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Abstract

BHATTARAI, BISHAL, Ph.D., December 2018, Physics and Astronomy

Ab initio Structure Inversion for Amorphous Materials (103 pp.)

Director of Dissertation: David A. Drabold

Advancement and understanding of amorphous materials has been limited by

conventional computer simulations [1]. A generic approach of “Melt-Quenching” (MQ)

with molecular dynamics (MD) has several shortcomings. First: a slow quenching rate

limits model size for ab initio method while efficient empirical potentials undermine the

accuracy of results. To overcome this restrictions in this dissertation we have modeled

large and realistic models of different amorphous systems with an accuracy comparable to

density functional theory (DFT) calculations. We have used a recently developed method

Force Enhanced Atomic Refinement (FEAR) [2, 3]. FEAR offers the logical advantage of

using a priori knowledge, but within an ab initio simulation framework. It utilizes

Reverse Monte Carlo (RMC) technique [a simple stochastic scheme to find coordinates

matching a diffraction experiment] and relaxation using ab initio interactions. We have

extensively explored large systems with 648-800 atom utilizing the FEAR method to get a

better understanding of these systems. We have used FEAR to generate amorphous carbon

(648 atoms) across densities 0.95-3.5 g/cm3. We study the low density regime of

amorphous carbon and reveal that nano-porous carbon obtained in diffraction experiment

is actually interconnected and wrapped form of amorphous graphene. We summarize our

conclusion on amorphous graphene by thoroughly investigating and comparing its

properties with two-dimensional amorphous graphene, crystalline graphene and

schwarzite. In addition, vibrational properties of amorphous silica and amorphous carbon

have been thoroughly studied.
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1 Introduction

1.1 Background

Amorphous materials have many applications ranging from art to optoelectronics.

Our ancestors had knowledge of making glass since Bronze age (ca. 3000 BC), yet the

structure of these materials have only been explored in the last century [4]. In spite of

these recent studies, the structure of amorphous materials are not fully understood as

compared to crystalline materials. Amorphous materials like amorphous silicon (a-S i) and

its hydrogenated amorphous silicon (a-Si:H) counterpart have myriad applications in solar

cell technologies, thin-film transistors, active-matrix displays, etc [5]. Similarly,

amorphous carbon (a-C ) has multiple applications depending upon sp3 content. a-C with

high sp3 content is widely used for coating for optical windows, hard drives and other

electromechanical devices [6, 7]. Meanwhile, porous carbons are used in several

applications like gas storage, filtration, energy and steel production [6, 8]. Amorphous

silica (a-S iO2 ) or window glass has high mechanical resistance and high dielectric

strength which acts as a major material in microelectronics. a-S iO2 alloyed with transition

metal has been explored as a potential candidate for solid electrolyte used in Conducting

Bridge Random Access Memory(CBRAM) technologies [9].

1.2 Structural Order

Structural order is a fundamental concept in condensed matter physics. In this

concept Bravais lattice, an array of points in space such that if any point is considered as

origin than position vector (
#»
R ) satisfies,

#»
R = n1

#»a 1 + n2
#»a2 + n3

#»a3 (1.1)

Where #»a 1, #»a2 and #»a3 are fixed lattice vectors and n’s are integers.
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Further, every lattice point is associated with identical group of atoms called a basis

and in a perfect crystal every basis is identically located and oriented with respect to its

lattice point [10]. In the early 1900’s William Henry Bragg detected these ordered patterns

by shining X-rays in a crystalline material and discovered which is now well known

as“Bragg diffraction” patterns. This finding led to a whole new field of diffraction

experiments and by analyzing these diffraction angles and wavelength of the X-rays, one

can ascertain the full structure of a crystal. The determination of unit cell which only

contains few atoms and repetition of these unit cells (building blocks) can generate the

structure of whole crystal [11].

Meanwhile, this is problematic for amorphous materials as the unit cell for

amorphous materials can be regarded as infinite size with no patterns (unit cell) to repeat

and obtain the structure [11]. The lack of a fundamental repeated structure in amorphous

solids pose question like,

Why should we study amorphous system: isn’t it structurally random and chaotic ?

We follow the definition of S. R. Elliott [11] to answer this question. The structural

ordering in amorphous solid is non-periodic but not truly random and has a statistical

nature. Elliott defines amorphous solids by sub-dividing microscopic structure of

amorphous solids in two parts: short-range order (0 − 5 Å) and medium-range order

(5 − 20 Å). These microscopic length scales are based on the typical diffraction probes

(e.g. X-rays or neutron) used to study amorphous materials.

Amorphous materials lack long range order thus have non unique structural solution.

The spatial correlation present also rapidly decays with distance. Despite the lack of long

range information, local environment information such as coordination, chemical

ordering, bond length distribution, bond angles are used to characterize these systems.

Short range order is of paramount importance as it reveals the chemical and coordination



15

nature of a solid [12]. The information about the coordination number (number of atoms

connected to a particular atom) is crucial to reveal different bonding types [12].

1.3 Theoretical Study of Amorphous Solids

1.3.1 Continuous Random Networks

One of the earliest theoretical approaches to study amorphous solids was proposed by

W. H. Zachariasen [13] in 1932. In Zachariasen’s approach to amorphous materials one

interprets them as a continuous random network (CRN). The CRN concept is a simplified

model to study amorphous solids. The CRN satisfy these following conditions [12]:

• Every atom has perfect coordination1 and is devoid of defects or dangling bonds.

For a covalent system, coordination satisfies Mott’s 8 − N rule [14] (“N” is number

of valence electrons).

• The nearest neighbors distance is same or similar to crystal.

• The bond angle distribution exhibits some dispersion (no spread in crystal).

• Absence of long range order (LRO).

Early models studied using CRN methods were hand-made models [15, 16] but later

(1974-1976) Guttman [17–19] studied CRN using computer models.

1.3.2 Wooten-Weaire-Winer (WWW) Method

Wooten-Weaire-Winer (WWW) in 1985 introduced a bond-switching algorithm

which was able to produce appealing CRN models for amorphous column IV

materials [20, 21]. This method was extended to binary compounds by Mousseau and

Barkema. The WWW method is successful for modeling systems where a priori

knowledge of bonding environments is known and, it has been used as a backbone to
1 Each atom has same number of neighbors.
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study several materials [22–25]. The WWW method is limited in a sense that it uses a

priori information of bonding environment, has only been used to model handful of

systems and it uses an extremely simple potential. In spite of the limitation of this method,

WWW models of amorphous silicon (a-S i) and tetrahedral amorphous carbon (t-aC) are

still considered best models with lowest strain and perfect coordination.

1.3.3 Method of Molecular Dynamics

Molecular dynamics (MD) simulations are popular methods used to simulate

amorphous systems. In MD simulation, atoms are represented as point particles, guided

by classical Newton equations of motion. These equations are integrated over time to

obtained the dynamical evolution of system. In amorphous systems we use method of

“melt and quench”2 (MQ) to prepare models via MD simulation. In MQ scheme we start

the simulation by forming a liquid (above melting point). This liquid phase (“melt”) is

then well-equilibrated for many MD steps such that the model essentially forgets how it

was created. Equilibration at such high temperature helps the system to organize in the

liquid state such that all initial biases are forgotten. After forming a well equilibrated

liquid, the system is allowed to quickly cool (“quench”) essentially copying the

glass-formation process [4]. MD approach is very useful when the structure of liquid and

glass are similar and the ordering for both liquid and glass are local [4]. Powerful

computers have aided computational study of materials. In particular, MD techniques

have certainly benefited from this development aiding to timescale and accuracy of MD

based simulation. The MD process is mostly used with two types of interactions to

prepare a model. The choice of interactions depends upon the requirement and has its own

benefits and shortcoming. We discuss the two main types of interactions in the following

subsections:
2 Also referred as “cook and quench” in some texts.
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1.3.3.1 Empirical or Classical Interactions

Empirical or classical interactions for a system are generated by guessing the correct

functional form for a model potential with free parameters [4]. The free parameters are

adjusted to ensure correct properties (bond-length, bond angle etc.) of the material [4].

MD with classical interactions is extremely efficient and one can model large systems.

The system size for these simulation range from several thousands to millions of atoms.

In spite of its efficiency, MD simulations with empirical interactions is plagued by

transferability issues. Simple potentials fail for covalent systems and are difficult to use

with Carbon. Carbon is hard to model, as it has different bonding (sp3 , sp2 , sp)

preferences at various densities. Meanwhile, silicon is easier to model for empirical

interactions as the bonding preference is homogeneously tetrahedral with other parameters

(like bond-length, bond-angle) also being constant for all the atoms. This method is also

applicable to materials in which ionicity forbids wrong bonds (e.g. a-S iO2 ) [4].

1.3.3.2 Density Functional Theory (DFT) Approach

The limitation of pair potentials can be resolved by treating the atoms quantum

mechanically. This suggests working with a many body Schrodinger equation the solution

of which is prohibitively complex.

“It therefore becomes desirable that approximate practical methods of applying

quantum mechanics should be developed, which can lead to an explanation of the main

features of complex atomic systems without too much computation.”

-Paul Dirac in “Quantum mechanics of many-electron systems” [26].

This formulation was simplified by Hohenberg, Kohn and Sham [27, 28]. In density

functional theory (DFT) approach, the electron ground state density (n0(r)) is considered a

fundamental variable instead of many-body Schrodinger wavefunctions [29]. DFT is
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based on the fact that there exists an effective potential (Ve f f ) which depends only on

electron density (n0(r)) i.e. “Hohenberg-Kohn theorem”. The challenge with this

formulation is that the exact form of this effective potential is unknown and various

approximations are used to obtain (Ve f f ). The local density approximation (LDA) [30–32]

and generalized gradient approximation (GGA) [33–35] are the two most widely used

approximations to solve the problem. The details of these approximations and DFT are

detailed in standard reference [29].

In this work we have extensively used two DFT codes namely: (a) Spanish Initiative

for Electronic Simulations with Thousands of Atoms (SIESTA) [36] and (b) Vienna Ab

initio Simulation Package (VASP).

SIESTA is a density functional code that uses the standard Kohn-Sham [27, 28]

self-consistent DFT method with LDA [30–32] or GGA [33–35] approximations. It uses

pseudo-atomic orbitals as a basis sets, allowing the user to choose different size of basis

set (single-ζ, double-ζ, single-ζ polarized and so on.). This option to choose basis set is

particularly useful to accelerate calculations. It also has an option of Harris energy

functional [37], a non self-consistent approach to approximate Kohn-Sham energy (useful

for covalent system). This approximation saves considerable CPU time [29].

Meanwhile, VASP is another density functional code which we have extensively used

to carry out our calculations. In VASP molecular dynamics (MD) simulations are carried

out using either pseudo-potentials or the projector-augmented wave method (PAW) and

using a plane wave basis set. The electron and ion interactions in VASP is described using

either ultra-soft Vanderbilt pseudo-potentials [38] or PAW method [39, 40]. The exchange

correlation can be approximated using either LDA or GGA approximations.
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1.3.4 Inverting Experiments

1.3.4.1 Reverse Monte Carlo (RMC) Method

Reverse monte carlo (RMC) method offers a different approach to model amorphous

system which assumes a sensible principle that a model should agree with experiment [4].

A model is constructed explicitly to agree with experimental data. This approach was

developed and extended by McGreevy and Puzstai in 1988 [41, 42]. The basic idea is to

minimize (χ2), the difference between experiment and model:

χ2 =
∑

i

[
FE(ki) − FC(ki)

σ(ki)

]2

(1.2)

Here, FE(ki) represents the experimental data, FC(ki) represents the model and σ(ki)

is the weight of the experiment. In equation(1.2), value of i extends over all data points.

This allows us to determine atomic positions to make a model agree with several

experimental result. These experimental data typically include pair-distribution function,

X-ray or neutrons scattering data, short-range atomic structure (bond length, coordination

number, bond angle and so on). Logically, it makes sense to include as many experiments

as possible. However, in reality this incorporation of multiple experiments is extremely

difficult to minimize with assignment of weight factor (σ(ki)) becomes increasingly

challenging.

