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Abstract

IGRAM, DALE J., Ph.D., December 2019, Physics

Computational Modeling and Characterization of Amorphous Materials (73 pp.)

Director of Dissertation: David A. Drabold

Two different materials, a non-glass former (a-Si) and a glass former

(Ag0.2(Ge35Se65)0.8), were considered for investigation. New structural models of these

systems were obtained using state of the art methods. Several physical, electrical, and

dynamical attributes of these materials were computed, which revealed atomistic

structure, vibrational, electronic and transport properties.

To create high-quality continuous random network models of a-Si is difficult using

conventional methods. A recently developed algorithm, force-enhanced atomic refinement

(FEAR), has shown to provide excellent models. To illustrate this, an investigation was

performed with respect to the structural, electronic, and vibrational properties of

amorphous silicon, which consisted of several model types of different sizes that were

constructed from melt-quench (MQ) and FEAR methods. The results from the FEAR

models, as compared to the MQ models, correlated more closely with experiment, even

for relatively large structure sizes. In addition, FEAR is generally about a factor of 10

faster than conventional methods.

Next, we investigated the static and dynamical properties of a ternary glassy material

Ag0.2(Ge35Se65)0.8 using ab initio molecular dynamics (AIMD). The results indicated the

host network to be rigid and that additional substructures exist in the model. The radial

distribution function of the Ag0.2(Ge35Se65)0.8 model revealed reasonably good agreement

with experiment. It has been shown that the model consists of Ge(Se1/2)4 tetrahedra which

are quite distorted from ideal. To better comprehend the dynamical properties of this

model we performed a detailed analysis of the vibrational modes, which we believe to be a

first for such a system. Finally, we examined A1 breathing modes of the corner-sharing
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tetrahedra where we affirm that these breathing modes are non-local and involve the

mixing of modes for different symmetry which results in two bands of A1 breathing

modes, thus emphasizing the fact that local molecular vibration modes is an

oversimplified approximation for amorphous materials.
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1 Introduction

Recently, there has been increasing interest in amorphous materials, because of their

potential technological applications and also the lack of understanding of these materials,

whose properties are quite different from crystalline materials [1]. Some of their

properties can vary from one sample to the next with same material. An ideal crystal has

translational order in all three dimensions, this is not true for an amorphous material

because of imperfections and disorder.

A crucial distinction between an amorphous material and a crystal involves

long-range order. A crystal has long-range order, whereas an amorphous material does

not. This lack of long-range order is due to variation in bond lengths, bond angles and

coordination numbers at individual atoms. This type of disorder is considered in this

dissertation. The amount of short-range order that a structure has determines the extent of

its topological disorder [2] . Direct inversion of structure from diffraction measurements is

difficult because the data is averaged over macroscopic volumes and is smooth, carrying

limited information about the structure.

A quantity that is commonly obtained from diffraction experiments is the radial

distribution function (RDF). The RDF is a one-dimensional (1D) representation of a

three-dimensional (3D) structure resulting in only a limited amount of structural

information, thus the importance of structural modeling. Through the utilization of

computational methods, structural modeling can contribute significantly to the

understanding of an amorphous material by providing information on the structural

parameters, such as pair correlation function (PCF), structure factor, radial distribution

function (RDF), etc. To illustrate the utility of structural modeling to unveil the structure

of amorphous systems, two different materials considered for study: amorphous silicon,

and a silver-doped chalcogenide glass.
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1.1 Amorphous Silicon

There are several technological applications where amorphous silicon (a-Si) and its

hydrogenated version (a-Si:H) are utilized. While a number of traditional and

non-traditional methods have been used to analyze these materials, most have not been

totally successful.

The availability of high-precision experimental data from diffraction, infrared (IR),

and nuclear magnetic resonance (NMR) has provided special opportunities for developing

methods that can directly employ this data into structural modeling. An example of such a

method is the reverse Monte Carlo (RMC) method (refer to section 1.3.2). However, this

method has a major problem in which it creates unphysical structures when using

diffraction data only, since it includes no chemical information.

The development of hybrid approaches, which maintain the character of RMC with

respect to incorporating experimental data in simulations but also includes a cost function,

has helped to resolve the problems associated with the direct (RMC) inversion of

experimental data. One such hybrid method is the force-enhanced atomic refinement

(FEAR) which has successfully incorporated experimental information in atomic

simulations for creating structures that are consistent with both theory and experiments.

The FEAR method has been utilized extensively, as shown in Chapter 2, for creating large

and realistic models of a-Si consisting of up to 1000 atoms, which displayed excellent

structural, electronic, and vibrational properties as compared to currently published RMC

and ab initio molecular dynamics models.

1.2 Silver-doped Chalcogenide Glass

It was discovered in the mid-1960s [3] that incorporating silver into chalcogenide

glasses produced new materials with special properties resulting in applications in the

areas of optics, optoelectronics, and biology [4]. The Agy(GexSe1−x)1−y system has been
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studied extensively over the years both for academic and technological reasons. Computer

simulations [5–8] have been performed in order to better understand the structural,

electronic and silver ion dynamics of these systems.

