely random configuration with too

many competing constraints may cause the configuration to be trapped in the local minimum of the

function and may prevent the system from exploring a large part of the search space. By adding

only the essential constraints that describe the chemical and geometrical nature of the bonding

correctly, Eq. 4.1 can be written as :

(4.4)

where,

In Eq. 4.4, and are the average angle and the rms deviation while and are the

current and proposed concentration of the 4-fold coordinated atoms. It is important to note that
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each of the terms in Eq. 4.4 is non-negative, and should decrease ideally to zero during the course of

minimization. Since the cost of energy associated with the bond length relaxation is more than the

bond angle relaxation, atomic arrangements with large bond angle distribution but having correct

RDF frequently result. The coefficients, to , for the different terms in Eq. 4.4 can be chosen

appropriately to minimize this effect. In general the coefficients are constant during the course

of simulation but the minimization procedure can be slightly accelerated by making them vary in

such a way that the contribution from each of the term are of the same order during the course of

simulation. The coefficient is usually assigned a large value in order to include a hard sphere

cut-off as mentioned earlier so that no two particles can come closer to while the coefficient

maintains the number of 4-fold coordinated atoms to a specified value. In RMC simulation of

amorphous tetrahedral semiconductors one usually encounters the problem of having a pronounced

peak at . This peak is a characteristic feature of unconstrained RMC simulation and is due to the

formation of equilateral triangles by three atoms. In the work of Gereben and Pusztai [137, 138],

attempts were made to overcome this difficulty by constraining the bond angle distribution as well

as by making an initial configuration which is 100% 4-fold obtained from a diamond lattice. The

resulting structure is, however, found to be unstable and on relaxation using a suitable potential, the

configuration tends to get back toward the starting structure, i.e., randomized diamond in this case 1.

In the approach of Walter and Newport [139], the initial random configuration was ex-

amined and any “triples”, i.e. , three atoms forming an equilateral triangle was removed before

the beginning of RMC fit. By selective removal of such unwanted triplets, they have been able to

generate configuration of -Ge without having a peak at . The approach that we have taken in

our work is more general and starts with a completely random configuration. This eliminates, in

This observation is equally true in the context of original WWW model as pointed out by Winer and Wooten [145]
and was remedied in their work by making the number of bond switching per atom above a certain minimal value.
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the first place, any possible local ordering that may exist in the starting structure (e.g., randomized

diamond structure retains the memory of tetrahedral ordering). Furthermore, we have not included

or excluded any special configuration in our starting structure, e.g., three atoms forming an equi-

lateral triangle. Based on experimental consideration, we have included only the key features of

amorphous tetrahedral semiconductors – an average bond angle of having rms deviation of

which is consistent with the RDF obtained from aWWW relaxed model used in our calculation.

For the 500-atom model reported in this work, we have chosen a cubic box of length 21.18Å which

corresponds to number density 0.0526 atom/Å . The initial configuration is generated randomly so

that no two atoms can come closer to 2.0Å. The configuration is then relaxed by moving the atoms

to minimize the cost function . In addition to applying standard Monte Carlo moves in which a

single or a group of atoms is randomly displaced, a variety of Monte Carlo moves have been imple-

mented in our work. For example, in one of such moves, a 3-fold or 5-fold atom is selected and the

nearest neighbor distance is examined. If the distance is greater than 2.7Å, the neighboring atom is

displaced in order to bring the distance within a radius of 2.7Å. The maximum displacement of a

Monte Carlo move is limited to 0.2-0.4Å throughout the simulation. Since we are interested in the

electronic structure as well, we confine ourselves within a reasonable system size for studying the

generated structure using a first principles density functional Hamiltonian. The density functional

calculations were performed within the local density approximation (LDA) using the local basis first

principles code SIESTA [74, 75, 76] described in chapter 2. We have used a non self-consistent

version of density functional theory based on the linearization of the Kohn-Sham equation, the Har-

ris functional approximation [53] described in chapter 2 along with the parameterization of Perdew

and Zunger [49] for the exchange-correlation functional. We have used the Troullier-Martins [70]
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norm conserving pseudopotentials factorized in Kleinman-Bylander form [72] were used to remove

core electrons. Valence electrons were expanded using the minimal single basis set.

4.3 Results

The results for the model including all the constraints are presented in Figs. 4.1-4.4. Since

the structure factor is generally considered to be more sensitive to an arbitrary small change in the

atomic positions than the radial distribution function, we have plotted the structure factors for the

constrained RMC and WWW model in Fig. 4.1. It is evident from Fig. 4.1 that the agreement

between the RMC and WWW model is very good both for small and large values of Q. In order to

further justify the credibility of our model, we have plotted in Fig. 4.2 the structure factor from the

experiment of Laaziri et al. [11] along with the same obtained from our RMC model. Once again

we find that the agreement between the structure factor from RMC and the experimental results is

quite good except for the few points near the first peak. It is very tempting to think this deviation

as a finite size effect coming from the finiteness of our model. We have therefore calculated the

structure factor for WWW models containing 300 to 4096 atoms of Si but the deviation continues

to remain. Holender and Morgan [147] also observed similar deviation near the first peak in their

work with a much larger model containing 13824 atoms which was compared with the experimental

data obtained by Fortner and Lannin [146].

In Fig. 4.3, we have plotted the bond angle distributions (BADF) for both the RMC and

WWW model. As we have discussed in section 4.1, the radial distribution function or structure

factor can not alone provide all the necessary information that are needed to characterize an atomic

configuration obtained from a reverse Monte Carlo simulation. A further characterization beyond
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Figure 4.1: Structure factor obtained from a RMC (+) model containing 500 atoms of -Si. The
solid line is obtained from a WWW sample of identical size and number density of atoms.

pair correlation function is therefore vital and necessitates the need for getting some idea about the

3-body correlation function. It is clear from the Fig. 4.3 that the distribution obtained from the RMC

model follows the tetrahedral character observed in amorphous semiconductors. The average bond

angle in this case is found to be with rms deviation of . An important aspect of the

bond angle distribution in Fig. 4.3 is that most of the angles are lying between - compared to

- in WWW case. We emphasize at this point that the earlier works on modeling amorphous

tetrahedral semiconductors using RMC predicted a much wider bond angle distributions. Gereben

and Pusztai [137] have observed a pronounced, unphysical peak at except for the model starting

with diamond structure while Walters and Newport [139] have reported a bond angle distribution

of -Ge which is as wide as - . It is an important development here that by adding three

more constraints ( , and ) we have achieved significantly improved results. Both the radial
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Figure 4.2: Structure factor obtained for a 500-atom model of -Si from RMC (solid line) and the
experiment of Laaziri et al. [11] as indicated in the figure.

and the bond angle distribution functions reported here are at par with the results obtained from

molecular dynamics simulation and is comparable to those obtained from WWW model. The fact

that the inclusion of these two constraints leads to a significant improvement is not surprising. For

a large continuous random network (CRN) model of amorphous tetrahedral semiconductor, one

can approximate the bond angle distribution as nearly Gaussian 2. This approximated Gaussian

distribution can defined by the first two moments of the distribution function. By specifying these

two moments as constraints in Eq. 4.4, we correctly describe the tetrahedral bonding geometry of the

atoms which along with the radial distribution function produces a configuration more realistic than

those obtained from models based on RDF or structure factor only. This suggests that in addition to

Although we are not aware of any mathematical proof, large continuous random network models of amorphous tetra-
hedral semiconductors obtained by WWW algorithm exhibit a bond angle distribution P(cos ) very close to a Gaussian
distribution. See for example, J. Dong and D.A. Drabold, Phys. Rev. B 54, 10284 (1996).
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Figure 4.3: The bond angle distribution functions (BADF) for 500-atom -Si from constrained RMC
(dashed line) and WWW model (solid line). The rms deviation for the models are and
respectively.

the radial distribution of the atoms, one needs to include some relevant information about the nature

of 3-body correlation among the atoms to construct a realistic configuration.