The basics of reverse monte carlo (RMC) method can be summarized as [42],

(1) Start by placing N atoms in a periodic supercell randomly with the correct density

i.e. consistent with the experimental data. Impose a condition for minimum distance

of approach between atoms, typically chosen 20 − 30% lower than the average bond

length of the system.

(2) Compute value of χ2
0 using equation (1.2).
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(3) Move an atom chosen at random, within the allowed maximum move distance. If

any two atoms are closer than the minimum distance approach (cut-off) reject the

move. Choose another new atom at random and again move within the allowed

distance until it satisfies the minimum distance of approach condition.

(4) Compute the new value of χ2
n using equation (1.2) for this new configuration.

(5) If χ2
n < χ

2
0 move is accepted and the new configuration becomes the old

configuration. Continue with steps 2-5 until desired convergence of χ2 is achieved.

If χ2
n > χ

2
0 accept with metropolis probability else reject the move. Repeat steps 2-5

until desired convergence is achieved.

Amorphous solids as discussed in section (1.2) lack long range order thus simply

inverting diffraction data unguided with any constraints does not result in chemically

sensible solution of a system. This is the major drawback of RMC. Several constraints

have to be incorporated into the cost function to provide meaningful chemical description

of the system as RMC method by itself does not include any kind of interactions. This

however introduces bias into the modeling.

1.3.4.2 Hybrid RMC Method

As RMC does not include any interatomic interactions appropriate supplementary

information has to be included to make a chemically meaningful model. Several Hybrid

versions have been proposed to include energy functional based constraints [43]. These

energy functional constraints minimize potential energy (empirical or ab initio) in

addition to structural minimization. This minimization of potential have been

implemented differently by different authors for e.g. it can occur after every RMC step,

alternating between RMC steps and so on. To name few of these methods, hybrid reverse

monte carlo method (HRMC) [44], experimentally constrained molecular relaxation
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(ECMR) [45, 46], monte carlo method with molecular mechanics [47] and the force

enhanced atomic refinement (FEAR) method [2, 3].

1.3.4.3 Force Enhanced Atomic Refinement (FEAR) Method

Force enhanced atomic refinement (FEAR) is a recently developed hybrid method

used to invert diffraction data. FEAR has been implemented with both empirical and ab

initio framework. FEAR method ability to predict accurate structure with correct chemical

composition, starting from a random structure without any constraints has been its major

feature of this approach. FEAR is an efficient and robust method to model different

amorphous systems. It has been so far successfully applied to a-S i, a-S iO2 , Ag-doped

GeS e3 and a-C at various densities [2, 3, 48–50]. In the case of amorphous silicon, FEAR

has been successfully implemented for up to 1024 atoms to create ab inito based

models [51].

To tersely define FEAR, we begin with some definitions. For a energy functional

V(Xi....Xn) and atomic coordinates {Xi}, we compute χ2 which is the discrepancy between

a diffraction experiment and computer model. We try to find a set of atomic coordinates

{Xi} with the property that “V(Xi....Xn)” is minimum for a configuration and simultaneously

χ2 is within experimental error. FEAR consists of (i) starting with a random structural

model at an assumed density (consistent with the experimental data density), (ii) invoking

N accepted RMC moves followed by M relaxation steps (conjugate-gradient (CG) or

gradient descent) using ab initio interactions. The second step (ii) is iterated to

convergence (fitting the experimental data and finding a suitable minimum of DFT

interactions). Accurate and unbiased chemical information is included in the CG step.

1.4 Observables for Amorphous Materials

Amorphous materials are characterized by atomic local environments. This local

information can be described mathematically using several descriptors. Discussion on
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common notation used in total scattering has been discussed else where [52]. We briefly

define the most used definitions in this dissertation below.

1.4.1 Static Structure Factor

The static structure factor for amorphous solids is experimentally obtained by X-ray,

neutron or electron diffraction. The details are available elsewhere [10, 11, 53]. In this

dissertation we follow the definition presented in [10],

S (Q) = 1 + 4πρ0

∫ ∞

0
drr2 sin(Qr)

Qr
(g(r) − 1) (1.3)

Here, S (Q) is the total static structure factor and g(r) is the pair correlation function

or radial distribution function (RDF), which gives the corresponding structural

information in real space.

1.4.2 Pair Distribution Function

Conversely, the pair correlation function g(r) can be defined as, [10]

g(r) = 1 +
1

2π2ρ0

∫ ∞

0

[
S (Q) − 1

]Q2sin(Qr)
Qr

dQ (1.4)

g(r) is obtained by Fourier transform of S (Q).

1.4.3 Ring Statistics

Ring statistics is another crucial information which gives the connectivity of atoms in

a system. The most common definitions of ring statistics have two criterion:

(1) The connected atoms form a closed loop (i.e. starting and ending at same node) and

number of connected atoms is greater than two.

(2) The number atoms connected in a loop is the shortest path for the starting node.
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The number of atoms connected in the closed loop is defined as the ring size for that

starting node. King’s and Franzblau’s definitions [54, 55] of ring statistics are widely

followed. Ring statistics is crucial to measure accuracy of amorphous model (a-S i) as

RMC prepared or very quick quench rate results in models with a lot of defects reflected

by the increase of small rings (ring size 3-4) [43]. These quantities (S (Q), g(r) and ring

statistics) can be readily obtained by using a open-source software ISAACS [56].

1.5 Electronic Structure

In amorphous solids, electronic structure is described by the electronic density of

states (EDOS). The lack of periodicity in amorphous solids implies electrons cannot be

expressed as Bloch states [11]. The energy eigenvalues Ei are important to describe

electronic density of states (EDOS) in amorphous solids. In particular, we carryout DFT

calculations and use the Kohn-Sham eigenvalues to describe the EDOS. We can define

EDOS as below [29],

D(E) =
1
N

N∑
i=1

δ(E − Ei), (1.5)

Where N is the size of basis set, Ei is the ith eigenvector and D(E) is the electronic

density of states. The EDOS is an important descriptor for amorphous solids as several

experimental techniques (photo-emission spectroscopy, electron spin resonance etc. [11])

depend upon the electronic spectrum. This makes EDOS an important observables to

analyze a model. In a similar manner projected density of states (PDOS) also can be

expressed as,

Dn(E) =
∑
i=1

δ(E − Ei)|<φn|ψi>|
2, (1.6)
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Where φn is the local orbital, ψi is the ith eigenvector and D(E)n is the projected

electronic density of states on site n.

1.5.1 Electronic Localization

The electronic states in amorphous solids are not all spatially extended as in case of

crystals. The defects and inherent disorder present in amorphous solids result in localized

states [57]. In most cases, localization occurs in edges i.e conduction and valance band

edges whereas most part of the system are extended [11]. The electronic localization can

be quantified by computing inverse participation ratio (IPR). IPR, measures number of

sites over which a wavefunction has a significant value. Mathematically IPR can be

evaluated as [58],

I(ψ j) = N
∑N

i=1 a j4(∑N
i=1 a j2)2 , (1.7)

where, ψ j =
∑N

i=1 a j
iφi is the jth eigenvector and φi is a local atom-centered orthogonal

basis orbital. For a completely localized state, I(ψ j)=1 (only one atomic site contributing

to that state). Small IPR are due to the extended states, where the electronic

wavefunctions are more evenly distributed in space. Technical modifications are required

for a non-orthogonal representation in Equation (1.7).

1.6 Vibrational Properties

The low-energy modes are related to mechanical properties and low temperature

thermal conductivity of a material [59–62]. Thermal properties of materials are of key

interest to both the scientific and engineering community especially heat transport [61].

The calculation of dynamical properties is carried out in the harmonic

approximation [11]. The dynamical matrix is the key ingredient to analyze the vibrational

properties of the model, which is obtained from a well relaxed system for which the
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inter-atomic forces can be evaluated. The dynamical matrix is given by the relation [63],

Dαi,β j =
1

(mim j)
1
2

∂2φ

∂uαi∂uβ j
(1.8)

where, φ is the total energy of the system, m’s are the ionic masses of the atoms and

α and β are the Cartesian coordinates of atom i and j, respectively. The indices i and j run

over the atoms. Now, when the ith atom is displaced by ∆xαi in the α direction, the

forces(Fβ j) on all the atoms are computed, so that the above relation can be replaced

by [63],

Dαi,β j ≈
1

(mim j)
1
2

Fβ j

∆xαi
(1.9)

The dynamical matrix is obtained by displacing each atom in 6-directions (±x,±y,±z)

with a small displacement of (∼ 0.02 Ao) . After, each such displacement an ab initio force

calculation is performed to obtain the force constant matrix resulting from the

displacement of each atom from it’s equilibrium position. The eigenvalue problem reads,

∑
αβ

Dαi,β jen
β j = −ω2

nen
αi (1.10)

where, ωn and en
αi represent the 3N eigenfrequencies and the eigenvectors

respectively.

If ω is the frequency then g(ω)dω describes the number of modes within the interval

[ ω, ω + dω ], where g(ω) represents the VDOS of the system. The VDOS for amorphous

systems with N number of atoms is defined as,

g(ω) =
1

3N

3N∑
i=1

δ(ω − ωi) (1.11)
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1.6.1 Vibrational Localization

We can evaluate the localization of different vibrational modes near the band edges

oscillating with different frequencies by computing inverse participation ratio (IPR) much

like the case for electrons. The IPR can be easily calculated from the normalized

displacement vectors, and the IPR for the vibrations can be defined as:

I =

∑N
i=1 |u

j
i |

4(∑N
i=1 |u

j
i |

2)2 (1.12)

Where, (u j
i ) is normalized eigenvector of jth mode.

1.6.2 Specific Heat within Harmonic Approximation

The evaluation of the specific heat within the harmonic approximation is

straightforward with the help of the density of states, g(ω). The only significant provision

is that not all of the vibrational excitations can be represented with a finite size model:

vibrational excitations with wavelength larger than our supercell size are not included in

the obtained VDOS data [63]. With the VDOS in hand, we may compute the Cv(T ) by the

relation [64],

C(T ) = 3R
∫ Emax

0

(
E

kBT

)2 eE/kBT(
eE/kBT − 1

)2 g(E)dE (1.13)

where the VDOS, g(E) is normalized to unity3.

1.7 Outline of Dissertation

The rest of the dissertation is outlined in following manner. In Chapter 2 and Chapter

3, we extensively present our studies on vibrational properties of two amorphous systems.

3 see Ref. [64] Sec III, page 45
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In Chapter 2, we present our results for vibrational properties of large ab initio model of

a-S iO2 . In Chapter 3, we present our result on DFT based simulation of low density

carbon. We introduce FEAR based large and realistic models of amorphous solids in

Chapter 4. In this work we highlight key points of these large size models and

effectiveness of FEAR method over conventional methods to model amorphous system.

We present details of our finding on amorphous graphene obtained by successful

inversion of neutron diffraction data. We confirm amorphous graphene to be constituent

part of low density amorphous carbon. This confirmation is based on detailed comparison

of sp2 models of 2D-graphene, crystalline/pristine graphene and schwarzite. In Chapter 5

conclusion of this work and future prospects are discussed. All the work presented in

Chapter 3,4,5 have been already published in peer-reviewed journals [49, 50, 65, 66] and

we present key highlights of these work in consequent Chapters.
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2 Vibrations in Amorphous Silica

The work presented in this chapter has been published as B. Bhattarai, D.A. Drabold,

Vibrations in amorphous silica, J. Non-Cryst. Solids, 439 (2016), 6-14.

2.1 Introduction

There has been much theoretical research to understand the physics of amorphous

silica (a-S iO2 ), yet a perfect model for the vibrational properties and derived quantities

like the vibrational specific heat has been lacking. Phonon calculations demand a precise

calculation to satisfactorily model the vibrational excitations. Significant controversy

exists in the literature about artifacts of small structural models and/or imperfect

inter-atomic potentials.