Due to interest as a CBRAM computer memory material, the amorphous

Ag0.2(Ge35Se65)0.8 structure was modeled to better comprehend its static and dynamic

properties, which is of great interest to engineers devising new CBRAM memory. Also,

this composition has not been previously evaluated. In addition to the evaluation of

structural, electronic, ion dynamics properties of the Ag0.2(Ge35Se65)0.8 structure, an

extensive investigation of the vibrational properties was studied.

1.3 Computational Methods

1.3.1 Ab initio Methods

It is desirable to reproduce experimental data and better to have some predictive

ability. Structural modeling with computer simulations based on the first principles of

quantum mechanics, independent of empirical parameters, can come close to achieving

this. Because it is impossible to obtain an exact solution to the Schrodinger equation for a

many-body system consisting of nuclei and ions, approximations [9] have been developed.

Perhaps the most successful approximation is the density functional theory (DFT) which

is a single particle approximation. This theory can determine the properties of a

many-electron system by using functionals that are spatially dependent on election density.

It is well known that DFT has a limitation in that its exact functionals for exchange

and correlation are not known except for the free electron gas [10]. Nevertheless, for

electronic ground state properties and structural properties highly successful approaches

are available. The most commonly used approximation or functional is the local-density

approximation (LDA) [11], which depends only on the electronic density at the coordinate

where the functional is evaluated. Another functional that is frequently used is the
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generalized gradient approximation (GGA) [12]. The GGA functional considers the

density and density gradient. Two well known ab initio DFT codes which were utilized in

the research projects are discussed in the following sections.

1.3.1.1 Vienna Ab initio Simulation Package (VASP)

VASP is a computer package where ab initio quantum-mechanical

Born-Oppenheimer molecular dynamics (MD) simulations are performed using

pseudo-potentials[13] or the projector-augmented wave (PAW) method [14] and a plane

wave basis set. The interactions between electrons and ions are described using ultra-soft

pseudo-potentials or the projector-augmented-wave method. VASP provides an

approximate solution to the many-body Schrdinger equation within the density functional

theory (DFT) by solving the Kohn-Sham equations [15]. The electronic groundstate is

determined by using an efficient iterative matrix diagonalization technique [16]. Forces on

the atoms are calculated by evaluating the partial derivative of the free energy with respect

to the atomic positions. Because atomic displacements are determined by VASP phonon

calculations can be performed.

1.3.1.2 Spanish Initiative for Electronic Simulations with Thousand of Atoms

(SIESTA)

SIESTA [17] is both a method and computer program designed to perform electronic

structure calculations and ab initio molecular dynamics simulations of molecules and

solids. The standard Kohn-Sham self-consistent DFT method in the local density

(LDA-LSD) and generalized gradient (GGA) approximations, as well as in a nonlocal

functional that includes van der Waals interactions (VDW-DF) are utilized by SIESTA.

Atomic orbitals are used as a basis set, which allows multiple-zeta, polarization and

off-site orbitals to be considered. The radial shape of every orbital is numerical and any

shape may be considered by the user, only under the condition that it has finite support, in
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other words, it has to be zero beyond a user-provided distance with respect to the

associated nucleus. These flexible basis sets are the means for calculating the Hamiltonian

and overlap matrices. SIESTA has some of the same features as VASP with regards to

calculating the following: total and partial energies, atomic forces, stress tensor, electron

density, geometry relaxation (fixed or variable cell), constant-temperature molecular

dynamics (Nose thermostat), vibrations (phonons), and band structure.

1.3.2 Hybrid RMC Methods

The Reverse Monte Carlo (RMC) modeling method is a variation of the standard

Metropolis-Hastings algorithm [18] for solving an inverse problem, whereby a model is

adjusted until its parameters have the greatest correlation with experimental data. For

condensed matter problems, the RMC method was initially developed by McGreevy and

Pusztai [19] in 1988, with application to liquid argon. RMC alone will not produce a

realistic structure of amorphous materials when using diffraction data only [19, 20]. This

method has always confronted some amount of controversy, the most common criticism is

that RMC does not provide a unique solution. Other approaches utilizing the RMC

method have been formulated, such as Experimentally Constrained Molecular Relaxation

(ECMR) [21], a hybrid RMC (HRMC) utilizing empirical forces [22], a combination of a

liquid-quench procedure and a HRMC concept [23], an Invariant Environment Refinement

Technique [24], and a Seed Coordinate Anneal (SCA) method [25]. However, a recently

developed hybrid algorithm, force enhanced atomic refinement (FEAR), has been utilized

successfully for different amorphous materials (a-Si, a-SiO2, and a-C), which is discussed

next.

1.3.2.1 Force-Enhanced Atomic Refinement (FEAR)

FEAR is a structural modeling method that utilizes RMC for the fitting of

experimental data and incorporates inter-atomic forces, obtained by the total-energy
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functional, to minimize the total energy and forces in a self-consistent way. A flow

diagram is illustrated in Fig. 1.1.

Figure 1.1: Pictorial of the FEAR algorithm [26].