Having studied the radial and bond angle distribution we now address the electronic den-

sity of states calculations. While the width of the bond angle distribution function (BADF) and the

structure factor together indeed gives some idea about the quality of the model, some of the features

e.g., the existence of spectral gaps and the position of defects states in the spectrum can be studied by

looking at the electronic density of states only. The structure obtained from RMC simulation is first

relaxed using the density functional code SIESTA and is found to be close to an energy minimum

in the local density approximation (LDA). This is an important test for determining the stability of

the structure obtained from RMC simulation and as far as we are concerned almost all earlier works
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Figure 4.4: The electronic density of states (EDOS) of 500-atom model of -Si obtained from RMC
simulation described in the text. The Fermi level is at E=0.

on RMC have completely neglected this issue. In Fig. 4.4, we have plotted the electronic density of

states (EDOS) for the constrained model. The EDOS appears with all the characteristic features of

-Si with the exception of a clean gap in the spectrum. This behavior is not unexpected in view of

the fact that 88% of the total atoms are found to be 4-fold coordinated with an average coordination

number 3.85. The presence of the defect states makes the gap noisy and at the same time the use

of LDA underestimates the size of the gap. This EDOS is in significantly better agreement with

optical measurements than conventional RMC models with much higher defect concentrations and

spurious bond angles. It is interesting to observe that the average coordination number from our

model is very close to the experimental value of 3.88 reported by Laaziri et al. [11].
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4.4 Conclusion

We have presented a model of amorphous silicon based on reverse Monte Carlo simula-

tion. One of the novel features of our model is to start with a completely random structure and then

to relax toward a realistic configuration by adding a number of physically relevant constraints. The

characteristic features of the tetrahedral bonding are taken into account by adding constraints on

average bond angle and its deviation from the mean while the number of 4-fold coordinated atoms

is maintained at a specified value by further use of a constraint on average coordination number. The

radial and the bond angle distribution obtained from our model is found to be in excellent agreement

with a high quality CRN model produced by WWW algorithm. We have also compared the struc-

ture factor with the experimental data obtained by Laaziri et al. [11] and observed a reasonably good

agreement. By relaxing the model using the first principles density function code SIESTA, we find

that the model is close to the energy minimum for LDA and is stable. The electronic density of states

(EDOS) obtained from our model contains all the essential feature of amorphous silicon including

a signature of the band gap. Although the model does not produce a clean gap in the spectrum,

the quality of the EDOS is at par with models obtained from molecular dynamics simulation. Our

RMC algorithm presents a significant improvement on previous RMC studies and makes it possible

to compare for the first time, albeit qualitatively, the structural and electronic properties of RMC

models with its WWW counterpart. We expect that further developments toward this direction will

eventually make RMC as an useful modeling tool incorporating experimental information and can

be used effectively without any criticisms in modeling complex materials.
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Chapter 5

Experimentally Constrained Modeling

of a-Si Using Fluctuation Electron

Microscopy Experimental data

Medium range order (MRO) in amorphous silicon is generally considered to be any struc-

ture that lies between short range (2-5 Å) and long range ( Å) disorder [148]. Quantifying this

order therefore requires information beyond the radial distribution function (RDF). Until recently,

direct experimental data about atomic structure in disordered systems were limited to the structure

factor. If one assumes that the material is isotropic, then the Fourier transform of the structure factor

(with the angular information integrated out) yields the RDF [11]. The problem with the RDF is that

it is insensitive beyond short range. Probes of the vibrational characteristics of the material, such

as inelastic neutron scattering, Raman spectroscopy, and also, X-ray absorption spectroscopy and

nuclear magnetic resonance have been employed with success, but yield structural information that
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can be difficult to interpret [12, 149, 150, 151, 152]. In ionic and covalent glasses, hints about MRO

come from the first sharp diffraction peak (FSDP) in the total factor structure [153]. This feature

is believed to correspond to large spatial distances in the material, and understanding their origin is

key to unraveling details of medium range order. Recently, the design of MRO in zinc-chloride net-

works using crystal engineering has been demonstrated and the degree of MRO measured from the

FSDP [154]. The degree of MRO present in disordered systems is believed to affect the electronic,

optical, and transport properties of these materials. The well known Staebler-Wronski effect, for ex-

ample, which is the creation of metastable dangling bonds in hydrogenated amorphous silicon upon

exposure to visible light [3], has been observed to occur in the material with diminishing medium

range order [155].

Obtaining information about correlations other than the pair correlation in disordered sys-

tems remains a fundamental, yet presently unresolved, issue [153, 156, 157]. Recently, Treacy and

Gibson have developed a low resolution electron microscopy technique known as fluctuation elec-

tron microscopy (FEM) [158]. In a nutshell, FEM is the statistical analysis of the fluctuations in

the diffracted intensities due to scattering from mesoscopic volumes in amorphous thin films. It has

been shown in detail elsewhere that the fluctuations in the diffracted intensities is, in a non-trivial

way, related to three and four body correlation functions [159]. These correlation functions are

much more sensitive to MRO than the RDF. Many experimental FEM studies have been done on

a-Si and a-Ge. The conclusion reached in all cases was that MRO, as gauged by the fluctuations in

the image intensity, is present in the as-deposited forms of these disordered systems [159, 160].

The CRN model for silicon, which we described in previous chapters has been success-

ful in describing almost all known physical, electronic, and vibrational properties of the material.

However, the CRN model for a-Si fails to produce FEM signal that matches experiment. An alter-
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native model, the para-crystalline (PC) model of a-Si, which consists of nanometer sized crystalline

grains (with a total volume fraction of %) embedded in an amorphous matrix was pro-

posed [161, 162]. The PC model has all the known structural, electronic, and vibrational character-

istics of a-Si and in addition, produces a computed FEM signal that matches experiment. Depending

on the orientation of the crystalline grains to the incoming electron beam, regions of the material

will be near or away from Bragg conditions. Crystals near Bragg conditions will diffract strongly,

leading to large fluctuations in the diffracted intensity while those away from Bragg conditions will

diffract weakly leading to small fluctuations in the diffracted intensity. Recently, it has been shown

that the FEM signal in the PC model depends on the shape, size, and orientation of the nanometer-

sized crystalline grains in the amorphous matrix [163].

If the CRNmodel for a-Si is an ideal atomistic model for the material, then it should be in

reasonable agreement with experiments. As stated earlier, the shortcoming of the CRN model is its

failure to satisfy FEM experiments. There have been previous claims that the PC model is the true

representation of a-Si and that the CRNmodel is hypothetical [159, 163]. However, although the PC

model satisfies all the known properties of a-Si and produces FEM signal comparable to experiment,

we do not know whether or not it is unique. The aim of this work is investigate whether or not there

exist a class of realistic models of a-Si, which are not PC models, and have FEM signature that

matches experiment.

We propose two ways to build such models.

1. One can simply begin with a CRN model having no experimental FEM signal and build the

experimental information into the model using the RMC algorithm described in chapter 4 and

impose the necessary topological and energetic constraints. As we will describe later, this

scheme is very easy to implement.
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2. One can begin with an initial completely random network and use a reliable forward modeling

method (modified WWW algorithm due Barkema and Mousseau [132] in this case) to model

a CRN configuration and simultaneously enforce experimental FEM information using a re-

verse modeling method (RMC in this case). In chapter 3 we described the modified WWW

algorithm and in chapter 4 we discussed the RMC method in detail.

We refer to the second modeling scheme as experimentally constrained modeling (ECM). One can

think of ECM as part forward modeling and part reverse modeling. Hence, the underlying phi-

losophy behind ECM is to build atomistic configurations from scratch using well-known forward

modeling methods and at the same time use RMC to ensure that the system satisfies all known

experimental, topological, and chemical properties. The beauty of ECM is that its applicability

is flexible, in the sense that it can always be tailored to suit a disordered system of interest. Re-

cently, Biswas et al. used ECM to successfully model glassy GeSe using ab initio methods and

RMC [164]. They obtained a model that matches well with experiment and is at the minimum of the

inter-atomic potential describing the system. Details of the work is outlined in a recent dissertation

by D. Tafen in Ref. [165].

5.1 Fluctuation Electron Microscopy

FEM theory and practice has been described in detail in a recent Ph.D. thesis by Paul

Voyles [1] so we will briefly explain how experimental data is measured and explain the theoretical

aspects needed for this work.

FEM is essentially a high energy electron diffraction technique, which gains its sensitivity

to MRO by measuring fluctuations in the diffracted intensity from MRO-scale volumes of a sample.
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The two key elements of FEM experiments are the radius of the objective aperture in reciprocal

space and the scattering vector accepted by the objective aperture. The corresponding real

space resolution is . Here, we are interested in the fluctuation in the intensity for varying at

a fixed spatial resolution. The kinematic coherent image intensity due to scattering from

a volume of size proportional to , centered on a pixel at position r is given by [158, 159, 166]

where the summations runs over all atoms within the sampling volume, is the electron scatter-

ing factor, and is the electron wavelength. is the microscope point spread function

of width centered on atom , which, if we neglect the effects of aberrations, is acceptable at

low resolution, and is given by the Airy function [158]

where is the Bessel function of the first kind of order . describes the incoming illumi-

nation, which within the hollow-cone approximation [158, 159] is given by

The dimensionless normalized variance which is used to determine the degree of MRO in

the material is defined as

where denotes average over pixels. It has been shown elsewhere [159] that is related

to three and four body correlation functions, which in turn, gives information about MRO. A large

implies a high degree of MRO and a small implies little or no MRO.
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In Fig. 5.1, we show a simple picture of how diffraction measurements are taken in FEM

experiments. Because the diffraction of amorphous silicon is isotropic, a hollow-cone illumination

is used, which means that the incident electron beam is rotated at a constant inner angle so electrons

that are scattered through a scattering vector with constant magnitude , will travel down the optic

axis of the microscope and form the image [1]. Scattered electrons will pass through the objective

aperture of width and continue on to form the image. Unscattered electrons are blocked by the

aperture, so images with no sample will appear dark [167]. A typical hollow-diffraction image

is shown in the inset of figure 5.2. We also show a typical plot for the variance of the diffracted

intensity measured in FEM experiments in fig 5.2. FEM experimentalists use the height of the

peaks to measure the degree of MRO in the sample [1].