We have employed a 648-atom model of a-S iO2 with self-consistent density

functional interactions to study the vibrational properties of the system. We study the

vibrational properties by diagonalizing the dynamical matrix which gives us the

eigenvalues and eigenvectors (classical normal modes). Our results are in improved

agreement with experiment and we present interesting new results for the low temperature

specific heat. We thoroughly characterize these modes, by including the Taraskin-Elliott

correction (connecting experiment and theory), and computing phase quotients and

estimating bond stretching/bending behavior. Our work is also of some interest as the

largest (648-atom) ab initio study of vibrations in amorphous silica presented to date.

2.2 Model and Methodology

The models of a-S iO2 were obtained with the help of ab initio software “Spanish

Initiative for Electronic Simulations with Thousands of Atoms ”(SIESTA) [36], a density

functional code using the local-density approximation (LDA) with Ceperley-Alder (CA)

exchange correlation functional. The 648-atom model of a-S iO2 consisted of 216 Si



29

atoms and 432 O atoms with a cube side length of |22.3| Å. The simulation was performed

with single-ζ basis, a self-consistent field and periodic boundary conditions, and the final

model was relaxed using the conjugate gradient (CG) method. The simulation was

initially performed at constant volume, sampling the Brillouin zone only the Γ (
−→
k =
−→
0 )

point to compute the forces and energies. During the final relaxation, the system was

allowed to relax to zero pressure for the single-ζ Hamiltonian. This allowed the system

volume to change and resulted in a non-cubic cell, with a slightly lower density of 1.95

g/cm3 than the experimentally reported density. 4

2.3 Structural Properties

For investigating vibrational properties of materials, a good structural model is

required and ab initio interaction have been the most reliable. In Fig. 2.1 we have

compared the static structure factor S (Q) of the 648-atom a-S iO2 model with

neutron-diffraction experimental results [69]. The comparison of S (Q) shows an excellent

fit for most of the range of Q, although some discrepancy after Q ∼ 11Å−1. This

discrepancy of the model and experiment is not due to finite size effects [22].

Partial structure factors were also calculated for the 648-atom model, which gave us a

better idea of the origin of various peaks in the total structure factor S (Q). Results for the

partial structure factor are given in Fig. 2.2. We can infer from Fig. 2.2 that the first peak

in S (Q) arises from all three partial factors. The second peak in S (Q) arises mostly from

4 Previous simulations of this system have either constrained the volume to match experiment [67],
or used empirical potentials that are concocted to reproduce the density [68]. This makes the pair
correlations look slightly better, but then one is not considering vibrational excitations around the true
minimum, an essential assumption of the Harmonic Approximation. In addition, by carrying out this
zero-pressure simulation the cubic symmetry of the supercell also slightly breaks, yielding lattice vectors:〈
22.28,−0.24,−0.12

〉
,
〈
− 0.24, 22.48, 0.03

〉
and

〈
− 0.13, 0.02, 22.07

〉
. While the effect is fairly small

compared to our earlier calculation (as characterized by the structure factor, and quantities like bond angle
distributions), we think this is a more appropriate starting point than an artificially constrained case. We
verified that with a more complete double-ζ basis, the lattice constant was indeed close to experiment, as
expected. Since the vibrational calculations require 6N force calls, a phonon calculation with the full basis
would be quite expensive for a cell with 648 atoms.
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Figure 2.1: Calculated total neutron static structure factor for the 648-atom S iO2 (solid red

line) compared with the experimental data (black circle, neutron) [69].

the S i − S i and O − O correlations, while the contribution from S i − O provides a partial

cancellation. The third and fourth peak involves the contribution from S i − S i, S i − O and

O − O depending upon the corresponding concentration and the scattering length. The

Fourier counterpart of the structure factor (partial pair correlation) in real space is shown

in Fig. 2.2. The first sharp peak of the pair correlation function gives us information about

the bond length between nearest neighbors and the results obtained from the plot shows

that the first peak of S i − S i bonds is at 3.23 Å, similarly S i −O and O −O have their first

maximum at 1.65 Å and 2.71 Å respectively. The average pair distances reported are,

3.100(0.113)Å, 1.621(0.022)Å and 2.65(0.109)Å for the S i − S i ,S i − O and O − O

respectively. The numbers in the brackets are the standard deviation for the data [70].

We have also reported bond angle distribution of our 648-atom model a-S iO2

(Fig. 2.3). This is in agreement with our previous results for the 192-atom model [22].

The obtained structure has an average O − S i − O angle of 108.97o which is close to the
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Figure 2.2: (Left panel) Calculated partial structure factors for the 648-atom model of a-

S iO2 , (Right panel) Calculated partial pair correlation functions for the 648-atom model

of a-S iO2 .

Figure 2.3: (Left panel) Bond-angle distribution function, O − S i − O(red),gaussian-fit

(dotted green), (Right panel) Bond-angle distribution function, S i−O−S i (red,), gaussian-

fit (dotted green).

tetrahedral angle of 109.47 o. The broadening of the S i − O − S i angles is consistent

experimental results which also vary within the range of 142o - 152o [71]. It is also to be

noted that different measurements give slightly varying results. The FWHM (gaussian fit)
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for the two bond angle distributions O − S i − O , S i − O − S i are 8.81o and 31.21 o

respectively.

2.4 Electronic Density of States and Localization

The electronic properties were analyzed with the electronic density of states (EDOS)

and localization of different energy eigenstates. The localization is obtained by calculating

Fig. 2.4 shows the plot of the EDOS and IPR.
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Figure 2.4: Electronic Density of States (EDOS) (black, solid line) and the IPR (green,

drop lines), with the Fermi Energy shifted to 0 ev for 648-atoms a-S iO2 model.
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2.5 Dynamical Properties

If ω is the frequency then g(ω)dω describes the number of modes within the interval

[ ω, ω + dω ], where g(ω) represents the VDOS of the system. The VDOS for amorphous

systems with N number of atoms is defined as,

g(ω) =
1

3N

3N∑
i=1

δ(ω − ωi) (2.1)

We evaluate the VDOS by Gaussian broadening the eigenvalue with the standard

deviation σ = 2.5 meV or 20.15 cm−1(See Fig. 2.5). The first three frequencies are very

close to zero, and arise from supercell translations. These have been neglected for the

evaluation of both VDOS and derived quantities like specific heat.
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Figure 2.5: Vibrational Density of States (VDOS) (black, solid line) and the IPR (green,

drop lines) for 648-atom a-S iO2 model.
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The VDOS of amorphous silica shows several peaks. Our 648-atom model shows

well-defined peaks occurring at low frequencies at 390 and 507 cm−1, and intermediate

frequency at 766 cm−1. At high frequency the two peaks are at frequencies 1095 cm−1 and

1198 cm−1.

The VDOS of amorphous S iO2 has been well studied. In celebrated work, Bell and

Dean [15] reported peaks at frequencies near 400 cm−1, 550 cm−1, 750 cm−1 and 1050

cm−1. Bell and Dean [15] were able to evaluate the effects of vibration due to the

non-bridging oxygen atoms and their effects on VDOS. The importance of the motion of

non-bridging oxygen atoms was vital for the peaks obtained at 300 cm−1 and 850 cm−1.

The bending motion of non-bridging oxygen (NB) plays a large part for motion at 300

cm−1 and the peaks observed at 850 cm−1 is mostly due to the stretching motion of

non-bridging oxygen (NS).

The total density of states is projected onto the two species according to their

respective weights of the eigenmodes and they satisfy the relation g(ω) =
∑
α gα(ω). The

partial density of states can be defined as [67],

gα(ω) =
1

3N

Nα∑
i=1

∑
n

|en
i |

2δ(ω − ωn) (2.2)

The vibration among the various species is mostly dominated by the oxygen atoms.

From Fig. 2.6 we can infer that the vibrational motion of both the atoms Si and O are

mixed through the spectrum except near 766 cm−1, where the vibration is dominated by

the Si-atoms.

Taraskin and Elliott [72] gave a detailed analysis of the connection between the true

vibrational density of states and the experimentally measured VDOS from an inelastic

neutron experiment. They observed that only the effective VDOS can be measured with

experimental techniques. The true VDOS and the effective VDOS are related via a

correction function. Mathematically, the correction function is defined by [72],
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Figure 2.6: Plot of total VDOS (black, solid line), partial VDOS for Si (red, dotted line)

and partial VDOS for O (green, dashed line) for 648-atom a-S iO2 model.

C(ω) ' 1 +
A
3

∑
α

b2
α

mα

[
ρα(ω j) − ρ(0)

α

]
(2.3)

where, A= 3<m>
<b2

αe−2W>
is a constant depending upon the scattering length , the mass of

the ions and the Debye-Waller factors. Similarly, the quantities ρα(ω j) =
gα(ω j)
g(ω j)

,

ρ(0)
α = Nαmα

N<m> , represent the relative partial VDOS and the zero-frequency partial VDOS

respectively for the species α.

The true VDOS is connected to the effective VDOS by the relation [72],

ge f f (ω) = C(ω)g(ω) (2.4)
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Figure 2.7: Plot of total VDOS as shown in Fig. 2.5 (black, solid line), effective VDOS

obtained by Eq.( 2.4) (green, solid line), experimental data (red, dots) [73] and experimental

data (blue, stars) [74] for 648-atom a-S iO2 model.

So with appropriate values of the constants and the relative partial VDOS, we

evaluated the correction function and applied it to obtain the effective VDOS, which can

be measured in an inelastic neutron experiment. The maximum and minimum values for

the correction function were obtained as, Cmax = 1.495 (1.48) , Cmin = 0.435 (0.58) which

were very close to the prescribed values (in brackets). Also, the normalization constant

(G) for S iO2 was obtained as 1.10 which is very close to the suggested value of (1.14).

The obtained effective VDOS was plotted with a direct comparison with the reduced

neutron experiments [73, 74]. The effective VDOS is shown in Fig. 2.7. The plot of the

effective VDOS shows some slight variation from the uncorrected original (true VDOS).

Changes are observed at the peaks 390 cm−1 (increased effective density) , 766 cm−1
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Figure 2.8: Plot of vibrational IPR: total IPR (top), Si-IPR (middle) and O-IPR (bottom)

for 648-atom a-S iO2 model.

(decreased effective density) and at the high frequencies 1095 cm−1(increased effective

density) and 1198 cm−1 (increased effective density).

We observe from Fig. 2.7 that the two experiments don’t exactly coincide. This

makes the interpretation of our computed VDOS more challenging. It is evident in the

above figure that we have a general good agreement with the experiments regarding the

occurrence of the major peaks in VDOS, while there are some discrepancies in weighting,

between the experiment and theory.

A plot of vibrational IPR is shown in Fig. 2.8. It can be seen that the low frequency

band of the vibrations is de-localized with the only localized modes occurring at the

frequency 2.5 31 cm−1. There is clear band gap (≈ 135 cm−1 or 4.04 THz) excepting a

heavily localized state at ∼ 885 cm−1. As expected, these localized modes involve the

motion of few atoms as opposed to the motion of nearly all the atoms in the de-localized

frequencies.
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The middle and bottom panels of Fig. 2.8 show, the partial or species projected

vibrational localization of the two atoms. It can be asserted that the contribution of

oxygen atoms is more pronounced with respect to both vibration and localization. To

obtain the species-projected IPR we use the same equation (1.12) but the summation is

restricted to particular atoms, in our case silicon or oxygen.

The modes were further analyzed by using visualization techniques 5 6. The modes

were investigated using an earlier recipe [76]. In this recipe, each atom is represented with

a color code on the basis of the percentage of vibration it contributes to a particular

frequency mode. This is done in such a way that it includes at least 80 percent of the total

vibrations in a particular mode.

Legend: Each atom shown is labeled with different colors with respect to the fraction

of total vibration: gray (> 1/1024 and < 1/256), blue (> /256 and < 1/64), red (> 1/64

and < 1/16), yellow (> 1/16 and < 1/4) and green (> 1/4 and < 1). The larger atom

represents silicon (Si) and the smaller one denotes the oxygen (O) atoms.

Figure 2.9: Jmol visualization of extended modes: (Left panel) 72.38 cm−1 and IPR

=0.0025, (Right panel) 1176.38 cm−1 and IPR =0.0028.