The FEAR algorithm consists of the following steps: starting with an initial

configuration (C1), which is usually random; the atomic coordinates from the initial

configuration is passed (path 1) to the RMC algorithm; the RMC algorithm uses these

coordinates to perform a partial fit to experimental data producing a new configuration

(C2); the new coordinates are incorporated into the total energy optimization process (path

2) where a gradient-descent method is used resulting in a configuration (C3), which is then

evaluated (path 3) with respect to criteria for χ2 and force; the self-consistent process is

continued (paths 2 to 3 to 4 to 2) until the convergence criteria are satisfied. The C3

structure is then fully relaxed resulting in the final structure. The function to minimize is

χ2 =
∑

i

[
FE(ki) − FC(ki)

σ(ki)

]2

(1.1)
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where FE/C(ki) represent the experimental/configurational structure factors and σ(ki) the

experimental error related to the data for wave vector ki . The efficiency of the FEAR

algorithm is due to the partial use of RMC and ab initio MD relaxation for each FEAR

step. Empirically, an acceptable ratio of RMC steps to relaxation steps for good efficiency

and efficacy is about 100:1, which is advantageous, since the RMC calls are

computationally inexpensive for amorphous materials.

1.4 Structural Properties

Scattering experiments are performed to discover partial information about the

structure of matter. From an atomistic view, the purpose of structural analysis is to relate

the structure to the properties of real materials so that they can be better understood. This

understanding can lead to an improvement of the material or development of new ones

with better properties. Some of the most commonly utilized quantities in structural

analyzes are described in the following sections.

1.4.1 Static Structure Factor

The static structure factor, S (Q), obtained from neutron, electron or X-ray diffraction

experiments, is defined [27] as

S (Q) = 1 +
1
Q

∫ ∞

0
G(r)sin(Qr)dr (1.2)

where Q represents the diffraction vector and G(r) the reduced pair distribution function.

G(r) is most directly associated with the experimental data because it is obtained precisely

from the Fourier transform of S(Q) and is written as

G(r) = 4πrρo(g(r) − 1) (1.3)

where g(r) is the pair distribution or pair correlation function.



19

1.4.2 Pair Correlation Function

The pair correlation function g(r), also known as pair distribution function (PDF), is

related to the pair density function by ρ(r) = ρog(r), where ρo represents the average

number density for the material. From Fig. 1.2, it is shown that as r → ∞, ρ(r)→ 1. Also

revealed are oscillations of ρ(r) where for large r, ρ(r) asymptotes to ρo, and becomes zero

as r → 0. These functions can affirm the small-r short-range order.

Figure 1.2: Illustration of the density function ρ(r) for an amorphous material [10].

A PDF peak can provide the following information [27]: the peak position provides

the average atomic pair distance, the peak integrated intensity gives the coordination

number of the atomic pair, and the width and shape of the peak can yield the atomic

probability distribution.
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1.4.3 Radial Distribution Function

The most intuitive distribution function is the radial distribution function (RDF) [27],

which defined as

R(r) = 4πr2ρog(r) (1.4)

The quantity R(r) can be used to provide the number of atoms in an annulus of

thickness dr at a distance of r from another atom, as shown in Fig. 1.2. The number of

neighboring atoms, NC, is written as

NC =

∫ r2

r1

R(r)dr (1.5)

where r1 and r2 represents the RDF peak associated with the coordination shell (defined

by r1 and r2) under consideration. This quantity is also considered as the coordination

number.

1.4.4 Ring Statistics

Ring statistics, which is based on graph theory, is the analysis of topological

networks (liquid, crystalline or amorphous structures) involving the connectivity of

structural information which can be used by representing nodes for atoms and links for

bonds [10]. If a series of nodes and links are connected sequentially with no overlap then

it is called a path. A ring is considered a closed path. A N-membered ring is a ring with N

nodes. If a particular node of a network is evaluated we may see that this node is

associated with a number of rings, where each of these rings can be defined by its size and

classified based on the relations between nodes and links that is composing it.

There are a couple of methods for determining ring sizes. The first method involves

using the total number of nodes of the ring (i.e. N-membered ring is a ring consisting of N
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nodes) and the other method relies on using the total number of network-forming nodes.

The first method was utilized for the work presented in this dissertation.

Different criteria exists to classify rings, for details see [28]. One of the most

commonly used criterion is the King shortest path criterion [29], which was used for the

work contained in this dissertation. The King criterion is depicted in Fig. 1.3.

Figure 1.3: King criterion: a ring representing the shortest path between two of the nearest
atoms (N1 and N2) of a given node (At) [29].

The King criterion defines a ring as the shortest path which comes back to a given

node from one of its nearest neighbors.

1.5 Electronic Properties

Promising electronic materials [30] with a wide range of applications such as solar

cells, thin-film transistors, light sensors, optical memory devices, vidicons,

electrophotographic applications, and x-ray image sensors are fabricated from amorphous

semiconductors. The applications of these materials are dependent on the material’s

electronic properties. Two important quantities for characterizing the electronic structure

of these materials are electronic density of states (EDOS) and electronic localization,

which will be discussed next.
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1.5.1 Electronic Density of States

The electronic density of states is a fundamental physical quantity which can be

indirectly examined with photo-emission and optical absorption experiments. Because

amorphous materials lack periodicity, unlike a crystalline solid, electrons cannot be

described by Bloch states and a band structure having the form E(k). A quantity that can

equally represent electron states for both crystalline and amorphous materials is the

density of states [2], defined as

g(E) =
1

Nbasis

Nbasis∑
i=1

δ(E − Ei) (1.6)

where g(E) represents the density of states per unit volume per energy interval, Nbasis the

number of basis orbitals, and Ei the eigenvalues. With respect to calculations, Ei

represents the Kohn-Sham eigenvalues obtained from DFT calculations. Important

information regarding energy gap and localized states near the Fermi energy can be

obtained from EDOS which can reveal the shape of the band tails of a material. Of course,

the gap is usually underestimated in DFT calculations - typically by a factor of ∼ 2.