5.2 Experimentally Constrained Modeling

We begin this section by describing how a CRN model of a-Si that has no FEM signal to

begin with, can be modified to have the signal using RMC and appropriate constraints. To achieve

this, we use RMC to minimize the cost function

(5.1)

where

(5.2)

(5.3)

(5.4)



126

Figure 5.1: k and Q, the two parameters that control the images captured in FEM experiments. The
picture was taken from Ref. [1].
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Figure 5.2: Typical data for a-Si. Positions of diffraction peaks in c-Si and a-Si are indi-
cated.Insets show dark field images. captured in FEM experiments. The picture was taken from
Ref. [167].



128

is the modified Stillinger-Weber (MSW) [99] potential, and , are coupling constants.

Because the starting configuration is well relaxed with the Keating potential [97], we have used

the MSW potential as an energetic constraint to regulate the energy landscape of the system. If

the energetic constraint is not imposed, one ends up with a model having the experimental FEM

signal but energetically unstable. Such a model contradicts experiments. is the part of the

cost that controls the FEM signal, where is the number of experimental data points, is

the simulated FEM signal, and is the experimental FEM signal. maintains the 4-fold

coordination of the network, where is the coordination for atom . ensures that no two atoms

are separated by a distance less than , where is the Heaviside step function. Typically, the

minimum value of is 2.0 Å. One difficulty in the simulation is appropriately choosing the and

so that there is no bias toward a particular component of the cost function and the system does

not get trapped in some local minimum in phase-space. However, preference is given to since it

controls the amount of FEM signal we put in the system. We have used 1000-atom and 4096-atom

configurations due to Barkema and Mousseau [132] as starting models. The 1000-atom model is

perfectly fourfold with a bond angle standard deviation of 9.2 The 4096-atom model has an 99.9%

fourfold and bond angle standard deviation of 10.02 . Throughout this paper, we will refer these

models as modified Barkema-Mousseau (MBM) models.

We now describe how to generate ECM configurations. We begin with a truly random

configuration as the starting structure rather than a disordered crystal, thus guaranteeing that the

configuration has no trace of crystalline regions. We used the modified version of the WWW bond

switching algorithm and constrained RMC for the ECM process. To achieve this, we minimize cost

(5.5)
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where is the Keating potential and , is are coupling parameters. is minimized using

RMC and is minimized using Newton’s method. In this case, we modeled only a 1000-atom

system. Throughout this chapter, we will refer this configuration as ECM configuration.

The experimental data used for this work is due to Voyles and Muller [168]. For all 1000-

atom models, we use a real space resolution of Å and for the 4096-atom model we use

Å.

5.3 Discussion of Results

We have used the RMC scheme described above to obtain the 1000-atom and 4096-atom

MBM models. Each model has FEM signal that matches experiment. In Fig. 5.3, we show the

plots for the starting CRN models, the MBM models, and experiment. We can clearly see

a nice match between the experiment and the MBM model. Because of the coordination number

constraint, the topology of the starting CRN model and final MBM models are the same. However,

the MBM models is strained because in the process of incorporating the FEM signal via RMC, the

bond lengths and bond angles become distorted. Energetically, the CRN configuration is more stable

than the MBM configuration. If the total energy of the MBMmodel is minimized with any potential,

it relaxes to the starting CRN and the peaks in the FEM signal completely vanishes. The instability

of the signal suggests that the model is unphysical. However, it asserts that there strained disordered

networks without nanometer-sized crystallites that produce FEM signal matching experiment.

In table 5.1, we show some structural properties of 1000-atom ECM models generated

by method described in section 5.2. ECM is obtained by independently minimizing the total

ECM model with the Keating potential. We clearly see that there is significant strain in the original
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Figure 5.3: Plots of the variance of the diffracted intensities for 4096-atom models (top) and 1000-
atom models (bottom).
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Table 5.1. Total energy (Keating) per atom and short range properties for the models ECM and

ECM .

ECM ECM

(eV/atom) 0.321 0.251

2.33 2.35

109.0 109.2

10.9 8.9

4-fold coordination 98.6% 100%

% of -member rings

4 0.0 3.79

5 31.2 36.45

6 52.27 40.02

7 14.53 16.17

8 2.1 2.47
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ECM network compared to the geometrically relaxed counterpart. The reason for this is simple: the

number of moves that simultaneously reduce the energy and satisfy the constraint are significantly

less than the moves that will lower only the energy. The strain is clearly reflected in the spread

of the bond angle about the central value. It is not surprising that the energy difference between

ECM and ECM is 0.07 eV/atom. The overall quality of the ring statistics is good and compare

favorably to models generated with other schemes. The well relaxed nature of ECM yields more

6-member rings, which is the only irreducible ring present in crystalline diamond. We have checked

the dihedral angle distribution for these models and observed that there is not much difference

between them.

We now discuss the presence of FEM signal in the ECM models. In figure 5.4, we show

plots of the fluctuation in the diffracted intensity against the scattering vector magnitude . In

the top panel, we show plots for a 1000-atom ECMmodel, 1000-atom CRN, and experimental data.

We see a nice match of for the ECM model with experiment and then a nearly featureless plot

for the CRN. The ECM model has a relatively high energy, so we minimized the potential energy

surface independently with the Keating potential and an ab initio Hamiltonian SIESTA [74, 75, 76].

We use the energy minimization process to test the stability of the FEM signal. The plots for

the resulting configuration are shown in the lower panel of figure 5.4. It can be observed that the

signal reduces by more than a factor of half for these relaxed models but does not vanish completely,

indicating that the relaxed models still has some degree of MRO. It is worth noting the reversal of

peak heights after relaxation. In the PC model, peak height reversals are related to grain shape, size,

and their relative orientations. The reason why we observe this effect in our model is not exactly

known. Experiments by Gibson and Treacy [160] have shown that the FEM signal of as-deposited

a-Si decreases upon annealing. While the structural relaxation we have performed here and the
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Figure 5.4: Plots of the normalized variance of the intensity against the scattering vector magnitude.
The top panel shows the plots the ECM, CRN, and experiment. The top panel shows the reduction in
the signal after relaxations with Keating and ab initio potential. Intensity is computed using spatial
resolution = 0.6 nm.
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annealing process in experiment are quite distinct processes, a comparison between the two is not

unreasonable.

For the rest of this section, we will dwell on the possible real space atomic arrangements

that give rise to the FEM signals the ECMmodels. In particular, we are interested in structural units

(with size proportional to the MRO length scale) in the ECM networks that control the FEM signal

and which a conventional CRN lacks. Generally, there is a problem with a very clear description

of how specific atomic arrangements in real space give rise to MRO. For real space correlations

involving three atoms or more, we are limited. However, we employed an informative topological

tool known as the Schlafli cluster analysis [169, 170] to search for MRO. The Schlafli cluster of an

atom consists of all the atoms and bonds in all the rings emanating from that atom. Each Schlafli

cluster is labeled by its weight and circuit symbol. The weight is just the number of atoms involved

in a cluster. The circuit symbol is a convenient way of summarizing all the rings emanating from an

atom [171]. For example, diamond-like crystalline silicon has the Schlafli cluster

. indicating that there are two different six-membered rings emanating from each pair of bonds

of the central atom and that there are 29 atoms in the cluster. The diameter of this cluster is 0.9

nm. This is a measure of MRO that does not first select a length scale, such as the fourth neighbor

distance for the dihedral angle distribution, then go looking for MRO at that length scale. Schlafli

clusters can easily be found in the PC model because of a priori implantation of crystalline grains.

We apply this tool to compute the Schlafli cluster of atoms in all models. Cubic diamond (weight

29), hexagonal lonsdaleite (weight 27) and body-centered -Si (weight) all have a common circuit

symbol of . So our search was focused on clusters with this circuit symbol. A

:23 cluster was found in the strained ECM model. The diameter of the cluster is
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Figure 5.5: :23 found in the strained ECM model. The black atom is the central
atom

about 0.8 nm, which lies in the MRO length scale. This is shown in figure 5.5. The existence of this

cluster is rare in CRN models [159, 170]. This observation tends to suggest two key points:

If the simulation is allowed to run for considerably long time, more Schlafli clusters would

be formed and the final model would closely resemble a PC model.

The PC model is probably the only model that can match FEM data and have a corresponding

real space structure.

5.4 Conclusion

We have demonstrated how to model realistic configurations of a-Si having MRO as mea-

sured by the variance of the diffracted intensity of amorphous thin films in FEM experiments. Mod-

els having more MRO are strained and a reduction in the strain implies a reduction in the amount of
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order. Our results suggests that the PC model is not the only model that matches FEM experiments.