5 Jmol: an open-source Java viewer for chemical structures in 3D.
6 VMD: a molecular visualization program [75].
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In the two Figs. 2.9 (Left panel) and 2.9 (Right panel), we analyze two extended

modes with comparable values of IPR. In Fig 2.9 (Left panel) the vibrations occurring at

one of the low frequency mode (72.38 cm−1) is shown while Fig 2.9(Right panel) gives a

visual description of a high frequency mode (1176.38 cm−1). The two plots resemble each

other in most aspect, with the notable difference is that vibrations of silicon is more in low

frequency mode (Fig. 2.9 (Left panel)) than the high frequency mode (Fig. 2.9 (Right

panel)).

We also used this visualization technique to observe some of the prominent localized

states, notably occurring at the frequencies 31.85 cm−1 and 1264.56 cm−1. The localized

modes exhibit few atoms vibrating in the network, with some of the atoms contributing

more than the 50 percent of the vibration at a particular frequency. The localized modes

occurring well inside the optical band or the high frequency region of the spectrum were

throughly studied, with the intent of identifying the possible signatures of voids and to

distinguish the possible pattern of vibrational localizations. These plots are shown in

Fig. 2.10 (Left panel) and Fig. 2.10 (Right panel).

Figure 2.10: Jmol visualization of localized modes: (Left panel) 31.85 cm−1 and IPR

=0.0781, (Right panel) 1264.56 cm−1 and IPR =0.0653.
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Fig. 2.10 (Left panel) and Fig. 2.10 (Right panel) depicts the two localized states,

one occurring at the low frequency end and the other at the high frequency part of the

spectrum. The comparison of the two localized modes shows that the vibrations are not as

evenly distributed as in Fig. 2.9 (Left panel) and Fig. 2.9 (Right panel), were most of the

atoms had almost similar vibrational contribution.The localized state at the band gap at

that frequency (882.94 cm−1) (not shown) is particularly peculiar as one of the oxygen

atom has more than half of the total vibrational weight.

We also used the visualization techniques to obtain snapshots of the vibrational

motions at a particular frequency. These several frames of snapshots were further

visualized in VMD and were studied as movies(see supplementary section [65]). We

found that these states to be consistent with the bending and stretching motions assigned

earlier.

2.5.1 Phase Quotient

The eigenvectors of the dynamical matrix have complete information about the

atomic motions within the harmonic approximation. We can calculate the phase

relationship among the neighbors of an atom by classifying whether the motion of atoms

are in phase or out of phase with each other. The (Bell and Hibbins-Butler) [77] definition

of phase quotient can be stated as [78],

q j =
1

Nb

∑
i

∑
i′

u j
i .u

j
i′

|u j
i |.|u

j
i′ |

(2.5)

where, Nb is the number of valance bonds , u j
i and u j

i′ are the normalized

displacement vectors. In equation (2.5), i sums over all the silicon atoms and i′

enumerates all the oxygen atoms which are the neighbors of the silicon atom. A complete

acoustic motion will have a value of 1, while the optic like modes will attain a negative

value for the phase quotient.
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In Fig. 2.11 we show the plot of phase quotient (q j). The plot shows three clear

branches with an abrupt change of phase quotient at around ∼ 450 cm−1 and the other

jump at the band gap (∼ 850 cm−1), which indicates a different nature of optic

vibrations [78, 79].
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Figure 2.11: Phase Quotient (q j) versus the frequency (ω) for 648-atom a-S iO2 model.

2.5.2 Stretching-Bending Character

To further investigate the modes, we studied the stretching character of our 648-atom

model. The stretching and bending character defines the extent to which a mode is

stretching type or bond-bending type and it is defined as [79],

S (ωp) =

∑
m|(ui

p − u j
p). ˆri j|∑

m|ui
p − u j

p|
(2.6)

where, ui
p and u j

p are the eigen vectors of the pth mode, r̂i j is the unit vector parallel to

the mth bond. S (ω) is close to unity when the mode of vibration is predominantly of

bond-stretching type and will be close to 0 if the mode is of a bond-bending type. The plot
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of S (ω) is shown in Fig. 2.12. The plot of S (ω) can be divided in three distinct regions

similar to the phase quotient. The three regions can be distinguished with a clear gap at ∼

450 cm−1 and ∼ 850 cm−1. The modes less than ∼ 450 cm−1 shows bond-bending type of

character, the regions ∼ 450-850 cm−1 shows a mixed type of behavior and the high

frequency range shows a clear stretching character. The obtained S (ω) is in a good

agreement with the previous calculations [79] with a slight difference in the amplitude.
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Figure 2.12: Stretching character (S (ω)) versus the frequency(ω) for 648-atom a-S iO2

model. The small values of (S) is bond-bending, large values corresponds to optical

streching modes.

2.5.3 Specific Heat and The Boson Peak

In Fig. 2.13 we can see that the obtained plot of CV(T )/T 3 with our 648-atom

a-S iO2 model is in reasonable agreement with the experimental findings. It is to be noted

that our peak is little shifted to the right and has somewhat reduced amplitude. But, our

results are substantially improved over the previous simulation results of Taraskin and
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Figure 2.13: Low temperature dependence C(T )/T 3: our model (black, solid line),

expt.(red, dotted line) [80].

Elliott [78] using the Van Beest potential [81]. A similar calculation was done by Horbach

et. al [82] using 8016 ions with a larger box size but the results do not reproduce the

CV(T )/T 3 curve.

The authors [78, 82] have assigned this discrepancy in the plot of CV(T )/T 3 to finite

size effects and the cooling rates of their samples [82]. But, our calculation with the same

number of atoms (648) as Taraskin and Elliott produced more better result. The

calculation of Horbach et. al with a larger cell does not improve the results significantly.

Thus, we can infer that the discrepancy between the theory and the experimental

calculation is due to inter-atomic interactions. An ab initio potential is required to

qualitatively reproduce CV(T ) for small T.

The CV(T )/T 3 curve has a noticeable plateau at a temperature ∼ 20K. The acoustic

modes in the vibrational density of states (VDOS) has a Debye ( ∼ ω2 ) spectrum. In the

Debye spectrum an additional peak seen in the region 30 − 120 cm−1 , usually referred as
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“Boson peak”. We calculated the specific heat by excluding the frequencies lying in the

region of “Boson peak”and notable changes were observed at the plateau of the CV(T )/T 3

graph around the region ( 20 K). We have illustrated these modes in Fig. 2.14. A

representative example in this frequency range is the extended transverse mode of

Fig. 2.9. It has been shown that the Boson peak satisfies the Ioffe-Regel criterion [83],

which is the reason many authors have proposed this to be a hybridized state of the

acoustic band and the optic band. In agreement with Taraskin and Elliott we note that

these are transverse-bond bending rather than stretching excitations.
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Figure 2.14: Low temperature dependence C(T )/T 3: Black (total), Red (excluding the

frequency range: 60-95 cm−1), Green (excluding the frequency range: 40-120 cm−1). Inset:

Plot of g(ω)/ω2 versus the frequency.
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2.6 Conclusion

We found that our model of 648-atom a-S iO2 reproduces most of the known

experimental properties while improving on some earlier calculations. The structure of

our 648-atom a-S iO2 model is in good agreement with the experimental results as

obtained from the experimental techniques of diffraction and inelastic neutron scattering,

and is “fully first principles” in the sense that the supercell geometry is optimized to

minimize the total energy for the Hamiltonian we employ. The vibrational properties were

analyzed with the help of eigenfrequencies and eigenvectors, obtained by diagonalizing

the dynamical matrix. The VDOS obtained with our method showed a good agreement

with the experimental data. It was able to produce all the principal peaks obtained in the

experimental measurements on amorphous a-S iO2 . In addition to the principal peaks,

there was a peak observed at the frequency ∼ 495-507 cm−1 in both the 192-atom [22] and

the current 648-atom model.

The localization of vibrational modes was also studied through the evaluation of

inverse participation ratio (IPR) and with the help of the visualization techniques. We

found that these modes were consistent with the different types of motion (rocking,

bending, etc.) previously assigned by different authors [15, 78]. A through analysis of the

localization was done by using visualization techniques including animations in the

Supplementary Material (see Ref. [65] supplementary materials). In addition, we were

able to make an improved prediction for the low temperature specific heat compared to

previous work [78, 82]. We were also able to verify that plateau observed (∼ 20K) in the

plot of specific heat (C(T )/T 3) was due to the “Boson peak”seen in the VDOS. We

provide some evidence that the modes associated with Boson peak may be computed and

analyzed in simulation.

In conclusion, we found that our 648-atom model have improved the understanding

of a-S iO2 while describing the structural, electronic and vibrational properties and
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clarifying the importance of interatomic potential and model size on vibrational quantities.

Additionally, we have successfully studied vibrational study of bilayer silica for a bigger

system (1200 atoms) using same recipe [84].
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3 Ab initio Simulation of Low Density Amorphous Carbon

The work presented in this chapter has been published as B. Bhattarai, D.A. Drabold,

Amorphous carbon at low densities: an ab initio study, Carbon, 115 (2017), 532-538.

3.1 Motivation

Amorphous carbon has been an important research topic both for its many

technological applications, and its scientific interest due to its remarkable ability to form

an array of microstructures. Carbon forms bonds of sp, sp2 and sp3 type [85], and these

tend to be surprisingly energy-degenerate. An interesting question we will explore is the

concentration of these three types of bonds as a function of density. Experimentally,

non-hydrogenated amorphous carbons are challenging [86], which further justifies a new

theoretical study. The variation in low density carbon samples arise in part from the

method of preparation of the sample and heat-treatment [87]. Furthermore, glassy carbon

may be extracted from various polymers, which may leave a residue of bonded H. The

presence of hydrogen significantly impacts the inelastic neutron scattering spectrum [88].

In this chapter, we present new models for low density carbon. We have used state of

the art ab initio interactions for our calculations. This approach provides a benchmark, as

we obtain atomistic models without any a priori assumptions of the system and accurate

interatomic forces. Further, this work will be an extension of the previous ab initio

method based theoretical work done for higher densities of amorphous carbon [89].

3.2 Computational Methodology

We have prepared models of glassy carbon [90] with densities ranging from (0.923

g/cm3 - 1.6 g/cm3). These models were prepared by using ab initio Package “Vienna Ab

initio Simulation Package ”(VASP), a molecular dynamics package with a plane-wave

basis and using the local-density approximation. The electron-ion interactions for the
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plane wave basis or VASP models were described by the Projector Augmented-Wave

(PAW) method [39, 40] with Ceperley-Alder exchange correlation functional. A liquid

phase at each density was equilibrated and then “cooled” as described below yielding an

arrested solid phase, which was then fully relaxed using the conjugate gradient (CG)

method. All simulations were performed at constant volume, employing only the Γ(~k = 0)

point to compute the forces and total energies.

3.3 Models

Table 3.1: Nomenclature and details of our models: density of the models (ρ), position of

first (r1) and second (r2) peak of RDF, Mean co-ordination number (n), percentage of sp3,

sp2 and sp, cooling time/cooling rate (refers to cooling time or cooling rate from 8000 K to 600 K.)

and Free energy per atom of the relaxed models(E0) (after substraction from lowest value of E0.).

Model ρ(g/cm3) r1(Å) r2(Å) n % of sp3 % of sp2 % of sp cooling time(ps)/rate(K/ps) E0(eV/atom)

c64 4ps 1.50 1.43 2.45 2.90 6.25 78.12 15.63 4.0/ 1850.0 0.13

c120 15ps 1.50 1.45 2.49 2.90 4.17 81.67 14.16 15.0/ 493.3 0.15

c120 20ps 1.50 1.44 2.48 2.93 9.17 75.00 15.83 20.0/ 370.0 0.11

c72 16ps 0.92 1.41 2.48 2.67 0.00 66.67 33.33 16.0/ 462.5 0.35

c72 20ps 1.40 1.43 2.46 2.89 7.00 75.00 18.00 20.0/ 370.0 0.00

c72 20ps† 1.60 1.43 2.47 2.86 4.17 77.78 18.05 20.0/ 370.0 0.02

We have prepared models with system size ranging from 64 atoms to 120 atoms 7.