1.5.2 Electronic Localization

An important quantity for quantifying the localization of states is the inverse

participation ratio (IPR), which provides valuable information of the localization of states

regarding topological anomalies (defects, voids, etc) present in amorphous materials. IPR

is written as

Ie(ψk) =

N∑
i=1
|ak

i |
4

(
N∑

i=1
|ak

i |
2)2

(1.7)

where i represents atom i, ψk the kth eigenfunction, N the total number of atoms, and ak
i

the atomic orbital projection of atom i. A totally localized state is defined as Ie(ψk) equal
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to unity and for extended states, Ie(ψk) ≈ 1/N, where the wavefunctions are significantly

overlapping, and are ideally extended.

1.6 Vibrational Properties

A dynamical model, one that considers the motion of atoms, can contribute valuable

information on the thermodynamics of a material (e.g. thermal properties, thermal

expansion, existence of phase transitions, etc.) where a static model cannot. Considering

the dynamics of a material reveals a more complete picture of that material as a function

of temperature. There are several quantities that are used to described the dynamical

behavior of a material, and some of them are discussed below.

1.6.1 Vibrational Density of States

Vibrational density of states (VDOS) can provide fundamental information regarding

the local bonding environment of amorphous materials and is defined [31] as

g(ω) =
1

3N

3N∑
i=1

δ(ω − ωi) (1.8)

where N is the total number of atoms, 3N total number of phonon states, and ω phonon

frequency. g(ω) is evaluated using a Gaussian broadening function for the delta function.

The quantity g(ω)dω represents the number of phonon states or modes within an interval

(ω, ω + dω).

1.6.2 Vibrational Localization

Structural disorder existing within amorphous materials creates localized modes

which can be characterized by the vibrational inverse participation ratio (VIPR). VIPR,

similar to the electronic IPR, quantifies which normal modes are extended or localized.

Following the notation of Zotov et al.[32], VIPR is defined as
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Iv(p) =

N∑
i=1
|up

i |
4

(
N∑

i=1
|up

i |
2)2

(1.9)

where up
i represents the eigenvector or displacement of atom i for a given mode p of

frequency ωp, which is summed over all atoms. A complete localization of the

eigenvectors is characterized by Iv=1, whereas an extended state or de-localization when

Iv is close to 0.

1.6.3 Stretching Character

Another important property is the stretching character [32, 33] which quantifies bond

stretching or bending as determined by equation below

S (p) =

∑
i, j
|(up

i − up
j ) · r̂i j|∑

i, j
|(up

i − up
j )|

(1.10)

where r̂i j represents a unit vector along the bond for atoms i and j. The summations are

over all nearest-neighbor atom pairs (i,j) in the model. Its value will be close to +1 if the

mode has prodominantly bond-stretching (compressing) characteristics and close to 0 if

the mode has mostly bond-bending characteristics.

1.6.4 Phase Quotient

The character of the correlations between individual atomic displacements is

obtained by considering the phase quotient q [34], as well as its parallel and perpendicular

components, of the modes. This amounts to determining if the relative motion of

neighboring atoms is in-phase (acoustic-like) or out-of-phase (optical-like) over the whole

structure. For example, q‖(p) represents the projected motion that is parallel to the bonds

and q⊥(p) the projected motion perpendicular to the bonds. These quantities are

conveniently defined as
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q(p) =

∑
i, j

up
i · u

p
j∑

i, j
|up

i · u
p
j |
, (1.11)

q‖(p) =

∑
i, j

up
i · (R̂i jR̂i j) · up

j∑
i, j
|up

i · (R̂i jR̂i j) · up
j |
, (1.12)

q⊥(p) =

∑
i, j

up
i · (1 − R̂i jR̂i j) · up

j∑
i, j
|up

i · (1 − R̂i jR̂i j) · up
j |
. (1.13)

Sums are again over all nearest-neighbor atom pairs (i,j) in the model. R̂i j represents

the unit vector in the direction of bond (i,j) and R̂i jR̂i j a dyadic quantity.

1.6.5 Different Types of Atomic Motion

Different types of atomic motion [35] exist with regards to atoms of the host network

and are quantified by

Bα(p) =

Nα∑
i=1

up
i · r̂b

Nα∑
i=1
|up

i |

(1.14)

S α(p) =

Nα∑
i=1

up
i · r̂s

Nα∑
i=1
|up

i |

(1.15)

Rα(p) =

Nα∑
i=1

up
i · r̂r

Nα∑
i=1
|up

i |

(1.16)

where α represents atomic type, r̂b a unit vector parallel to the bisector of a three-atom

angle, r̂s an in-plane unit vector perpendicular to the bisector, and r̂r a unit vector

perpendicular to both. Summations are over all atoms of atomic type α. The quantities
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Bα(p), S α(p), and Rα(p) can all vary from +1 for complete bending, stretching, or rocking

motion to zero and Bα(p)+S α(p)+Rα(p)=1 for each p.