However, the PC connects the FEM signal to real space in a consistent manner (nanometer-sized

crystalline grains) whereas our the ECM models do not. Nevertheless, we believe this is a good

starting point toward the atomistic interpretation of MRO as measured by FEM experiments.
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Chapter 6

Systematic Study of Electron

Localization in an Amorphous

Semiconductor

The importance of defects in amorphous semiconductors cannot be overemphasized. As

we explained in chapter 1, coordination defects in a-Si are of key importance to bulk and transport

properties. Full understanding of the nature of defects in a-Si can help unlock the mystery behind

phenomena like the Staebler-Wronski effect [3] and help establish the link between localization of

defect states and large electron-phonon coupling. Early theoretical work on defect states in a-Si and

a-Si:H was based on tight-binding methods [172, 173, 174, 175, 176, 177]. For example, Biswas et

al. [172] and Fedders and Carlsson [174] investigated the electronic structure of dangling and float-

ing bonds in a-Si. They showed that gap defect states associated with dangling bonds are strongly

localized on the central atom of the dangling bond [172]. More recently, density functional calcula-



138

tions of dangling bond states using the local density approximation (LDA) have been performed by

Fedders and Drabold [178]. They reported a wave function localization of 10-15% on the central

atom in supercell models with one defect and far less on supercell models with many defects due

to defect band formation. This finding was at variance with electron spin resonance (ESR) experi-

ments, which showed that over 50% of spin density of the gap state is located on the central atom of

the dangling bond [179, 180]. However, recent calculations by Fedders et al. [181], using the local

spin density approximation (LSDA) have shown that a large spin localization of a defect state does

not necessarily imply the existence of a corresponding wave function localization.

The Kohn-Sham formulation of density functional theory (DFT), which we have discussed

in chapter 2, has enjoyed enormous success in describing the ground state properties and defects

for a wide range of materials, and in particular, a-Si. We also made mention of the fact that the

single-particle Kohn-Sham energies in the theory are mere mathematical entities that facilitates the

calculations and therefore do not have no formal justification as quasi-particle energies. However

from an empirical point of view, Hybertsen and Louie have shown, using GW calculations [182],

that for states close to the fundamental band edges of bulk semiconductors and in particular Si

(which are the states that we are interested in), there is a 99.9% overlap of the quasi-particle wave

function with the corresponding Kohn-Sham orbital (GW calculations provide post Hartree self-

energy corrections to DFT/LDA). This provides some rationale for interpreting the Kohn-Sham

orbitals as quasi-particle states.

Because of the importance of defects in semiconductor theory and applications, they have

to be accurately represented in electronic structure calculations. If the electronic structure of defect

states are performed using DFT, then there are two key issues that need to be examined: basis

functions used to expand the eigenstates and approximation for the exchange-correlation functional.
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Within plane-wave DFT calculations, there is a general problem for the accurate represen-

tation of localized mid-gap and band tail states in amorphous semiconductors. To accurately treat

defect states, several plane wave basis functions needed to expand localized eigenstate whereas only

few localized orbitals are needed. For local basis DFT methods, there is the general problem of lack

of systematic convergence of the basis set. This means that unlike plane waves, merely increasing

the size and of local basis set and changing the shape of the individual basis functions does not nec-

essarily guarantee that high quality results. However, localized basis provides a natural way to quan-

tify wave-function localization as opposed to plane waves. The second important issue we raised

above was the reliability of approximations to the exchange-correlation functionals to correctly re-

veal the localized behavior of electronic states with respect to its wave function and spin. The fact

is that the generalized gradient approximation (GGA) and the local density approximation (LDA)

sometimes make different predictions. For example, recent density functional and GW studies of

the metal-insulator transition of bcc hydrogen showed that eigenfunctions obtained using GGA are

more localized [183, 184] and closer to quasi-particle energies and states compared to using LSDA.

Also, it was observed that GGA band gap was systematically larger than LSDA gap [183]. This does

not necessarily make GGA methods better than LDA methods. There are situations in which LDA

methods have outperformed GGA. Finally, there is the question of spin localization and whether or

not it also basis set or exchange-correlation functional dependent. Spin localization is important be-

cause recent results have shown that to accurate study defects, spin density functionals calculations

should be employed to interpret electron spin resonance (ESR) experiments [181].

In this Chapter, we systematically examine the dependence of the wave-function and spin

localization of band tail and gap states on basis sets, density functionals for three defected models:

two 216-atom supercell models of amorphous Si and a 218-atom supercell model of crystalline
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Si:H with a vacancy. The crystalline model will serve as a benchmark to compare the nature of

a dangling bond defect state in an amorphous environment with that of the crystalline phase. We

compare the localization of gap and tail states within the LDA, LSDA and GGA for frozen static

lattices (unrelaxed samples) as well as for fully relaxed static lattices for a given Hamiltonian. Our

motivation for performing the frozen lattice calculation is to systematically investigate the sole effect

of different basis sets and density functionals on the localization of states for a fixed configuration.

We study the relaxation effects to see the dependence of the local geometry of the defect sites on

the different basis orbitals and density functionals and the behavior of localized defect states in a

relaxed environment compared to the frozen one. We computed spin and wave function localization

for defect states, to determine the correlation between spin density and charge density.

6.1 Models and Calculations

Two of the defect models used here were generated by Barkema and Mousseau [132]

using an improved version of WWW algorithm [131] discussed in chapter 3. Each model contain

a pair of dangling bond defect. To create a dangling bond, a ghost bond (bond with zero energy)

is placed between two atoms. The two atoms are chosen in such a way that they are quite close

in one model and reasonably far in another model. In this work we refer these two 216-atom

supercell models of a-Si as CLOSE and FAR. In model CLOSE the atoms with the dangling bonds

are separated by a distance of 4.6 Å, whereas in the model FAR they are 7.7 Å apart. The third

model, which we will refer to as c-Si:H, is generated as follows: starting with a 216-atom cell of

silicon in the diamond structure, an atom is removed resulting in the creation of a vacancy with four
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dangling bonds. Three of the dangling bonds were terminated by placing an H atom at a distance of

about 1.5 Å from each of them. This results in one isolated dangling bond.

Our DFT calculations were performed within the LDA (with and without spin polariza-

tion) and the GGA using the code SIESTA [74, 75, 76]. We used the parameterization of Perdew and

Zunger [49] for the exchange-correlation functional in all LDA calculations and the parametriza-

tion of Perdew, Burke and Ernzerhof [52] for the exchange-correlation functional in all GGA cal-

culations. Norm conserving Troullier-Martins pseudopotentials [70] factorized in the Kleinman-

Bylander form [72] were used to remove core electrons. To describe the valence electrons, we

used atomic orbitals basis set consisting of finite-range numerical pseudo-atomic wave functions

of the form discussed in section 2.10. We employ single- (SZ) and double- with polarization

functions (DZP) basis sets on all the atoms. We solved the self consistent Kohn-Sham equations by

direct diagonalization of the Hamiltonian. The point was used to sample the Brillouin zone in all

calculations.

To characterize the spatial extent of an electronic state, we employ three measures of

localization discussed in section 2.11.2.

6.2 Results

6.2.1 Frozen Static Lattice Calculations I: Wave Function Localization

In order to understand the effect of basis set and density functional on the localization of

defects states, we first compute the electronic structure of the three models with fixed geometry,

using the different basis sets and density functionals.
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We begin our discussion with simplest of the three models, c-Si:H. The position and local-

ization for individual states are reported in Figs. 6.1 and 6.2, where the IPR and , respectively,

are used to measure localization. Each spike indicates an energy eigenvalue. With both measures of

localization, and for all basis sets and density functionals considered, we observe a highly localized

state near at Fermi level, with all the other states being extended. This state is centered on the dan-

gling bond atom, which contributes with a Mulliken charge of and in the SZ-LDA and

SZ-GGA cases respectively, and and in the DZP-LDA and DZP-GGA cases respec-

tively. The rest of the state is mainly localized in the neighbor atoms to the dangling bond. Both the

IPR and provide the same qualitative picture of the localized state, and its evolution with basis

set and density functional. In particular, localization decreases strongly when we go from the SZ

basis to a more complete DZP basis. It also increases but only by a small amount when using GGA

instead of LDA. These are general trends which we will also observe with the other models, as we

will see below. We note that the decrease in the measure of localization is not proportional to the

decrease in the Mulliken charges at the defect state, as both definitions of localization are nonlinear.

While the charge at the dangling bond site is reduced by a factor of two when moving from SZ to

DZP, the localization measure decreases by roughly a factor of three, both for IPR and .