We have chosen densities varying between 0.923 g/cm3 - 1.6 g/cm3. We began with

random coordinates, these were “heated” to 8000 K, equilibrated at 8000 K and then

7 We also prepared a larger model (with 216 atoms) using SIESTA [36], with (Harris Functional). The
non-self consistent scheme resulted in slighty larger fraction of sp3 and a minor shift in RDF was observed,
with almost no change in other properties.
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cooled to 300 K in multiple steps. Finally, a well-equilibrated model at 300 K was relaxed

using the conjugate gradient (CG) scheme.

The resulting six models provide us with a reasonable selection of low density regime

in amorphous carbon. These models will hereafter be identified as c64 4ps, c120 15ps,

c120 20ps, c72 16ps, c72 20ps and c72 20ps†. These assigned nomenclatures indicate :

the number of atoms in the cell, and the cooling time used for each model. We have

summarize our models in Table. 3.1.

Figure 3.1: Visualization of model c120 15ps, 720 atoms are shown (replicated by using

periodic boundary condition).

3.4 Structural Properties

A visual representation of these models has been provided in Fig. 3.1 and Fig. 3.2.

We have used periodic boundary conditions to replicate the c120 15ps model and show

720 atoms in Fig. 3.1. Meanwhile, in Fig. 3.2, the various bonding environments have

been assigned different colors. This reveals that sp3 bonding mainly inter-connects the sp2

bonding networks and that sp2 bonding dominates for lower density. Interestingly, a
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Figure 3.2: Visualization of the different bonding: grey(sp2), blue(sp3) and red(sp). (Left

panel): c120 15ps , ρ = 1.50g/cm3 and (Right panel): c72 16ps , ρ = 0.923g/cm3,

Periodic boundary condition were used, only atoms in reference cell are shown.
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Figure 3.3: Radial distribution function of different models for low density amorphous

carbon (solid lines) and comparison with the amorphous graphene [24].
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Figure 3.4: Static structure factor for the model c120 15ps (black, solid line) versus

experimental structural factor data of amorphous carbon (ρ = 2.0g/cm3) [91] (blue, solid

circles), (bottom) RDF for the model c120 15ps (black, solid line) versus experimental

RDF for density (ρ = 1.55g/cm3) [92].

significant fraction of sp bonded atoms are also formed in low density carbon, providing a

chain-like topology, familiar from a-Se [93]. In particular, our model (c72 16ps) at a

density of 0.923 g/cm3 has 33% sp bonded atoms. To our surprise this model has the

same final free energy per atom (E0), as the other model with much less sp content, which

suggests that at low concentration the sp bonding is expected [94] and justifies the

common assertion that the three hybridizations yield similar local energetics. The sp

bonded model is shown in Fig. 3.2 . These sp chains were first conjectured in the work of

McCulloch et. al [89], we show that their conclusions were valid. We have also compared

our results (see Fig. 3.3) with the amorphous graphene network [24]. To our surprise,

despite the fact that our amorphous carbon is three dimensional in nature (see Fig. 3.1),
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structurally it resembles strictly the two dimensional amorphous graphene (albeit

puckered around pentagonal structures) [95].

The structure of low density carbon has been controversial as different heat treatment

protocols yields different structural features [92]. Further, there has also been a debate

about the bonding present in these structures. Mildner and Carpenter [87] suggested that

the concentration of sp3 bonding in these materials is less than 10 %. Our models are in

agreement with this claim, as all of our models have sp3 fraction below 10 %.
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Figure 3.5: Bond-angle distribution function of low density amorphous carbon models.

Structurally, glassy carbon can be described with the help of the Static Structure

Factor in reciprocal space or its real space counterpart the Radial Distribution function

(RDF). The RDF obtained for the models are plotted in Fig. 3.3 and also for a model of

amorphous graphene. The position of the first and second peak from the RDF is similar

for the different models irrespective of the different carbon bonding environments and the

method used for making the models. The peak positions and the coordination number are

in good agreement with previous calculations[92, 96, 97] and with experiment [87].
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Figure 3.6: Ring distribution of low density amorphous carbon models [54, 56].

Comparison of experiment and theory for the structure factor and the radial

distribution function (RDF) are given in Fig. 3.4. Firstly, we compare the obtained

structure factor with the experimental data for amorphous carbon at a density

(ρ = 2.0g/cm3) [91]. Similarly, Fig. 3.4 shows another comparison of experimental data

obtained for the glassy carbon at a density (ρ = 1.55g/cm3) [92], with the radial

distribution function. Experimentally, the first three peaks of the RDF for glassy carbon

are at distances, 1.42 Å, 2,46 Å and 3.75 Å. There is pleasing agreement with these

observations. Additionally, there are peaks or shoulders occurring at distances, 2.84 Å,

4.27 Å and so on [87, 92, 98]. As seen in Fig. 3.4, there is a narrow shoulder at distance (∼

1.10 Å) in the experimental RDF [92] and it is also seen in the TBMD simulation [96]

(especially for the low density models). This narrow shoulder is not seen in our models.

From Table. 3.1, it should be noted that different cooling temperatures for the simulation
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results in slight difference in the fraction of (sp2, sp3 and sp) bonds with little or no effect

on the RDF and peak positions.

The coordination numbers (listed in Table 3.1), are dominated by trigonal for low

density carbons. This indicates that the carbon-carbon angle distribution is likely to peak

near 120o. Several models and experiments indicate a slightly different value of the bond

angles for these carbon. Beeman et. al. [97] calculated the angle distribution for classic

handmade models and found these angles slightly less than expected ∼ 117.7o for the

three coordinated models.

The angle distribution functions for the models are plotted in Fig. 3.5. The peaks are

in harmony with our assumptions except for the model c72 16ps. In this model the

presence of a high percentage of sp bonds results in a broader distribution of the peaks.

Further, a tiny (and probably physically meaningless) fraction of bond angles are seen at

∼ 50o.

The ring distribution provides us with more information about the connectivity of the

networks. The ring statistics are shown in Fig. 3.6 and were obtained by King’s shortest

path [54] scheme, using the ISAACS [56] program. The ring statistics thus obtained have

a broad distribution of with the maximum of most models peaking at 5-membered-rings as

opposed to 6-membered-rings for graphite [89]. The results of ring statistics obtained here

(albeit with inter connecting sp-chains) are consistent with the previous results [89, 92].

The connectivity of the high sp model c72 16ps has a slight different characteristics as, a

few rings are observed with high number of nodes.

3.5 Vibrational Properties

The dynamical matrix was obtained by displacing each atom in 6-directions

(±x,±y,±z) by a small displacement of 0.015 Å. Then, ab initio force calculations were

performed to obtain the force constant matrix. The details of the force constant matrix
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calculation is provided elsewhere [65]. We have Gaussian broadened the eigenvalues

(using a width σ ∼ 3.0 meV) to obtain the VDOS. The first three ω = 0 frequencies

(arising from rigid cell translations) have been ignored for both the VDOS and the

vibrational IPR.
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Figure 3.7: Vibrational Density of States (VDOS) at densities 1.50 g/cm3 and 1.40 g/cm3

(black, solid line), The Inverse Participation Ratio (IPR) describes the localization of the

modes (orange, drop lines).

Although we obtained the VDOS for the six models only four VDOS is plotted in

Fig. 3.7 and 3.8. The other two VDOS for models (c64 4ps and c120 20ps) at density

1.50g/cm3 are very similar to model c120 15ps with density 1.50g/cm3. In spite of their

differences, the VDOS obtained have a similar character for example, models below

(∼ 200 meV) are well extended modes. Further, despite the fact that the densities of these

four models vary from 1.6 g/cm3 to 0.923 g/cm3, we didn’t obtain any low energy

localized modes as seen in calculations with voids for a-Si [76]. Additionally, we show a

comparison of the plot between the VDOS obtained for a-graphene [95] and our model

(c72 20ps, 1.40g/cm3) in Fig. 3.9. The plots have bear considerable similarity, excepting



56

0 50 100 150 200 250

0

0.3

0.6

0

0.3

0.6V
D

O
S

 (
ar

b
. 
u
n
it

s)

IP
R

Energy (meV)

c72_16ps (0.923 g/cm
3
)

c72_20ps
✝
 (1.60 g/cm

3
)
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(black, solid line), The Inverse Participation Ratio (IPR) describes the localization of the

modes (orange, drop lines).

an intense peak near 80 meV. The band between about 110 meV-200 meV is strikingly

similar for amorphous graphene and our 1.40 g/cm3 model. The intense peak could

perhaps be used as a diagnostic for the presence of amorphous graphene.

In our previous calculations [65], we presented the details for computing the

species-projected VDOS. Here, we computed the VDOS contributions due to the different

bonding(sp − sp2 − sp3) for the 4 models with different densities. This projection gives

further insight to the different contribution to the vibration among the bonding units.

These projected VDOS are plotted in Fig. 3.10 and 3.11. As expected, the sp2

contribution to the VDOS is the most significant [99], and makes contributions to all the

major peaks in the VDOS. The sp3 and sp contributions largely perturb the peaks

originating primarily from the sp2-associated modes. At higher energy (∼ 200 meV or

more), the contributions are mostly from sp and sp2 modes, as one might expect from the

strength of these carbon bonds.
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Figure 3.9: Vibrational density of states of model (c72 20ps, 1.40g/cm3) compared with

amorphous graphene [95].

We have also compared with the experimental results of Kamitakahara et al. [100]

for the glassy carbon (see Fig. 3.10 and 3.11). We observe qualitative agreement with the

experimental results. Our VDOS matches the experimental results at the lower energy

regime (∼ 50 meV), while some discrepancies are is seen at higher frequencies. We have

previously shown [65] in our work on a-S iO2 , that an accurate potential and the system

size greatly affects the VDOS to obtain well defined resolution of the notable peaks.

We also investigate the contribution to the localization due to each type of bonding

environments with our system. It is not surprising to see that the most localized modes

arise from sp and sp3 bonding. The results of the projected IPR is presented in Fig. 3.12.

Where, the model with the least sp3 bonding [present in an amount of (< 10 %)] has the

most localized modes. Meanwhile, sp bonding yields fairly extended modes for the lower

regime (< 200 meV), while there are few significant localized modes on the optical
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Figure 3.10: Plot showing Total VDOS, (sp3, sp2, sp) projected VDOS and the

experimental results [100] for glassy carbon.

regime. This also suggests that a few percent of sp modes in these low density carbons are

expected.

In Fig. 3.13, we see that CV(T ) for our four models is in reasonable agreement with

experiment. Glassy carbon has a higher value of specific heat and lower density than

graphite [101]. These facts are manifested by our models. Inferring from Fig. 3.13, the

model (c72 16ps) (Fig. 3.13) which has the lowest densities (0.923 g/cm3) among the

models has a higher value of specific heat compared to the other models.

Similar to the (sp − sp2 − sp3) projected VDOS, we have computed the specific heat

due to partial contribution of different bonding environments. The results due to this

decomposition leads to an interesting result. We observe that the contribution due to the

partial-sp2 VDOS in the low temperature specific heat matches quite well with the

experimental result [101]. It must be noted that the sp bonding has a significant effect on

the total specific heat obtained for the models, while the contributions from the sp3
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Figure 3.13: Low temperature dependence of specific heat for the four models versus the

experimental results [101].

bonding remains minimal. We have also verified the “3R-limit” (Dulong-Petit) limit at

high temperature for our models (not shown here)8.

3.6 Electronic Properties

The concentration of sp, sp2 and sp3 states is determined by the density [89]. The

electronic density of states (EDOS) is strongly impacted by these different electronic

hybridizations. The EDOS plot of one representive model in shown in Fig. 3.14. Our

EDOS is in agreement with earlier research [89, 102]. In Fig. 3.14, we show that the

p-orbital contribution is more significant near the conduction edge. The electronic

localization (IPR) [103] shows that at these lower densities these amorphous carbon are

conductive (with a large density of extended states near the Fermi level) as expected [89].