1.6.6 Thesis Unity

In this dissertation, two archetypal amorphous materials are considered with similar

modeling methods being applied to them. We will illustrate that realistic atomistic models

of these materials can be achieved with the utilization of these methods. In addition, the

application of plane-wave basis DFT and local atomic basis DFT can produce a likewise

realistic representation of these two amorphous structures. We investigate the static and

dynamical properties of these materials by using the quantities just described to reveal the

atomistic structure, electronic, vibrational and transport characteristics. We perform a

detailed study of the lattice dynamics of both amorphous materials resulting in many

significant insights with respect to computational methods (MQ and FEAR) and ion

motion for the silver-doped chalcogenide glass.

1.7 Blueprint of Dissertation

The remainder of the dissertation is organized in the following manner. Chapter 2

presents the computational methodology used to produce large and realistic models of

amorphous silicon using the FEAR method. Verification of properties of the FEAR

models with particular emphasis on the structural, electronic, vibrational, and thermal

properties are presented and discussed. Chapter 3 describes the computational

methodology used for creating a silver-doped chalcogenide glass model. The model and

preparation methods are discussed, followed by a presentation and discussion of the

structural, electronic, vibrational, and ion dynamics properties of the model. A detailed

investigation of the vibrational properties of a silver-doped chalcogenide glass is a first, to

the best of our knowledge.
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2 Large and RealisticModels of Amorphous Silicon

The work presented in Chapter 2 has been published in Dale Igram, Bishal Bhattarai,

Parthapratim Biswas, D.A. Drabold, Large and realistic models of amorphous silicon,

Journal of Non-Crystalline Solids, 492 (2018) 27-32.

2.1 Introduction

Amorphous silicon (a-Si) and its hydrogenated counterpart (a-Si:H) continue to play

an important role in technological applications, such as thin-film transistors, active-matrix

displays, image-sensor arrays, multi-junction solar cells, multilayer color detectors,

thin-film position detectors, etc [36]. While a number of traditional methods, based on

Monte Carlo and molecular-dynamics simulations, were developed in the past decades by

directly employing classical or quantum-mechanical force fields – from the event-based

Wooten-Winer-Weaire (WWW) [37, 38] bond-switching algorithm and the

activation-relaxation technique (ART) [39, 40] to the conventional melt-quench (MQ)

molecular-dynamics simulations [41–46] – none of the methods utilize prior knowledge or

experimental information in the simulation of atomistic models of complex materials. It is

now widely accepted that dynamical methods perform rather poorly in generating

high-quality (i.e., defect-free) continuous-random-network (CRN) models of amorphous

silicon by producing too many coordination defects (e.g., 3- and 5-fold coordinated atoms)

in the networks. While the WWW algorithm and the ART can satisfactorily address this

problem by producing 100% defect-free CRN models of a-Si, a direct generalization of

the WWW algorithm for multicomponent systems is highly nontrivial in the absence of

sufficient information on the bonding environment of the atoms. Likewise, the ART

requires a detailed knowledge of the local minima and the saddle points on a given

potential energy surface in order to determine suitable low-lying minima that correspond

to defect-free CRN models of amorphous silicon. On the other hand, the availability of
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high-precision experimental data from diffraction, infrared (IR), and nuclear magnetic

resonance (NMR) measurements provide unique opportunities to develop methods, based

on information paradigm, where one can directly incorporate experimental data in

simulation methodologies. The reverse Monte Carlo (RMC) method [47–50] is an

archetypal example of this approach, where one attempts to determine the structure of

complex disordered/amorphous solids by inverting experimental diffraction data. Despite

its simplicity and elegance, the method produces unphysical structures using diffraction

data only. While inclusion of appropriate geometrical/structural constraints can ameliorate

the problem, the generation of high-quality models of a-Si, using constrained RMC

simulations, has been proved to be a rather difficult optimization problem and satisfactory

RMC models of a-Si have not been reported in the literature to our knowledge. The

difficulty associated with the inversion of diffraction data using RMC simulations has led

to the development of a number of hybrid approaches in the past decade [51, 52]. Hybrid

approaches retain the spirit of the RMC philosophy as far as the use of experimental data

in simulations is concerned but go beyond RMC by using an extended penalty function,

which involves total energy and forces from appropriate classical/quantum-mechanical

force fields, in addition to few structural or geometrical constraints. The experimentally

constrained molecular relaxation [21, 53] (ECMR), the first-principle assisted structural

solutions [54] (FPASS), and the recently developed force-enhanced atomic

refinement [26, 55–57] (FEAR) are a few examples of hybrid approaches, which have

successfully incorporated experimental information in atomistic simulations to determine

structures consistent with both theory and experiments. Recently, the FEAR has been

applied successfully to simulate amorphous carbon (a-C) [57]. This is particularly notable

as the latter can exist in a variety of complex carbon bonding environment, which makes it

very difficult to produce a-C from ab initio molecular-dynamics simulations due to the

lack of glassy behavior and the WWW bond-switching algorithm in the absence of prior
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knowledge of the bonding states of C atoms in a-C (e.g., the ratio of sp2- versus

sp3-bonded C atoms with a varying mass density). In this chapter, we show that the

information-based FEAR approach can be employed effectively to large-scale simulations

of a-Si consisting of up to 1000 atoms. The resulting models have been found to exhibit

superior structural, electronic, and vibrational properties of a-Si as far as the existing

RMC and ab initio MD models are concerned in the literature.