Unlike and that are point estimators of the localization (in the sense that they

use only the Mulliken charge at each atomic site), is a more physical representation. The results

obtained for for c-Si:H with the lattice frozen are presented in Table 6.1. The spread for the

localized state is simple to compute since it is unimodal (peaked at only one site and therefore

having a well defined center). From , we also see monotonic increase in the spread and a decrease

in the total charge in the localization volume as the basis sets are increased (see Table 6.1). The

GGA states show a slightly smaller spread than the corresponding LDA states. In Fig. 6.3 we show
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Figure 6.1: IPR for the model -Si:H computed using frozen coordinates. The highly localized mid-
gap state (labeled M) sits on the central atom of the dangling bond. For the SZ basis functions the
charge localization on the central atom within the LDA and GGA are respectively and .
For the DZP basis sets, the charge localization on the atom reduce to and respectively
within the LDA and GGA.
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Figure 6.2: Localization of states (as measured using ) for the model c-Si:H using the frozen
lattice. The only localized mid-gap state (labeled M) sits on the central atom of the dangling bond.
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Table 6.1. The frozen lattice results for the spread and the charge integrated over a sphere

for the localized mid-gap state M for the supercell c-Si:H. Unit for is Å .

Functional Basis

LDA DZP 32.14 0.80

GGA DZP 28.46 0.83

LDA SZ 19.44 0.90

GGA SZ 18.55 0.91

snapshots of the isosurface of the wave function for the localized mid-gap state of c-Si:H within two

approximations. We see a dangling bond orbital confined to a small region in space in the SZ case

implying that the state is well localized. In the DZP case, we see pieces of the surface in the vacancy

and other neighboring atoms besides the dangling bond orbital making it less localized compared to

the SZ case.

Next, we analyze the localized nature of the states for the amorphous model CLOSE. In

this system, we expect to see two localized states in the gap, corresponding to the two dangling

bonds present in the structure. Indeed, we see two highly localized gap states H and L in the IPR

shown in Fig. 6.4, with an energy splitting which is just over a tenth of an eV. The state H is

the highest occupied molecular orbital (HOMO) and L is the lowest unoccupied molecular orbital

(LUMO). Due to the small distance between the two dangling bonds, the localized H and L states

are bonding and anti-bonding combinations of the dangling bond states, and therefore both H and

L have nearly equal weights on the two defect sites. In the SZ case, the total Mulliken charge
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contributions from the two dangling bond sites for each of the two localized wave functions range

between and . The charge concentrations drop to the range - in the DZP

case. In Fig. 6.5, we show the results for . We see a sharp drop in the number of atoms a given

eigenstate can reach as the energy changes from the edge of either the valence or conduction band

into the gap. We again see that all the features of are reproduced in . For each localized

state, both measures decrease by approximately a factor of 2 when the basis sets are increased from

SZ to DZP.

In Fig. 6.6, we show the IPR for the model FAR. As in the CLOSE case, both the HOMO

and LUMO states are localized. Now, however, since the distance between the two dangling bond

sites is larger, the HOMO-LUMO splitting is much smaller, only meV. The HOMO has now

most of its weight on one of the dangling bonds, whereas the LUMO is mostly localized in the other.

The trend in localization of the gap states is similar to the the trend observed in the other two two

models, decreasing strongly with more complete basis sets.

Since the wave functions associated with the gap states in the unrelaxed CLOSE and FAR

models do not have a single center, but are peaked at the two dangling bonds, we will not analyze the

localization by means of the spread in these cases. However, as we show in next section, relaxation

leads in some cases to localization of the wave functions around one of the dangling bonds, and this

will allow us to use the spread in such cases to quantify localization.

Our frozen lattice calculations consistently show that increasing the basis set decreases

the localization. Although this is not unexpected, the huge decrease in the localization of the wave

function as the size of the basis functions increase from SZ to DZP is quite surprising. The fact

that the results are consistent in both the amorphous and crystalline system makes it even more

interesting and general. A plausible explanation for this effect is that the energy gap is clearly
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Figure 6.3: Isosurface plots for localized wave functions corresponding to a c-Si:H dangling bond
defect state. The wave functions were generated with the same cut-off. Each surface is labeled
according to the basis set and functional used. The surface is confined to a small region in space in
the simple SZ case. For the DZP basis we see a localized dangling bond orbital with pieces of the
surface in the vacancy and other neighboring sites. H atoms are colored black.

reduced as the basis set is more complete. The localized states are then closer to the band edges,

and therefore are more able to mix with the extended bulk states, becoming more delocalized.

Obviously, the delocalization will not proceed indefinitely upon improvement of the basis set, but

will converge as the basis approaches completeness.
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Figure 6.4: IPR for the model CLOSE using frozen coordinates. The two highly localized mid-
gap states sit on the central atoms of the two dangling bonds. The state labeled H is the highest
occupied molecular orbital (HOMO) and the state labeled L is the lowest unoccupied molecular
orbital (LUMO).
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Figure 6.6: IPR for the model FAR using frozen coordinates. The two highly localized mid-gap
states (H for HOMO and L for LUMO) are nearly degenerate.
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6.2.2 Frozen Static Lattice Calculations II: Spin Localization versus Wave Function

Localization

Fedders and co-workers [181] have shown that, in order to correlate the degree of lo-

calization from dangling bond states with ESR experiments, it is not enough to look at the wave

functions, but to the net spin polarization near the dangling bond. The reason is that the spin density

has also contributions from electronic states other than the localized defect wave function, which

contribute to make the spin polarization more localized than the specific localized state wave func-

tion. In order to confirm this result (obtained by Fedders et al. on cells of a-Si:H) in our structural

models, we performed calculations allowing for spin polarization in our frozen lattice models, using

the DZP basis set. Except for the -Si:H case, where there is one unpaired electron that yields a net

spin polarization, we were not able to find a spin polarized solution for any of the amorphous cells.

The reason is the existence of two interacting dangling bonds, which favors the formation of a spin

singlet with two electrons paired. In order to force the appearance of a spin moment in our models,

we introduce an unpaired spin by removing a single electron from the system.

In the model c-Si:H with, we find a contribution of almost 50% to net spin by the central

dangling bond and its neighbors (the central atom alone contributing 38%). However, the Mulliken

charge contribution to the wave function of the corresponding localized state from the defect site is

only . The hydrogen-terminated dangling bond sites also contribute about 10% of the net spin.

The remainder is somewhat distributed uniformly at the other sites. In CLOSE, about 57% of the net

spin polarization was due the one dangling bond and its three neighbors. The other dangling bond

contributed only 6% to the net spin with essentially zero contribution coming from the neighbors.

In FAR, about 54% of the net spin localization sits on the isolated dangling bond and its nearest
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neighbors. Our results are in good agreement with the previous LSDA calculations by Fedders et

al.[181], and in reasonable agreement with the experiment [179, 180].

Our results confirm that, for a dangling bond defect state, there is a rather large differ-

ence between spin localization and wave function localization. In particular, the degree of spin

localization is greater than that of the wave function localization at the dangling bond site. To our

knowledge, no experimental methods exist for measuring the extent wave function localization on

the dangling bond orbital as opposed to spin.

6.2.3 Relaxation Effects I: Geometry of Defect Sites, Density Functionals and Basis

Sets

In this section we discuss the geometry around the defect sites before and after relaxation.

The details of the local geometry are very important in determining the local electronic structure and

the strain around the defect site, and here we study the dependence with varying basis and density

functional. We relax all the models using a conjugate gradient optimization until the largest atomic

force is smaller than 0.04 /Å.

Relaxation effects for the simple dangling bond defect in c-Si:H are relatively small.

There is no major rearrangements in bonding, but only a relaxation of the surroundings of the

vacancy site.

In the unrelaxed CLOSE model, the dangling bonds were originally separated by a dis-

tance of 4.6 Å. After SZ basis relaxations, both with LDA and GGA, the defect sites come closer,

to a distance of about 2.6 Å, to form a highly strained bond. For the more complete DZP basis set,

the two defect sites also approach each other, but they continue being under-coordinated, so the two

distinct dangling bonds remain present.
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In the case of the FAR model, one of the two well separated dangling bonds forms a

strained bond with a neighboring atom after a SZ-LDA relaxation. The dangling bond is therefore

terminated, and a floating bond is introduced. The other dangling bond remains present. For the

SZ-GGA relaxation, the two dangling bonds still continue to exist, but the one that was terminated

in the SZ-LDA case also approaches a neighbor and tries to form a bond. After the DZP relaxations,

the dangling bonds still exist both in LDA and GGA.

Our results indicate that SZ basis tends to favor tetrahedral bond formation whereas DZP

qualitatively preserves the original structure with the dangling bonds present. Also, the SZ tends to

favor the transformation of dangling bonds into floating bonds. The results therefore suggest that

the richer DZP basis set is necessary for an accurate description of the geometry of both isolated

and clustered dangling bonds in amorphous silicon. The SZ basis is not flexible enough to provide

sufficient freedom to describe the different shape of the wave function at the dangling bonds com-

pared to covalent bonds (for which the basis is ideally suited). Therefore, it tends to favor the

disappearance of the dangling bonds through annihilation with other dangling bonds or formation

of floating bonds with other already fourfold coordinated atoms.