This pattern of EDOS is consistent through out our other models without any significant

8 To the extent that the hybridization-projected specific heat functions are well defined and distinct, it
may prove possible to use the temperature depen- dence of the specific heat to estimate the concentrations of
the sp, sp2, and sp3 concentrations in a sample. More work is needed to see if this could be practical.
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differences, other than different weightings arising from the various hybridizations present

for different densities.

3.7 Conclusion

We found that our ab initio based models reproduce most of the properties of the low

density amorphous carbon, while improving upon some of the previous calculations and

drawing comparisons to amorphous graphene. At these low densities, amorphous carbon

consists of a mixed network involving sp2, sp3 bonds as expected and at the lowest

densities a non-negligible contribution from sp bonds.

We have predicted that the vibrational contribution of the sp2 bonding is the most

significant and it governs the total vibrations in these materials. Further, we also show that

these sp2 guided vibrations are extended and evenly distributed. We note that the
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vibrational modes are more complex and non-local than simple molecular models would

suggest. While such models certainly capture some of the basic character of the

vibrations, the real modes are delocalized and sometimes mix with other nearly resonant

modes. We believe that there is both scientific and pedagogic values in the animations that

we provide from this work. We also note similarities and differences between a-C and

hypothetical amorphous graphene materials.
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4 Ab initio InverseModeling of Large and Realistic

Amorphous Systems

The work presented in this chapter has been published as B. Bhattarai, D.A. Drabold,

Evolution of amorphous carbon across densities: An inferential study, Carbon, 131

(2018), 168-174 and B. Bhattarai, P. Biswas, R. Atta-Fynn and D. A. Drabold,

Amorphous graphene: a constituent part of low density amorphous carbon, Physical

Chemistry Chemical Physics 20 (2018), 19546-19551.

4.1 Motivation

Amorphous carbon (a-C ) exists with various bonding environments (sp, sp2 and

sp3) depending upon the sample density. A lack of long-range order, different bonding

environments and presence of porosity in a-Carbon, imposes a challenge for condensed

matter theorists [8]. The usual method of “melt and quench” (MQ) has several limitations.

In particular, a-C empirical potentials are difficult to model as they exist with different

bonding environment (sp, sp2 and sp3) as a degenerate state. It is really challenging to

have a common potential which could differentiate between different topologies [4]. It has

been shown that incoherent concentration of sp, sp2 and sp3 is obtained from simulation

using different empirical interactions under same condition [6]. Meanwhile, accurate ab

initio methods have fast quench rate and are limited to few hundred atoms. We bridge the

divide between these approaches in this work.

In first section of this chapter, we present a series of large models (648 atom) of

amorphous carbon at various densities using a uniform approach (FEAR) for all. We

systematically report the dependence of observables on the density. In second section, we

apply FEAR method to invert diffraction data for nano-porous carbon and infer that these

nano-porous carbon are indeed amorphous graphene. To infer this conclusion, we
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compare and contrast obtained FEAR model with sp2 bonded structures namely:

2-dimensional amorphous graphene, crystalline graphene and schwarzite structures. We

calculate several observables to support our claim that these low density amorphous

carbon are indeed amorphous graphene.

4.2 Amorphous Carbon Across Densities

4.2.1 Introduction

We have implemented Force Enhanced Atomic Refinement (FEAR) [2, 3, 48]

method in a-Carbon. FEAR offers the logical advantage of using a priori knowledge, but

within an ab initio simulation framework. Its ability to predict accurate structure with

correct chemical composition, starting from a random structure without any constraint has

been a important feature of this approach. We have used FEAR with state of the art ab

initio interaction for our calculations. We present a series of models of amorphous Carbon

at various densities using the same approach for all. We systematically report the

dependence of observables on the density.

4.2.2 Models and Methodology

We have prepared four models of a-Carbon with 648 atoms at densities 3.50 g/cm3,

2.99 g/cm3, 2.44 g/cm3 and 0.951 g/cm3 using FEAR (see Fig. 4.1). In FEAR, we begin

with randomly chosen coordinates which are subjected to partial structural refinement with

M accepted RMC steps and partial relaxations with the conjugate gradient (CG) method

for N relaxation steps9. This cycle is repeated until the model is fully converged (fitting

the data and at the same time, sitting at a suitable minimum of the DFT interactions) [2, 3].

To our knowledge, these are the largest ab initio models offered to date for a-Carbon.

9 (M/N) are chosen with a ratio 0.01, with M=100 and N=1 for this work [48]
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The relaxation step was performed with a single-ζ basis, periodic boundary

conditions and Harris functional at constant volume using SIESTA10. As an additional

check of our models, we have relaxed the converged models using the ab initio package

VASP with plane wave basis [39] Γ(~k = 0), plane-wave cutoff of 400 eV and an energy

convergence tolerance of 10−4 eV. To compare and contrast, we have also prepared ab

initio based MQ models. We have prepared three models (160 atom) each using SIESTA

(LDA, Harris functional) and VASP (LDA, self-consistency).

The starting random configuration is fitted to appropriate experimental data with

RMCProfile11. After every ∼100 accepted RMC moves [2, 3, 48], the total energy and

forces were evaluated (using a single force call) and the atoms were moved along the

gradient to reduce the total energy. We have chosen a maximum RMC step size of

0.25Å-0.375Å, a minimum approach of 1.05Å-1.20 Å, with a fixed spacing of 0.02 Å and

0.04 − 0.085 weight of the experimental data. Meanwhile, CG relaxation is carried out

using SIESTA.

In the meantime, we implemented MQ calculations with random coordinates, which

were equilibrated at 7000 K, then cooled to 300 K, further equilibrated at 300 K and

finally relaxed using CG method. This process employed a time step of 1.0 fs for a total

simulation time of 26 ps. We have also prepared a self-consistent MQ model using VASP.

These models were started from random, then heated to 8000 K, equilibrated at 8000 K,

cooled to 300 K and finally relaxed with CG method. A time step of 1.5 fs was used for

total time of 24 ps.

These models will hereafter be identified as (F648, S160 and V160). The assigned

nomenclature indicates: method of preparation (FEAR-SIESTA-VASP) and number of

atoms in the cell of each model. We have used our previous VASP prepared model (V72 at

10 A local-orbital density functional code using LDA with Ceperley-Alder exchange correlation [36]
11 RMC based applications for the structural refinement [104]
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ρ = 0.95 g/cm3 ρ = 2.44 g/cm3

ρ = 2.99 g/cm3
ρ = 3.50 g/cm3

Figure 4.1: Visualization of the bonding in amorphous carbon for four different densities

ρ. (F648): purple (sp3), orange (sp2), green (sp) and red (singly bonded). Periodic

boundary condition were used, only atoms in reference cell are shown. Note the presence

of amorphous graphene fragments with ring disorder at ρ = 0.95 g/cm3

0.92 g/cm3) [66] to compare the result of our lowest density model. Our models are

summarized in Table. 4.1.
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Table 4.1: Nomenclature and details of our models: Position of first minimum of RDF

(rmin), average co-ordination number (n), percentage of sp3, sp2 and sp and total CPU time

for the simulation (T0).

Models ρ = 3.50 (g/cm3) ρ = 2.99 (g/cm3) ρ = 2.44 (g/cm3) ρ = 0.95 (g/cm3)

F648 V160 S160 F648 V160 S160 F648 V160 S160 F648 V72a

n 3.96 3.98 3.94 3.83 3.75 3.85 3.41 3.26 3.58 3.00 2.67

% of sp3 96.00 97.50 93.75 82.70 75.00 85.00 42.00 26.87 58.13 10.80 —

% of sp2 4.00 2.50 6.25 17.30 25.00 15.00 57.40 72.50 41.25 79.00 66.67

% of sp — — — — — — 0.60 0.63 0.62 9.60 33.33

T b
0 28.12 100 — 30.73 100 — 23.58 100 — — —

a at density 0.92 g/cm3. [66]

b CPU time for fixed number of total cores.

4.2.3 Structural Properties

Structurally, amorphous carbon at density 3.50 g/cm3 is diamond-like, (sp3) whereas

near graphitic density 2.27 g/cm3 it is mostly sp2 bonded and at even lower densities (<

2.0 g/cm3) we observe a few sp conformations juxtaposed with sp2 bonded carbon

structures [89]. This evolution of bonding with density is shown in Fig. 4.1. We have

assigned different color codes (via. Jmol12) for varying coordinations. Our sp2/sp3 ratios

are close to experimental findings [107, 108]. In Fig. 4.2, we show a comparison of

experimental static structure factor S(Q) and radial distribution function (RDF, g(r)) with

our FEAR models.
12 Jmol: an open-source Java viewer for chemical structures in 3D
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Figure 4.2: Structure factor for different models and their comparison with experiments

(or WWW model for 3.50 g/cm3). The experimental data are excerpted from previous

literatures. [8, 21, 91, 105, 106]

At density 3.50 g/cm3, we have used a Wooten-Wearie-Winer (WWW) [21] model as

our input diffraction data, as no experimental data is available for this density. The WWW

model is obtained with a bond-switching-algorithm [20] yielding an idealized (100 % sp3)

bonded network. These models have had many fruitful applications to tetrahedral

amorphous systems and beyond [22]. We obtained close agreement for both S(Q) and g(r)

with the WWW model, and we found 96 % sp3 content in our model (Table 1). In

contrast, earlier finding [109] report a lower concentration of sp3 at this density.
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Figure 4.3: Radial distribution function of different models and their comparison with

experiments. The experimental data are excerpted from previous literatures [8, 21, 91,

105, 106]

We have used experimental diffraction data for the next three calculations. At a

density 2.99 g/cm3, we employed the neutron diffraction data of Gilkes et al. [105] which

is estimated to have 84% sp3 bonding and a mean coordination-number n = 3.84. Our

obtained S(Q) and g(r) are in an excellent agreement with experiment and we reproduce

82.70 % sp3 bonding with mean coordination n = 3.83. Similarly, at density 2.44 g/cm3,

we have used experimental diffraction data of Li and Lannin [91] as our RMC input. We

obtain pleasing agreement with the experimental diffraction data (S(Q) and g(r)) while

some deviations are seen in MQ models. These results for densities (2.99 g/cm3 and 2.44
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g/cm3) are in better agreement with the experiment compared to some earlier

work [8, 89, 109].

At low density, our models reveal the presence of voids. For a density lower than

graphite (2.26 g/cm3) the system is comprised mostly of sp2 carbon, interconnected with

a small fraction of sp3 sites. [110] A notable amount of sp bonded carbon is also seen at

these densities [111]. Amorphous carbon at this density is also known as glassy carbon, a

bit of a misnomer as the materials are not conventional glasses. The uncertainty of density,

structure and significant H-content makes it difficult to study glassy

carbons [87, 92, 112–114]. Most calculations include strong assumptions, such as

building in perfect hexagonal graphitic or graphene sheets, coordination restrictions,

bond-angle restrictions and so on [92, 113–115]. Some of these constrained models were

found to be unstable and changed significantly upon relaxation [112].

We have previously carried out calculations in the low density regime [66]. We

worked in a density range of 0.923 g/cm3 - 1.6 g/cm3. As a representative of this lower

density regime in this paper, we have employed neutron diffraction data obtained for

silicon carbide-derived nanoporous carbon(SIC-CDC) [106] at a density 0.95 g/cm3 as

FEAR input. Our F648 model yields the most reliable picture of glassy carbon starting

from random, a suitable minimum of SIESTA and without any bias (ad hoc constraints).

The resulting model consists of obvious fragments of interconnected and warped

amorphous graphene fragments (with sp2 bonding, and ring disorder: hexagons,

pentagons, heptagons and octagons). We have successfully reproduced the major RDF

peaks for glassy carbon occurring at, 1.42 Å, 2.46 Å, 2.84 Å and so on [98]. There is a

slight deviation in the low Q range which was also observed in previous work [92, 106]

done with (> 3200 atoms), hinting that it is not a finite size artifact.