2.2 Methodology and Models

For this study, three model sizes (216, 512 and 1024 atoms) were implemented with

FEAR and compared with experimental data. Several algorithms and codes were utilized

for the preparation of the models; namely, FEAR[26, 55, 56], RMCProfile[58],

SIESTA[59] and VASP [60–62].

A random starting structure was constructed for each of the models and was refined

by fitting to the experimental pair correlation functions g(r) and/or the static structure

factor S (q) by employing RMCProfile. The refined structure is relaxed using conjugate

gradient (CG) in SIESTA. The relaxed-refined structure is then refined by RMCProfile.

This cyclic process is repeated until convergence is achieved. For completeness the

converged structure is then fully relaxed by VASP (plane wave LDA).

The partial refinement steps in RMCProfile were carried out with a minimum

distance between atoms of 2.10 Å and maximum move distance of 0.15 Å – 0.35 Å. The

partial relaxation steps utilized SIESTA with a single-ζ basis set, Harris functional at

constant volume, exchange-correlation functional with local-density approximation

(LDA), periodic boundary conditions and a single relaxation step. The final relaxation

step employed VASP with a plane-wave basis set, plane-wave cutoff of 350 − 450 eV,

energy difference criteria of 10−4 − 10−5. The fully relaxed calculations were performed
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for Γ(~k = 0). For all the FEAR models, we have used structure factor data from Laaziri

et.al. [63] for RMC refinement.

The three FEAR models and 216 MQ model have a number density of about 0.05005

atom/Å3, which is associated with atomic density of 2.33 g/cm−3 (details in Table I). The

216 MQ model was fabricated by taking a set of random coordinates and equilibrating

these coordinates at 3000K for 6ps, followed by cooling from 3000K to 300K within 9 ps,

then equilibration at 300K for 4.5 ps, and a full relaxation at 300K. The MQ calculations

were performed with a step size of 1.5 fs. These are typical simulation times used to

prepare accurate ab initio models for a-Si.1

We have also considered two large (4096 atom and 10,000 atom) WWW [37, 38]

models in our comparison. These two WWW models were relaxed using SIESTA with a

single-ζ basis set, LDA at constant volume utilizing Harris functional.2

2.3 Results

2.3.1 Structural Properties

A comparison of the structure factor for the six models 216 MQ, 216 FEAR, 512

FEAR, 1024 FEAR, 4096 WWW and 10,000 WWW models with respect to experiment

[63, 67] is shown in Fig. 2.1.

From Fig. 2.1 (left panel) we can clearly observe that these models of up to 512

atoms are insufficient to resolve the first peak occurring at low q. In contrast, the 1024

FEAR model does well even in comparison to much larger models as seen in Fig. 1(right

panel). This is also indicated in the real space information g(r) (Fig. 2.2), where we

1 It is worth noting that MQ is not a unique process, and it has recently been shown that very long anneals
of a-Si can lead to models approaching WWW quality, contrary to the usual view that MQ only works for
glass formers. These are very extended simulations however, and do not seem to be a very efficient way to
model non-glass forming materials [64–66].

2 We minimized our 4096 WWW model to a have forces less than 0.01 eV/Åand for the 10,000 WWW
model after ∼ 100 CG steps, RMS force of 0.024 eV/Å was obtained.
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Figure 2.1: Structure factor for different models and their comparison with experiments
[63, 67]. Inset: Plot of low q region of structure factor.

observed that the 10000 WWW model is slightly shifted as compared to the experiment

[63] for the first and second neighbor peaks. We report the details of our simulation and

important observables in Table 1.

From Table 1, we observe that there are some defects in our models. These structural

defects arise due to a small fraction (∼ 5%) of over co-ordinated and under co-ordinated

atoms. This explains the fact that all of our models have coordination value slightly above

the perfect four-fold coordination. Experimentally, it is also observed that a-Si does not

posses a perfect four-fold coordination [63, 67]. Our final models obtained after relaxation

attain energies (eV/atom) equal or less than models obtained from MQ.

We further show our plots of bond-angle distribution in Fig. 2.2 (right panel) to attest

accuracy of FEAR models. As seen in Fig. 2.2, the peak of the bond angle is close to the

ideal tetrahedral angle of 109.47o. Similarly, from ring statistics (Fig. 2.3) we observed

that these a-Si networks mostly prefer a ring size of 5,6,7. Small rings (mostly

3-membered rings) are responsible for an unrealistic peak seen in unconstrained RMC

[55] at an angle around ∼ 60o. Opletal et. al. have proposed use of a constraint for

removal of these highly constrained 3 membered rings in several of their works [51, 68].
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Table 2.1: Nomenclature and details of our models: Length of the cubic box(L), position
of first (r1) and second (r2) peak of RDF, Average coordination number (n), percentage
of 3-fold, 4-fold and 5-fold coordinated atoms, Free Energy per atom of the final VASP
relaxed models(E0).