6.2.4 Relaxation Effects II: Localization, Density Functionals and Basis Sets

We now consider in detailed the trends in the localization behavior of the electronic states

in the gap after full structural relaxations. We also examine the role the defect site in a relaxed

environment plays in the localization of gap states. We study the localization using the IPR for each

of the three fully relaxed models within the different approximations.

We first studied the simple dangling bond defect in c-Si:H. Fig. 6.7 shows that, for the

relaxed structures, the localization behavior of the mid-gap state is density functional dependent
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Table 6.2. The spread and integrated charge for the localized mid-gap state M for the relaxed

c-Si:H model.

Functional Basis

LDA DZP 34.24 0.79

GGA DZP 27.14 0.84

LDA SZ 38.42 0.76

GGA SZ 32.07 0.81

but rather basis set independent, contrary to the results obtained in the frozen lattice calculations

(Fig. 6.1). In other words, within the same density functional approximation, SZ yields a similar

wave function localization as DZP for the simple defect in the relaxed crystalline environment. We

also see that the GGA defect state is more localized than the LDA defect state for a given basis

set. The IPR values obtained with DZP are, nevertheless, almost unchanged upon relaxation, the

difference between the unrelaxed and relaxed geometries occurring mainly for the SZ basis. The

analysis from the real space spread, shown in Table 6.2, confirms the results obtained via the IPR.

We see again the similarity between SZ and DZP for a given functional, with the GGA states having

a smaller spread than LDA.

The IPR for the fully relaxed CLOSE is shown in Fig. 6.8. As discussed in the previous

subsection, structural relaxation for this model is basis dependent. We first see that the splitting

between the HOMO and LUMO levels is now much larger than in the unrelaxed case. This is

attributed to the fact that, in order to minimize the total energy, occupied defect states move down
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in energy and closer into the valence band edge, whereas the unoccupied states do not affect the

energy and thus can move toward the conduction band edge. The second observation is that now

the localization of both HOMO and LUMO has decreased considerably compared to the unrelaxed

case. Again, this is a consequence of the levels being closer to the band edges, mixing more strongly

with the delocalized bulk states and therefore becoming less localized. The effect is larger for the

HOMO, which is the one that adjusts its shape to optimize the total energy. A third observation

is the appearance of increasingly localized states in the band edges, corresponding to bulk states

which start becoming localized and form the precursor of band tails. This effect is originated from

the strain field imposed by the relaxation of the sites around the defects. Therefore, the presence

of defects like dangling bonds in amorphous silicon also brings the appearance of band tails of

weakly localized states due to the introduction of stress in the surroundings of the defect. This

supports results from previous work [86] that there is not a one to one correspondence between

spectral and geometric defects. The localization of the tail states decays as one moves deeper into

the conduction and valence regions, as was previously observed by Dong and Drabold [134] using

a simple orthogonal tight-binding Hamiltonian on a much larger 4096-atom model of a-Si.

We now focus on the evolution of localization with basis set and density functional for

the relaxed CLOSE model. As we observed with the -Si:H case, the HOMO level becomes less

localized upon relaxation, specially in the case of the SZ basis, for which the IPR is reduced by

more than a factor of two. The degree of HOMO localization predicted by the SZ and DZP bases

for the relaxed structure is therefore very similar. For the LUMO, the difference between SZ and

DZP is still large, as in the unrelaxed case. The high IPR values associated with the LUMO in the

SZ cases are primarily due to strain (as a result of the bond between the two neighboring dangling

bonds atoms). The spread of the LUMO is reported in Table 6.3. We again observe the common
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Table 6.3. The results for and corresponding to the localized LUMO state for the relaxed

CLOSE model.

Functional Basis

LDA DZP 31.85 0.76

GGA DZP 28.14 0.79

LDA SZ 23.50 0.84

GGA SZ 22.45 0.87

trends in the spread: GGA states show slightly less spread compared to LDA, and SZ basis set yield

more localized states than DZP basis set.

In order to get a pictorial representation of the localized states in this relaxed model and

the evolution with basis set and density functional, we assign different colors to each site according

to its Mulliken charge contribution to the given eigenstate. We depict this spatial feature by showing

only 65% of the total charge for the LUMO in Fig. 6.9. We observe a small network connection of

atoms for the localized states in Figs. 6.9(a) and 6.9(b) but the connectivity spreads out in a rather

1D fashion, mimicking a chain in Figs. 6.9(c) and 6.9(d). The small size of our cell does not allow

us to immediately visualize a localized region containing completely the cluster of atoms, which

can be done in larger supercell containing thousands of atoms [134].

We now turn to the relaxed FAR model. In Fig. 6.10, we have plotted the IPR for the this

model, for different density functionals and basis sets. Again, we see the same general features that

we pointed out in the relaxed CLOSE case. First, the splitting between HOMO and LUMO is much
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Figure 6.9: Spatial character of localized eigenstates for the LUMO state for the relaxed CLOSE
model. The energy and its corresponding IPR localization are indicated in each picture. We use the
following color code to depict the fraction of the Mulliken charge for the localized state at each
atomic site: black (q 0.25), red (0.15 q 0.25), slategray (0.10 q 0.15), gray (0.05 q
0.10), yellow (0.01 q 0.05) and white (q 0.01). Only 65% of the total charge is shown.
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larger than in the unrelaxed case. Both states, and specially the HOMO, become more delocalized

upon relaxation, with the notable exception of the SZ-GGA case, which yields a strongly localized

HOMO state. We also see the formation of band tail states, and even the presence of strongly

localized states in the gap above the LUMO, due to strong relaxation induced strain fields. Again, in

this model, we observe that localization is stronger for GGA than with LDA, and that the difference

in localization between SZ and DZP bases is much reduced upon relaxation. The difference in

localization for the SZ-GGA and SZ-LDA cases can be explained by the fact that, as mentioned

previously, SZ-LDA relaxation results in the disappearance of a dangling bond and the formation of

a floating bond, which are known to be less localized than dangling bond defects.

Finally, we visualize a chosen state (HOMO in this case) for the relaxed FARmodel using

a color coding in Fig. 6.11 The Mulliken charge concentrations on the atoms changes from confined

cluster-like character (or equivalently short 1D strings) in Fig. 6.11(a) to long string-like character

of atoms in Fig. 6.11(d) as one tunes the basis and functional from SZ-GGA through to DZP-LDA

. The ”tinker-toy” character can be attributed to less localized states and it is mainly due to weak

quantum mechanical mixing. This behavior has been observed earlier by Drabold et. al. [134, 185]
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Figure 6.11: Spatial character of localized eigenstates for the HOMO state for the relaxed FAR
model. The color coding is the same as the CLOSE case in Fig. 6.9.
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6.3 Conclusion

We have performed a first principles electronic structure calculation on three Si supercells:

two 216-atom supercells of amorphous silicon with two dangling bonds and one 218-atom supercell

of hydrogenated crystalline silicon with a void. Depending on the initial distance between the

dangling bonds, the two a-Si models have been classified as CLOSE and FAR. We examined the

nature of localized band tail and gaps states within the LDA and GGA using both minimal SZ basis

and more complete DZP basis with particular attention paid to relaxation effects. Spin localization

and wave function localization for dangling bond defect states states has also been studied. We

computed the wave function localization as the spread of the wave function in real space and via

other measures that utilize the Mulliken charges.

For the frozen lattice calculations, we find that the localization of wave functions asso-

ciated with defect states decrease with larger basis sets and has enhancement of localization using

GGA compared to LDA for all the models. The reduction in charges at the atomic sites for a larger

basis set can be attributed to the hybridization between the atomic orbitals, providing the electronic

charges more degrees of freedom to redistribute themselves. This is reflected in a smaller distance

between the defect states and the band gap edges, that also favors delocalization. Unpaired spin

LSDA calculations performed on frozen lattices showed that the degrees of spin and wave function

localization are different. In particular, degree of spin localization at a dangling bond site is far

greater than the degree of wave function localization. The difference between the localization of

a defect state in a fully relaxed and frozen systems is non-trivial, especially in the minimal basis

calculations. In particular, there was a considerable reduction in localization (as measured using the

Mulliken charge) for the relaxed systems compared to the frozen lattices. We also conclude that a
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large basis set (DZP in this case) is necessary for an accurate description of both the geometry and

localized states associated with defect sites.
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Chapter 7

The Electron-Phonon Coupling is Large

for Localized States

The electron-phonon (e-p) coupling, the interaction term connecting the electronic and

lattice systems, is a physical quantity of key importance. Perhaps most spectacularly, the e-p cou-

pling is the origin of superconductivity as expressed in BCS theory [186]. Phillips [187] has shown

that large e-p couplings in the cuprate superconductors can lead to a successful model of high T

superconductivity [188] within the framework of conventional BCS superconductivity. The e-p cou-

pling is also the mediator of all light-induced structural changes in materials. In amorphous silicon,

the greatest outstanding problem of the material, the Staebler-Wronski effect [3], depends criti-

cally upon the electron-lattice interaction. A zoo of analogous effects is studied in glasses; perhaps

the most important example is reversible photo-amorphization and photo-crystallization used in the

GeSbTe phase-change materials used in current writable CD and DVD technology.