Bond angle distribution (BAD) and ring statistics provide vital information about

microstructure. In a typical RMC simulation with a perfect fit to experiment, an
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Figure 4.4: Bond angle distribution (BAD) and ring statistics of FEAR (F648) models.

exaggerated peak near ∼ 60.0o is observed in BAD [2]. Although, constraints have been

employed [8] to avoid these unrealistic cases, FEAR achieves it without external bias. We

report our results for BAD and ring statistics in Fig. 4.4. At the highest density the BAD

peak is close to the tetrahedral angle of 109.5o, with small deviation. At low densities the

BAD peak is closer to 120.0o, indicating trigonal symmetry is dominant in these

structures. It is reported that even with high sp2 content BAD peak at low density is close

to 117.0o [97].

We have shown in Fig. 4.4 that amorphous carbons mostly prefer 5-7 membered ring

structures. This is also true for the high sp2 concentration structures which further

clarifies that these a-C structures are different from graphite (only 6 membered rings). A

negligible fraction of smaller ring structures were also observed but these are less than
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MD and other calculations [8]. The ring statistics were evaluated with King’s shortest path

method [54] using ISAACS software [56].

In FEAR, we obtain low values of χ2 in conjunction with a local energy minimum.13

Our plot of the variation of total energy (E) and χ2 is shown in Fig. 4.5. The results

obtained shows that an initial structure is formed within few hundred FEAR steps. These

states have more or less the same average energy and as we move along with FEAR steps

these defects are removed, leading ultimately to a chemically realistic structure.

13 χ2 measures goodness of fit between experimental and FEAR model [2, 3, 48]
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4.2.4 Electronic Properties

The concentration of sp, sp2 and sp3 sites strongly influences the electronic density

of states (EDOS). As in the case of diamond, a-Carbon with high sp3 is non-conducting.

We have presented plots of the EDOS of our F648 models in Fig. 4.6, where we have also

decomposed the total EDOS by sp3, sp2 and sp contributions. We can clearly see that the

sp2 states for density 3.50 g/cm3 act as a defect and leads to formation of a

pseudo-gap. [116] Subsequently, a-Carbon models at lower density appear to be

conducting as expected [89, 102]. In Fig. 4.6 (Right panel) we show the plot of Inverse

Participation Ratio (IPR) [103], IPR gives information about the spatial localization of

electronic states. As seen in Fig. 4.6, the gap states for high density are highly localized

while the lower two density have much more extended states.

4.2.5 Vibrational Properties

The vibrational density of states (VDOS) provides crucial information about changes

in local bonding environment which is very effective test for theoretical models [117] and

offers a remarkably direct comparison between experiment and theory. It is well know that

a-Carbon exhibits two major peaks in VDOS and Raman spectra; occurring at: ∼ 1500

cm−1 and ∼ 800 cm−1 [91]. In contrast, several theoretical models show a single broad

peak occurring roughly at ∼ 1100 cm−1 [116, 118].

We have also calculated the vibrational density of states (VDOS) of our four F648

models. The dynamical matrix was obtained by displacing each atom in 6-directions

(±x,±y,±z) by a small displacement of 0.015 Å (see details [65]). Our VDOS plots for the

four models are shown in Fig. 4.7.

Our results show reasonable agreement with the literature. There is distinct

bifurcation seen in our F648 models as seen in several experiments. At 3.50 g/cm3, we

compare our result with VDOS obtained for 216-WWW model [21]. We observed a slight
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Figure 4.6: Plot of EDOS (EF=0 eV) of F648 models: (Left panel) black-solid (total

EDOS), blue-dashed (sp3 EDOS), green-dashed (sp2 EDOS) and (green-dashed, sp

EDOS). (Right panel) orange-drop lines (IPR) and black-solid (total EDOS).

shift for 2.99 g/cm3 as compared to model at 3.50 g/cm3. At 2.44 g/cm3, we have

compared our results (sp3 fraction 42.0%) with experimental data [117] obtained for

amorphous carbon containing sp3 fraction at 60% ± 10%, we have a qualitative match

with the experimental finding. The position of two peaks and their relative intensity is

reported to slightly differ for different incident energies and sp3 fraction [117, 119].

At low density 0.95 g/cm3, our model resembles distorted graphene structures (see

Fig. 4.1). We have compared our results with 2D a-graphene result of Li and

Drabold [95]. The plots bear a remarkable similarity, most notably the peak occurring at

∼ 700cm−1 and ∼ 1400cm−1. This is surprising in view of significantly different topology
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(IPR) (orange dots) for F648 models.

(one is 3-D, the other one 2-D). We have also computed the inverse participation ratio

(IPR) for our F648 models. IPR, gives localization of these vibrational modes [65, 66].

Our result for IPR shows that vibrational modes are extended at the low frequency regime

and localized modes are only observed a higher frequency than ∼ 1500cm−1, which are

likely to be localized stretching modes [66, 118].

4.2.6 Conclusion

We have used a uniform approach to model a-Carbon using FEAR at various

densities. We have used method FEAR efficiency to obtain large size (648 atom) “ab
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initio” models. The inclusion of ab initio interactions not only guides us towards a

chemically correct structures, it directly helps us to avoid chemically unphysical

structures. A typical RMC based calculation fails to accurately model amorphous systems

without the addition of experimental based constraints. In our experience, FEAR yields a

lower DFT energy and takes far less computer time to converge compared to MQ with

identical interactions. We have established a set of accurate ab initio models for

amorphous carbon that we hope will serve as a benchmark for future modeling studies.

4.3 Amorphous Graphene: A Constituent Part of Low Density Amorphous Carbon

4.3.1 Introduction

Amorphous graphene (a-G): an idealized 2-D structure consisting of 5-6-7 polygons

with predominant sp2 bonding has presented a challenge for extraction. This has been

achieved by exposure of an of electron beam to a crystalline/pristine graphene

(p-graphene) sheet, to produce an amorphous monolayer [120]. Similarly, a-G has been

modeled by introducing 5 and 7 member rings with a Wooten-Weaire-Winer (WWW)

scheme [24, 25, 95, 121]. In this work we have used a recently developed hybrid approach

FEAR (Force Enhanced Atomic Refinement) method, an ab initio structural refinement

technique, to show that low density phases of Carbide-Derived Carbons

(CDC) [110, 122–124] are a form of three dimensional a-G (warped, wrapped 2D a-G

sheets with ring disorder and defects).

4.3.2 Model and Methodology

In this work, a starting random configuration is fitted to experimental data with

RMCProfile [104] with values of M = 1 and N ∼ 100 respectively. We have used silicon

carbide-derived nanoporous carbon (SIC-CDC) [106] at density 0.95 g/cm3 as our

experimental data. We have used a maximum RMC step size of 0.15-0.375 Å, restricting
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Figure 4.8: Structure model of 3-D amorphous graphene (800 atom). color coding: purple

(sp3), orange (sp2), green (sp) and red (singly bonded).
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(a) (b)

(c) (d)

Figure 4.9: Structure models: (a) 3-D a-graphene (648 atom), (b) 2-D a-graphene [95] (c)

2-D crystalline graphene, and (d) 3-D schwarzite [125]. color coding: purple (sp3), orange

(sp2), green (sp) and red (singly bonded).

minimum approach distance between atoms to 1.05 Å, a fixed spacing of 0.02 Å and 0.04

weight of the experimental data. The relaxation step was performed with single-ζ basis,

periodic boundary conditions and Harris functional at constant volume using DFT code

SIESTA [36]. Finally, we relax converged models using Vienna ab initio package
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(VASP) [126, 127]. All the calculations were performed with a single k-point Γ(~k = 0)

and the local density approximation, and PAW potentials. We started with random initial

configurations, and made FEAR models with 216, 648 and 800 atoms. We observe in

passing that FEAR is computationally highly advantageous compared to MQ, requiring

far fewer calls to the ab initio code (in the FEAR CG step). We explore reproducibility

with models containing 216, 648 and 800 atoms, and show that a consistent network

topology emerges.

To explain and calibrate the results, we have created MQ models with 648 and 216

atoms. The 648-atom MQ model was equilibrated at 7000 K, then cooled to 300 K, and

after further equili- bration at 300 K, was relaxed using the CG method. This process

required 50 ps of total simulation time. Due to the large size of the system we have used

the DFT code SIESTA with Harris functional to form this model. We also have created a

216-atom MQ model with the help of plane wave DFT code VASP, using the local-density

approximation with Ceperley-Alder (CA) exchage correlation functional. The VASP

model was first equilibrated at 7500 K, then quenched to 300K in multiple steps over a

total simulation time of 42 ps using a time step of 2 fs. A plane wave cut off of 350 eV and

energy difference criteria of 10−4 was chosen for the simulation. These are typical

simulation times used in preparing accurate models of amorphous systems14 Additionally,

we discuss crystalline/pristine graphene (p-graphene, 800 atoms) [95] and a schwarzite

model (792 atoms) [125] for comparison.

14 It is worth noting that melt-quench (MQ) process does depends on cooling rate. However, our earlier
study done for several models of amorphous carbon at different cooling rates showed only slight differences
in bonding (sp, sp2 and sp3) preferences without much change in other observables such as electronic density
of states or vibrational properties [66]. Recently it has been shown that very slow quenching rate improves
the quality of MQ models [128, 129]. These simulations are very extended and do not seem to be an
efficient way to model amorphous systems. FEAR produces models with DFT accuracy taking less CPU
time. Computationally speaking, our 216 atom FEAR model presented here requires 1/14 the time used for
the 216 atom VASP (MQ) model and requires total force calls of (∼ 6000 − 8000) to obtain a converged
model.
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Figure 4.10: Comparison of radial distribution function g(r) and structure factor (S (Q),

inset) of FEAR models with experiment(ρ = 0.95 g/cm3). [106].

4.3.3 Results

In Fig. 4.9, we show the topology of our models. sp2 bonding (in orange) dominates

each of these structure. 3-D amorphous graphene has a few sp3 bonded sites (∼ 11%)

which mainly connect one sp2 graphene fragment to another. Similarly, a few sp bonded

sites appear in both 3-D and 2-D amorphous graphene. In Fig. 4.10, we compare our

results with the experimental results of nano-porous Silicon Carbide Derived Carbon

(SiC-CDC) at density 0.95 g/cm3 [106]. We observe good agreement with the experiment

(by construction) while a slight deviation is observed upon complete ab initio (VASP)

relaxation. We have plotted the radial distribution function g(r) for the four models and

the static structure factor S (Q) in Fig. 4.11. 3-D a-graphene model has first

nearest-neighbor distance at 1.42 Å and second nearest-neighbor distance at 2.45 Å same

as crystalline graphene model. Meanwhile, the 2-D a-graphene model [25, 95] reveals a
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Figure 4.11: Radial distribution functions g(r) of four models ( 3-D a-graphene (800

atom), 2-D a-graphene (800 atom), crystalline/pristine graphene (p-graphene, 800 atom)

and schwarzite (792 atom)), (inset) Comparison of static structure factor S (Q) between

3-D and 2-D a-graphene.

second peak in g(r) with second nearest-neighbor at 2.38 Å, suggesting a broader

distribution bond-angles than 3-D a-graphene model [118] (see Fig. 3(right panel)).

Both 2-D and 3-D a-graphene exhibit bond angle distribution (BAD) with peak

around ∼ 120o. The full width at half maximum of BAD has a value of 27.45o and 26.65o

for 2-D and 3-D graphene respectively. It is observed that with high sp2 concentration,

BAD is around 117.0o [97]. The plot of static structure factor S (Q) for 2-D and 3-D

a-graphene shows a striking similarity between these structures.