Model L(Å) r1(Å) r2(Å) n 3-fold % 4-fold % 5-fold% E0(eV/atom)

216MQ 16.28 2.36 3.81 4.083 0.93 87.03 11.57 0.000
216FEAR 16.28 2.36 3.81 4.028 1.39 94.44 4.17 -0.002
512FEAR 21.71 2.35 3.82 4.008 1.17 95.90 2.73 -0.044
1024FEAR 27.35 2.36 3.79 4.018 2.34 94.53 3.13 -0.035
4096WWW 43.42 2.36 3.78 4.004 0.05 99.46 0.49 —

10000WWW 57.32 2.31 3.69 4.014 0.04 98.60 1.30 —

The FEAR method, which incorporates accurate ab initio interactions, enables us to

remove these high energy structures without satisfying an extra criterion.

Figure 2.2: (left panel) Radial distribution function of different models and their
comparison with experiment [63], Inset: Plot of g(r) of 1024 FEAR and 10,000 WWW
models with experimental results, (right panel) Plot of bond-angle distribution for the six
models.
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Figure 2.3: Rings per cell (RC)for the six models. The ring statistics were obtained using
the King’s method [69] within ISAACS software [70].

2.3.2 Electronic Properties

Electronic properties, such as electronic density of states (EDOS), reveal crucial

information regarding accuracy of models. In particular, Prasai et. al. and others [71, 72]

have used electronic information to aid in modeling amorphous system. Conversely,

EDOS obtained for our models validate accuracy of our models. We have shown plots of

four models in Fig. 2.4. We have also studied the localization of electronic states by

plotting the inverse participation ratio (IPR), using equation (1.7), in conjunction with

EDOS. We observe plots with the same qualitative resemblance with a few localized states

appearing near the Fermi energy (EF = 0). These localized states arise due to the defects

in the model (3-fold and 5-fold atoms).

We compare our large model of 4096 atoms along with our FEAR models. Due to the

enormous size of this model, we have used Harris Functional and single-ζ basis set to

evaluate the electronic density of states of these models. To the best of our knowledge this

is a first time of reporting an ab initio based EDOS of a-Si models of this size.
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Figure 2.4: Plot of Electronic density of states (EDOS(EF=0)) green-solid lines and Inverse
participation ratio (IPR) yellow-drop lines.

2.3.3 Vibrational Properties

2.3.3.1 Vibrational Density of states

Vibrational density of states (VDOS) provides key information about the local

bonding environments in amorphous solids. It is considered an important calculation to

verifying the credibility of a model [73]. Meanwhile, it is equally challenging to get a

good comparison of vibrational properties between theoretical and experimental results.

Several factors like: model size, completeness of basis set etc. can affect vibrational

properties. We have performed ionic-relaxation on our models to attain a local minimum

with forces on each atom less than (∼ 0.01 eV/atom), while simultaneously relaxing lattice

vectors to zero pressure. This results in a slightly different number density and a

non-orthogonal cell, but as shown in our earlier work [74], it is crucial to have coordinates
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well relaxed before evaluating the vibrational properties of the models. We have computed

vibrational properties for our four models(216 MQ, 216 FEAR, 512 FEAR and 1024

FEAR) using the dynamical matrix. We displaced each atom in 6-directions(±x,±y,±z)

with a small displacement of (∼ 0.015 Å). After each small displacement an ab initio force

calculation was carried out to obtain a force constant matrix (for details see [75]).

We have computed the VDOS, using equation (1.8), for our models using the method

of Gaussian broadening with a standard deviation of σ = 1.86 meV or 15.0 cm−1. The first

three zero frequency modes are due to supercell translations, and have been neglected

during our calculations of VDOS and vibrational IPR. The VDOS results for our different

models are illustrated in Fig. 2.5.

Figure 2.5: (left panel) Vibrational density of states (VDOS) obtained for different models
using VASP-LDA, SIESTA-LDA(single-ζ, SZ) and SIESTA-LDA (double-ζ, DZ), (right
panel) Comparison of vibrational density of states (VDOS) with experimental results [76]
(Note the almost perfect agreement for the 512 DZ calculation). The yellow drop-lines
shows inverse participation ratio (IPR), IPR measures localization of eigenmodes.

As seen in Fig. 2.5, there is a slight horizontal shift in VDOS depending upon system

size and completeness of basis set. VDOS calculated with minimal basis set (single-ζ, SZ)
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in SIESTA has a qualitative agreement with the experimental result, while a slight shift is

observed at both low and high energies w.r.t the experiment. This result is refined by using

a more complete basis-set (double-ζ, DZ), which gives a better agreement between our

models and experiment. We have computed VDOS using DZ for two of our models

(FEAR 216 and FEAR 512). The VDOS obtained for FEAR 512 is strikingly similar to

the experiment (Fig.2.5, right panel). This switch from minimal basis to double ζ basis

impacts computation time needed for these calculations and with our resources at hand we

simply could not perform DZ calculations for our FEAR 1024 atom system.

Thus, we can infer that the completeness of basis-set affects these low energy

excitation of atoms in amorphous silicon. The most remarkable feature is the improvement

at high frequencies. Based on our zero pressure (double-ζ, DZ) calculation, it’s agreement

with experimental VDOS and specific heat (Fig. 2.6), we obtained a new density for a-Si.

Our results are tabulated in Table II. Note that our results for the zero pressure (double-ζ,

DZ) calculation are close to the experimental density for a-Si (2.28 g/cm3) [77].