The electron-phonon interaction and localized electron states in disordered systems have

a well-defined relationship. First, this interaction is the root of thermally driven hopping between
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localized states [189]. Thermally driven hopping is the principal mechanism for conduction at suffi-

ciently low temperatures in disordered systems. In a seminal paper by Anderson [190], he showed,

using a random lattice model, that mobiles electrons will be localized unless they are thermally

activated and that at low enough defect concentrations, no diffusion takes place in the network.

Second, Overhof and Thomas [191] have argued that an electron, starting in some localized state,

will suffer scattering with the phonons and become progressively delocalized. Using the Anderson

model [190], they showed that delocalization of electron states induced by phonons is necessary to

understanding transport in disordered systems. The two factors enumerated above suggest that for

localized states, the interaction of electrons with the lattice is expected to be strong. If the interaction

is quantifiable, then its magnitude should be reasonably large for localized electron states.

Previous thermal simulations with Bohn-Oppenheimer dynamics have indicated that there

exists a large electron-phonon coupling for the localized states in the band tails and in the optical

gap [192, 189]. Earlier works on chalcogenide glasses by Cobb and Drabold [193] have empha-

sized a strong correlation between the thermal fluctuations as gauged by root mean square (RMS)

variation in the LDA eigenvalues and wave function localization of a gap or tail state measured by

inverse participation ratio, a simple measure of localization which we have discussed in chapter 2.

Drabold et al. [86, 178] have also shown that localized eigenvectors may fluctuate dramatically even

at room temperature. Recently, Li and Drabold [192] relaxed the adiabatic (Born-Oppenheimer) ap-

proximation to track the time-development of electron packets scattered by lattice vibrations. In

this chapter, we examine the electron-phonon coupling and provide a heuristic analysis of the e-p

coupling for localized electron states. We explore the e-p coupling in some detail for a particular

model system (amorphous silicon) which provides us with a convenient variety of localized, partly

localized “bandtail” and extended states. The e-p coupling is determined by computing the defor-
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mation potential (which measures the response of a selected electron state to a particular phonon).

We also track thermally-induced fluctuations of electronic eigenvalues. We find that localized states

always exhibit a large e-p coupling. We perform Born-Oppenheimer molecular dynamics using the

first principles code SIESTA [74, 75, 76], and the eigenvalues and states that we study are from the

Kohn-Sham equations with a rich local basis orbitals. A rationale for the study of the Kohn-Sham

states is given elsewhere [194]. We emphasize that the results that we give are qualitatively general

– not just an artifact of studying a disordered phase of silicon (we have, for example, seen exactly

the same effects in various binary glasses which exhibit very different topological and chemical

disorder).

7.1 Theory

To establish a connection between electron-phonon coupling and wave function local-

ization for the electrons, we consider an electronic eigenvalue near the band gap of a-Si. The

sensitivity of due to an arbitrary small displacement of an atom (possibly thermally induced) can

be estimated using the Hellmann-Feynman theorem [110],

Here we have assumed that the basis functions are fixed and are the eigenvectors of the Hamil-

tonian H. For small lattice distortion , the corresponding change in is,

(7.1)
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where is the total number of atoms in the model. If the displacement arises from classical

vibrations, one can write 1,

(7.2)

where indexes the normal mode frequencies ( ), is the temperature dependent am-

plitude of the mode with frequency , is an arbitrary phase, is a normal mode with

frequency and vibrational displacement index . Using the temperature dependent squared am-

plitude , the trajectory (long time) average of can be written (using Eq. 7.1

and 7.2) as,

(7.3)

where the electron-phonon coupling is given by,

(7.4)

One can infer from Eq. 7.3 that thermally induced fluctuation in the energy eigenvalues is a conse-

quence of electron-phonon coupling. Note that for a given electronic eigenvalue, the contribution

to the coupling comes from the entire vibrational spectrum involving all the atoms in the systems.

Since the normalized eigenstate can be written as where are the basis orbitals,

it follows from Eq. 7.4 that,

(7.5)

Here we have only considered the point in our calculations which corresponds to =0
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The first term in the second line of Eq. 7.5 is positive definite (diagonal) while the second one, the

off-diagonal term (indicated by the prime), is not of a single sign. In the event that only a few

dominate (the case for localized states), then the leading contribution to the electron-phonon

coupling originates largely from the diagonal term. The addition of a large number of terms of

mixed sign and small magnitude leads to cancellations in the off-diagonal term leaving behind a

small contribution to electron-phonon coupling. By comparing to direct calculations with the full

Eq. 7.5, we show that dropping the second term appears to be reasonable for well-localized electron

states. The approximate “diagonal” electron-phonon coupling can be written as,

(7.6)

where N is the number of basis orbitals and is the charge sitting on the th orbital for

a given normalized eigenstate . The degree of wave function localization can be measured by

defining inverse participation ratio for the eigenstates ,

(7.7)

Equation 7.6 leads to an approximate but analytic connection between and electron-phonon cou-

pling. Since is large for localized states, one expects (and therefore ) to be large

for a localized state. If we further assume that is weakly

dependent upon site/orbital index , then

(7.8)

where is defined from and Eq. 7.6. In this “separable” approximation, it is also

the case that .
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7.2 Methodology

The model of a-Si we have used in our calculations was generated by Barkema and

Mousseau [132] using an improved version of theWooten, Winer andWeaire (WWW) algorithm [131].

The details of the construction was reported in Ref. [132]. The model consists of 216 atoms of Si

packed inside a cubic box of length 16.282 Å and has two 3-fold coordinated atoms. The average

bond angle is with a root mean square deviation of . The density functional calcula-

tions were performed within the local density approximation (LDA) using the first principles code

SIESTA [74, 75, 76]. We have used a non self-consistent version of density functional theory

based on the linearization of the Kohn-Sham equation, the Harris functional approximation [53] de-

scribed in chapter 2. The parameterization of Perdew and Zunger [49] for the exchange-correlation

functional. Norm conserving Troullier-Martins pseudopotentials [70] factorized in the Kleinman-

Bylander form [72] were used to remove the core electrons. The choice of an appropriate basis is

found be very important and has been discussed at length in Chapter 6. While the minimal basis

consisting of one and three electrons can adequately describe the electronic structure of amor-

phous silicon in general, there is some concern about the applicability of these minimal basis in

describing deeply localized and low lying excited states in the conduction bands accurately. We

have therefore employed a larger single basis with polarization (d) orbitals (SZP) in the present

work. Throughout the calculation we have used only the point to sample the Brillouin zone.

Starting with a fully relaxed configuration, we construct the dynamical matrix elements by

successively displacing each atom in the supercell along three orthogonal directions (x, y and z) by a

small displacement and computing the forces for each configuration. The construction of the dy-

namical matrix within the harmonic approximation was described in section 1.4. We have checked
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the convergence of the matrix elements by using a different set of values for atomic displacement

and for our calculations, we have used Å.

To explore the validity of our analysis and to elucidate the connection between the lo-

calization (IPR) ( ) of electronic eigenstates and fluctuation of the conjugate eigenvalues, we per-

formed thermal MD simulations at constant temperatures using the Nośe-Hoover [114] method.

The Nośe-Hoover method is a simulation in the (N,V,T) ensemble in which a heat bath is coupled

to the physical system, and heat enters or leaves the system to maintain thermal equilibrium. The

simulations were performed at temperatures 150 K, 300 K, 500 K and 700 K with a time step of

2.5 femtoseconds for a total period of 2.5 picoseconds. For a given temperature, the mean square

fluctuations were computed by tracking the eigenvalues at each time step and averaging over the to-

tal time of simulation excepting the first few hundred time steps to exclude particle energies before

equilibration. The mean square fluctuation ( ) for a set of energy eigenvalues is defined as

:

(7.9)

where denotes the average over time. We study the fluctuations of by plotting against

time at a given temperature and compare it with the obtained for the corresponding eigenvalues.

For illustrations of such adiabatic evolution of Kohn-Sham eigenvalues, see Refs. [86] and [178].