In Fig. 4.12, the ring distribution shows that both 2-D and 3-D a-graphene have ring

structures of various sizes (mostly 5, 6 and 7), as in shungite [130]. In contrast, both

schwarzite and p-graphene exhibit 6-membered rings (exception: schwarzite has few
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7-membered rings). We have also computed Extended X-ray Absorption Fine Structure

(EXAFS) for our four models (see Fig.4.13). EXAFS is valuable for the first-shell

information [131]. We observe strong structural correlation of 3-D graphene and 2-D

graphene in our EXAFS plot, [132, 133] whereas pristine graphene and schwarzite

structures distinctively differ from these structures. We show an EXAFS signatures

differentiating 2-D and 3-D a-G (a peak at ∼ 2.2 Å, see Fig. 4.13).
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Figure 4.14: Plot and comparison of vibrational density of states for the four models. The

3-D graphene (a-carbon) has excellent similarity with the 2-D a-graphene. The yellow dot

represent vibrational inverse participation ratio.

The electronic density of states (EDOS) and vibrational density of states (VDOS) are

reported next. The low energy modes are related to mechanical properties and low

temperature thermal conductivity of a material [59–62]. The force constant matrix was



84

3D a-graphene

2D a-graphene

3D a-graphene

-18 -12 -6 0 6

Energy (eV)

schwarzite
p-graphene

-18 -12 -6 0 6

Energy (eV)

2D a-graphene

0

0.4

0.8

0

0.4

0.8

E
le

ct
ro

n
ic

 d
en

si
ty

 o
f 

st
at

es
 (

E
D

O
S

) 
(a

rb
. 

u
n

it
s)

E
le

ct
ro

n
ic

 d
en

si
ty

 o
f 

st
at

es
 (

E
D

O
S

) 
(a

rb
. 

u
n

it
s)

In
v

er
se

 p
ar

ti
ci

p
at

io
n

 r
at

io
 (

IP
R

)

Figure 4.15: Plot and comparison of EDOS (EF=0 eV) and localization (IPR, yellow dots).

obtained from a finite difference method displacing every atom in 6-directions (±x,±y,±z)

with a small displacement of 0.015 cm−1. The first three frequencies arising due to

supercell translations which are very close to zero are neglected in our calculation and all

our other frequencies are positive (no imaginary modes). Once again due to gigantic size

of our model we have Harris functional to our advantage with a double-ζ basis (see

details [65, 66]). Our 3-D amorphous graphene shows two distinctive components in

VDOS (see Fig. 4.14). A sharp peak around ∼ 814 cm−1 and a broader peak at ∼ 1300

cm−1, and a narrow neck is observed at ∼ 470 cm−1. We have an surprising match of

VDOS for our model and 2-D amorphous graphene. The VDOS for crystalline graphene

and schwarzite reveal a different profile to amorphous graphene. The pristine graphene

VDOS peaks are observed at: ∼ 490 cm−1, ∼ 678 cm−1 and ∼ 1460 cm−1, with peak

intensities and position quite different to amorphous graphene. We associate the peak at
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∼ 814 cm−1 with a-graphene and a peak around ∼ 1460 cm−1 for p-graphene as signature

peaks.
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Figure 4.16: (Left panel) Plot of Total, (sp3, sp2, sp) projected VDOS and vibrational IPR for

3-D a-graphene model. (Right panel) Plot showing Total, (sp3, sp2, sp) projected EDOS and

electronic IPR for the 3-D a-graphene model.

In Fig. 4.15, we report the EDOS for these four models. The EDOS for both 3-D and

2-D graphene exhibit a striking similarity, and various defects (sp3 and sp) and topology

seem to have modest effect. A similar observation was also seen in ZrC-CDC

structure [122]. Separate computations (not shown here) are in agreement with previously
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Figure 4.17: Specific heat plots for the four models. (Inset) Low temperature specific heat of the

four models.

established result of Van Tuan et. al [134]. We note that the EDOS of crystalline graphene

and schwarzite are quite distinct from its amorphous counterpart.

The electronic states and vibrational states of amorphous solids are affected by

disorder present in the structure. The localization of electronic/vibrational states can be

quantified by computing inverse participation ration (IPR) [58]. A completely localized

state would have an IPR value unity while an extended state has a value of (1/N) i.e.

distributed over N atoms. Vibrational IPR is evaluated using obtained normalized

displacement vectors (u j
i ) as shown in Equn. 1.12. Similarly, localization of nth electronic

state is computed as shown in Equn. 1.7. By comparison of the localization of states for

both 2D and 3D a-graphene near Fermi energy, we see mostly extended states with few

weakly localized states. We again obtain that the vibrational modes are mostly extended,

with few localized modes around ∼ 1800 − 2000 cm−1. We further dissect the VDOS and
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EDOS into sp, sp2 and sp3 contributions to gain further insight into 3D a-graphene model

(Fig. 4.16). The decomposed VDOS shows that sp2 bonding clearly dominates the

vibrational spectrum. Further, we can clearly observe the narrow neck at ∼ 470 cm−1, seen

in 2D a-G. We further decompose the vibrational localization into sp, sp2 and sp3

components. Most localization in this system is contributed by sp and sp3 bond.

Decomposition of EDOS into sp, sp2 and sp3 contributions shows quite an interesting

result. The sp and sp3 bonding atoms have almost no effect on the electronic properties

both at conduction band or deep into valance band. Similar to VDOS, most of the

electronic localization in due to sp and sp3 bonded carbon networks. We have computed

specific heat in the harmonic approximation, Cv(T ) for the four models shows similar

pattern at high temperatures, with p-graphene showing slight deviation compared to other

models (see Fig. 4.17). The inset shows more prominent changes at the lower

temperatures (0 K to 100 K). The two amorphous graphene models (2-D and 3-D)

increases with same slope between 0 K to 100K. Meanwhile, a deviation from a-graphene

is seen for the case of p-graphene and schwarzite.

4.3.4 Conclusion

In summary, we have shown that a-C with density 0.95 g/cm3 is a form of a-G. We

provide a detailed analysis of our model by computing structural, vibrational and

electronic properties and comparing to 2D amorphous graphene along with other sp2

structures. Surprisingly, bonding defects (∼ 11% sp3 and ∼ 11% sp) has little effect on

properties like EDOS and VDOS.
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5 Conclusion

In the first three chapters we have extensively discussed the vibrational properties of

two amorphous system: a) amorphous silica and b) low density amorphous carbon. The

first study is interesting as it is one of largest ab initio based model used to probe

vibrational properties of amorphous silica. Our study also has qualitative agreement with

the experiment and produces all four principal peak observed in experimental findings. In

addition, we also proved that the plateau observed (∼ 20 K) in the specific heat plot is due

to “Boson peak” seen in the VDOS.

In our second study we have studied the low density regime of amorphous carbon by

preparing several DFT models for density range 0.90 − 1.6 g/cm3. Our studies reveal that

at these densities amorphous carbon is dominated by sp2 bonding but still possess

significant proportion of sp and sp3. For these low densities, the vibrational density of

states is computed for the first time, along with localization of modes and the specific heat

with comparison to experiments. The vibrational modes are well extended and are more

complex than simple molecular pictures. We note similarities and differences between a-C

and hypothetical amorphous graphene material.

In the last chapter, we have discussed the results obtained from a novel modeling

technique FEAR. We have extended FEAR to model several large systems. This includes

challenging system like amorphous carbon across densities and we reveal that low density

nano-porous carbon as amorphous graphene. FEAR provides a suitable alternative as it

does not incur expensive computational cost compared to the melt quench (MQ) method.

In FEAR inclusion of ab initio interactions guides us towards a chemically sensible

structures. It is a direct upgrade to usual RMC method as FEAR avoid chemically

unphysical structures. A typical RMC based calculation fails to accurately model

amorphous systems without the addition of experimental based constraints. We have used

an unbiased and uniform approach to model amorphous carbon for density range
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0.923 − 3.5 g/cm3. The 648 atom models at various densities represent the largest ab

initio based model and will act as a benchmark calculations for future research. Lastly, we

extended our work on FEAR on low density amorphous carbon. We incorporate the

experimental data of nano-porous carbon and ab initio interactions to create a model of

amorphous graphene. We compare our obtained graphene network with 2D-amorphous

graphene, crystalline graphene and schwarzite to verify that these are indeed warped form

of amorphous carbon.

5.1 Future Works

FEAR method thus far has been carried out in limited systems. An immediate

application of this method would be on complex problem like Bulk Metallic Glasses

(BMG) [135]. Further, extension of FEAR to make it a general method, incorporation of

Extended X-ray Absorption Fine Structure (EXAFS) would be ideal. EXAFS

experimental data would be extremely useful for complex metallic alloys as these

multicomponent system are complicated and neutrons total scattering may not be

sufficient to provide the necessary compositional contrast.

Additionally, machine learning based potentials have shown to be a great asset to

simulate system for a long time scale without compromising the accuracy of the

system [128, 129]. Since, FEAR needs fewer force call thus we can use these inexpensive

interactions to model even large systems.
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Appendix: FEAR Algorithm: A Brief Overview

In this appendix, a brief overview of FEAR algorithm is explained. We have carried

our calculations of FEAR employing RMCProfile [104] and ab initio softwares VASP or

SIESTA [36]. The tutorials and manuals have made it really convenient to use. It is

recommended to compile and test run each softwares (RMCProfile or SIESTA or VASP)

individually before performing FEAR calculations. In particular, RMCprofile tutorials are

short and really helpful to understand its working format.

This brief algorithm is written expecting that the user already is familiar with VASP

or SIESTA or LAMMPS.

Running FEAR: To begin FEAR calculations, we start either with RMC calculation

or relaxation of the model. In this brief overview we start with RMCProfile as our first

step.

(i) Running RMCProfile:

To run RMCProfile we need to have few files in a same folder. These files are

described below for RMCProfile version 6.5.1:

(1) Input file, extension (*.dat): This input file contains all the information about input

environments which include: number density, maximum moving distance,

minimum distances between two atoms, time limit for simulation, information about

atoms and a detailed information about the experimental data file.

(2) Position file, extension (*.rmc6f): This file is also supplied by user. This contains

the information about the box and co-ordinate position consistent with the input file

(*.dat). The coordinate format should be consistent with the sample from tutorials

or according to the rules mentioned in manual.

http://www.rmcprofile.org/Main_Page
https://www.vasp.at/
https://www.icmab.es/siesta
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(3) Experimental data file, extension (*.sq or *.dat or *.gr): This file contains

experimental data points obtained for a fixed incremental values that should be

consistent with the input file. The extension of these experimental file can be chosen

by user but it should be consistent with the input file (*.dat). Typically, experimental

data file extension are choosen consistent with the experiment e.g. *.sq for structure

factor, *.gr for pair correlation function and so on.

(4) RMCProfile executable : RMCProfile executable can be easily obtained from the

RMCProfile software package.

A special attention should be provided naming these files. Both input file (*.dat) and

position file (*.rmc6f) file should have a same name. Upon completion of simulation

another file with an extension (*.his6f) is created. This file has the same format as position

file (*.rmc6f) and contains the latest configuration of the atoms after the simulation.

Similarly, other files with extensions: .csv, .xml and so on are generated which are well

described in the manual.

(ii) Running SIESTA or VASP or LAMMPS:

For FEAR calculations we need to save at least two informations from rmcprofile

run: i) Goodness of the fit (χ2) and ii) Latest configuration simulation (*.his6f). The user

needs to append the latest configuration (*.his6f) in desired format (*.xyz, compatible

with Jmol and ISAACS). Thus multiple FEAR runs create multiple sets of configuration

(multiple *.xyz). Further, this latest configuration has to be converted in appropriate input

file for (VASP or SIESTA or LAMMPS). All the other files which are surplus to the

calculation are usually erased (except files 1-4 and saved files).

Similarly few files have to be included in the same folder for these runs for e.g:

SIESTA (*.psf. *.fdf (includes position and boxsize consistent with rmcprofile

calculation) and siesta executable) or VASP (KPOINTS, POTCAR, POSCAR (from

http://www.rmcprofile.org/Main_Page
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rmcprofile), INCAR). After performing the relaxation we again save the appropriate

informations like final configuration energy, final configuration and so on. All the

unnecessary files excluding those required to run are deleted. This practice helps to keep

track of all the files and is easier to debug. Finally from the final configuration new

position file (*.rmc6f) is created. This new position file replaces the old position file and

the calculation keeps moving in a cyclic process until the desired accuracy for χ2 and final

energy is obtained.
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