7.3 Results

In Fig. 7.1, we have plotted the electron-phonon coupling for the states near the band gap

obtained directly from Eq. 7.4. It is clear from the figure that the e-p coupling is large only in the

vicinity of conduction and valence band tails. The largest e-p coupling in the plot corresponds
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to the highest occupied molecular orbital (HOMO) in the optical frequency regime around 415

cm . The lowest occupied molecular orbital (LUMO) also has a large feature around the same

frequency. A Mulliken charge analysis and inverse participation ratio calculation of the electronic

eigenfunctions have shown that both these two states – the HOMO and LUMO are highly localized

and are centered around the dangling bonds present in the model. On moving further from the

band tails in either direction along the energy axis, the e-p coupling drops quickly and the surface

becomes featureless for a given eigenvalue. This behavior of e-p coupling can be understood from

the arguments presented in section 7.1 where we have shown that the e-p coupling for localized

states is directly proportional to the inverse participation ratio. For a localized state, therefore, the

large value of electron-phonon coupling can be attributed to the large value of inverse participation

ratio associated with that state. Since HOMO and LUMO are the two most localized states in

the spectrum, the e-p coupling is large for these states and as we move toward the tail states, the

coupling decreases. It is important to note that the plot in the Fig. 7.1 has been obtained from

Eq. 7.4 without making any approximation and is exact inasmuch as the matrix elements obtained

from the density functional Hamiltonian are correct. This observation supports our assumptions that

the dominant contribution to e-p coupling comes from the diagonal term in Eq. 7.5 and that

is weakly dependent upon site/orbital index and also indicates from direct simulation there exists a

linear relationship between mean square fluctuation of electronic eigenvalues and the corresponding

inverse participation ratio for localized states.

In order to justify our arguments further presented in section 7.1, we now give a look at

the mean square fluctuation of energy eigenvalues. As outlined in section 7.2, we have computed the

mean square fluctuations at four different temperatures (150 K, 300 K, 500 K and 700 K) from MD

runs over a period of 2.5 picoseconds and plotted in the Fig. 7.2. The fluctuation obtained this way
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Figure 7.1: Electron-phonon coupling surface plot for a 216-atom model of a-Si. The absolute value
of electron-phonon coupling (cf. Eq. 7.4) is plotted as a function of phonon frequency and
energy eigenvalues near the gap. The largest value of in the plot corresponds to the eigenvalue
for HOMO, which is the most localized state in the spectrum.
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Figure 7.2: Mean square fluctuations of electronic eigenvalues versus inverse participation ratio plot
at different temperature. The fluctuations at temperature 150 K and 300 K are found to be linearly
correlated with the participation ratio for the corresponding eigenstates as predicted in section 7.1.
The correlation coefficient ( ) for different temperature is indicated in the plot.
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provides a dynamical characteristic of the band tails states and is compared with a static property,

the inverse participation ratio of the same states. A simple linear fit reveals a strong correlation

between the eigenvalue fluctuation and the corresponding inverse participation ratio for the states.

The correlation is found to be as high as 0.95 for T = 150 K and 300 K and falls to 0.8 at

high temperature. The value of the correlation coefficient for different temperature is indicated in

the Fig. 7.2. A reduction in the correlation coefficient at high temperature is not surprising since the

harmonic approximation begins to break down. Once again, we see that the result is in accordance

with our prediction in section 7.1 and provides a simple physical picture for having a large electron-

phonon coupling for the localized states.

In Fig. 7.3, we have plotted the time averaged electronic density of states for four different

temperature in order to study the effect of thermal disorder on the tail states. It is quite clear from

the figure that the effect of thermal broadening is quite significant on both sides of the gap. Photo-

electron spectroscopic studies on a-Si:H by Aljishi et al. [195] have shown that the conduction tail is

indeed more susceptible to thermal disorder than the valence tail. The temperature dependence can

be conveniently expressed by introducing a characteristic energy and fitting the electronic den-

sity of states to . Aljishi et al. expressed the temperature dependence

of the tail states by the slope of the vs. T plot and obtained a smaller value for the conduction

band tail. We have observed a qualitative agreement of our results with experiment. The key obser-

vation that one should note from Fig. 7.3 is the following: the shape of the tail in the conduction

band rapidly changes as the temperature rises from 150K to 700K. The corresponding change in the

valence tail for the same range of energy (0.4eV) is however much less and is rather smooth com-

pared to the conduction tail. Since the localized defect states (coming from the two dangling bonds)

have been removed before plotting, this observation qualitatively suggests that the conduction tail
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states are more susceptible to lattice motion. It is tempting to attempt to estimate decay parameters

for a direct comparison to experiment [195], but the sparse sampling of tail states for this 216-atom

model makes this a dangerous exercise. The basic features do appear to be represented in our study,

however.

7.4 Conclusion

Using accurate methods and a reasonable model of a-Si, we showed that there is

1. a large e-p coupling for localized states, and

2. a significant correlation between thermal fluctuation of electron energy eigenvalues conjugate

to localized states and the IPR of the model at .

We found a qualitative agreement with photoemission experiments [195], and provided a simple an-

alytic argument for the origin of these effects. Identical experience with models of other amorphous

materials has convinced us that the results are correct in at least a qualitative way for binary glasses

and amorphous materials, and perhaps other systems beside.



178

Chapter 8

Concluding Remarks

8.1 Summary

In this dissertation, we have demonstrated, using a reverse Monte Carlo (RMC) method,

how experimental information (and topological constraints) can be used to model a continuous

random network (CRN) of amorphous silicon. Although our RMC model does not have the high

quality possessed by the WWW models, it is improves dramatically over old RMC and molecular

dynamics models and has fewer defects. Other than certain structural properties, old RMC methods

did not critically address the electronic properties of the models. Our work took RMC a step further

by examining the electronic spectrum as well. RMC has the flexibility which allows it to be applied

to other systems. We have exploited the said flexibility to include fluctuation electron microscopy

(FEM) experimental information in models of a-Si. We demonstrated how the experimental FEM

signal, which is otherwise absent in the conventional CRN model, can be included in a CRN using

constrained RMC. This suggests that there are disordered networks without crystallites that yield
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FEM signals matching with experiments, implying that the FEM signal is not unique to the para-

crystalline (PC) model.

For our study on the localization of defect electron states, we investigated the gap and

band tail states in models of amorphous silicon. Starting with two 216-atom models of amorphous

silicon with defect concentration close to the experiments, we systematically studied the depen-

dence of electron localization on basis set, density functional and spin polarization using the first

principles density functional code SIESTA. We compared three different schemes for characterizing

localization: information entropy, inverse participation ratio and spatial variance. All calculations

were carried out for static lattices. Our results showed that to accurately describe defected structures

within self consistent density functional theory, a rich basis set is necessary. Our study revealed that

the localization of the wave function associated with the defect states decreases with larger basis sets

and there is some enhancement of localization from GGA relative to LDA. Spin localization results

obtained via LSDA calculations, are in reasonable agreement with experiment and with previous

LSDA calculations on a-Si:H models.

Finally, from density functional calculations, we showed that localized states stemming

from defects or topological disorder exhibit an anomalously large electron-phonon coupling. We

provided a simple analysis to explain the observation and performed a detailed study on amorphous

silicon. We computed first principles deformation potentials (that is, the sensitivity of specific elec-

tronic eigenstates to individual classical normal modes of vibration). We also probed thermal fluc-

tuations in electronic eigenvalues by performing first principles thermal simulations. We found a

strong correlation between a static property of the network [localization, as gauged by inverse par-

ticipation ratio (IPR)] and a dynamical property [the amplitude of thermal fluctuations of electron

energy eigenvalues] for localized electron states. In particular, both the electron-phonon coupling



180

and the variance of energy eigenvalues are proportional to the IPR of the localized state. Our results

indicated that the conduction band tails are more susceptible to thermal disorder than the valence

band tails, which is in qualitative agreement with photo-emission experiments [195]. While the

computations are carried out for silicon, very similar effects have been seen in other systems with

disorder.

8.2 Further Considerations

Realistic atomistic configurations are a necessary ingredient for electronic structure com-

putations. The RMC method has the ability to model atomistic systems using a priori information

from experiments and network topological constraints. However, we believe that the RMC algo-

rithm can be improved. One way to optimize the RMC algorithm to produce high quality models is

to devise a scheme for selecting the constraint coupling parameters that will push the cost function

very close to the minimum. At the moment, they are chosen using trial and error. Another factor

that facilitates the convergence of the calculation is the rate at which the RMC simulation tempera-

ture is decreased. This should be thoroughly investigated and applied to a variety of more complex

systems.

Although we have successfully used RMC and the modified WWW algorithm to generate

a-Si configurations that matches FEM data, the work lacks a physical picture connecting the real

space arrangement of atoms to the presence of the FEM signal in the model, which measures MRO.

On the other hand, the PC model, which is indistinguishable from the CRN model as far as struc-

tural, electronic, and vibrational properties are concerned, has a corresponding real space picture (in

the form of nanometer-sized crystalline regions) to back the FEM signal. Much work is therefore
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needed on the atomistic interpretation of the signal in ECM models without crystallites. One way

to address the problem, for example, is to devise an order parameter that is sensitive to the MRO.

For the systematic study on the localization of dangling bond defect states, we empirically

observed how the single (SZ) basis tends overestimate the measures of localization (by about a

factor of 2 in certain cases) when compared double with polarization (DZP) orbitals. Besides

the fact the DZP basis are more complete than SZ basis, it is quite surprising that there such large

differences in localization with respect to basis set size. This merits further study, especially as most

previous calculations were performed with limited basis sets. A systematic study for a dynamical

lattice would be a good starting point. It would also worth performing calculations on defected

binary systems to see if similar effects exist.
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