Table 2.2: Details of densities obtained after zeropressure relaxation of FEAR models for
single-ζ (SZ) and double-ζ(DZ) basis sets in SIESTA. Our density for zero pressure (DZ)
is closer to the experimental density of 2.28 g/cm3[77].

Models Volume(Å3) N(atom/Å3) ρ(g/cm3)
216 FEAR(SZ) 4643.77 0.046514 2.16
512 FEAR(SZ) 10997.33 0.046557 2.17

1024 FEAR(SZ) 21755.17 0.047067 2.19
216 FEAR (DZ) 4510.57 0.047887 2.23
512 FEAR(DZ) 10652.76 0.048062 2.24

1024 FEAR(DZ) 21213.92 0.048270 2.25

Structural disorder in amorphous solids lead to localized modes and these localized

modes were evaluated by using equation (1.9) for the inverse participation ratio (IPR). We
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plotted IPR for our four models in Fig.2.5 (right panel). The vibrations at low energies are

mostly extended modes, these represent mostly bending type while vibrations at higher

energies are dominated by stretching type of modes [74, 75].

2.3.3.2 Specific Heat in the harmonic approximation

We evaluated the specific heat in the harmonic approximation using the vibrational

density of states g(ω) information obtained from our models. We compute the specific

heat Cv(T ) from the relation [78]

C(T ) = 3R
∫ Emax

0

(
E

kBT

)2 eE/kBT(
eEkBT − 1

)2 g(E)dE (2.1)

where g(E) is normalized to unity [74, 79]. Our plot for specific heat is shown in Fig. 2.6.

We have a qualitative agreement with the experiment for our four models while the peak

around (∼ 30K) is largely affected by the quality of VDOS obtained. Our three models

FEAR 216(DZ), FEAR 512(DZ) and FEAR 1024(SZ) provided improvement with respect

to experiment [80].

We infer from our calculation of VDOS and specific heat that a larger size model

together with a larger basis set gives us a better understanding of these low energy

excitations. This further emphasizes the importance of our FEAR method, with the

resources available to us it was not possible to fabricate melt-quench models of size 512

and 1024 atoms.

2.4 Conclusions

This chapter presented an investigation pertaining to the complex amorphous

material (a-Si), which was evaluated with respect to its structural, electronic and

vibrational properties. Various model types, MQ and FEAR, were constructed of different

sizes for this investigation. Our results revealed that the recently developed FEAR method

provides an accurate outcome, which correlates quite well with experimental data, even
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Figure 2.6: Plot of specific-heat (Cv/T 3) for the four models compared with the
experimental result [80]. The inset shows the classical (Dulong-Petit) limit at higher
temperature.

for relatively large structures sizes (512 and 1024). To our knowledge our VDOS result

depicts the most clear picture of low energies excitations for a-Si. We also obtained a new

density for amorphous silicon based on ab initio minimum, our result is remarkably close

to the experimentally found density.
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3 Structure and Dynamics of a Silver-doped Chalcogenide

Glass: An ab initio Study

The work presented in Chapter 3 has been published in Dale Igram, Horacio E.

Castillo, D.A. Drabold, Structure and dynamics of a silver-doped chalcogenide glass: An

ab initio study, Journal of Non-Crystalline Solids, 514 (2019) 1-9.

3.1 Introduction

When Ag is used to dope GexSe1−x glasses, solid electrolytes, Agy(GexSe1−x)1−y , are

created, having very high ionic conductivities [81]. The host network, GexSe1−x, has been

broadly investigated for many years experimentally[82–86] and theoretically[87–94].

These studies have revealed that, in general, the Ge(Se1/2)4 tetrahedra dominate for

x≤ 0.34, Ge(Se1/2)6 units for x≥ 0.36 and x≤ 0.41, and orthorhombic (distorted rocksalt)

GeSe units for x≥ 0.42[95].

Several experimental studies[95–98] have been performed which showed that for

Se-rich glasses (i.e. GeSe4) phase separation produced an Ag2Se glass phase and a

Se-deficient matrix, whereas stoichiometric glasses (i.e. GeSe2) contained a GeSe2 glass

phase and Ge2Se3 glass phase for y> 0.2. Ge-rich glasses (i.e. Ge2Se3) had a mixture of

Ge2Se3 and GeSe phases. In a recent publication[99] it was shown that Agy(GeSe3)1−y

glasses (for y=0.15 and 0.25) possess insulating and metallic phases with nearly the same

energies.

We will present not only the structural, electronic, and Ag ion dynamics, but also, to

the best of our knowledge, a first treatment of the vibrational attributes of such systems.

3.2 Methodology

Several methods [15, 100, 101] exist for computational modeling of complex

materials. These methods are: empirical potentials, empirical tight-binding methods, and
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density functional theory (DFT). Obtaining accurate results for chemically complex

systems requires the utilization of an ab initio molecular dynamics approach, which

incorporates DFT. ab initio molecular dynamics (AIMD) allows realistic simulations to be

performed without adjustable parameters[102], and is suitable for relatively small systems.

The amorphous Ag0.2(Ge35Se65)0.8 structure was fabricated using a melt and quench

(MQ) approach which utilizes ab initio molecular dynamics (AIMD) based on density

functional theory (DFT)[103] incorporated in VASP[104–106]. Projected-augmented

wave (PAW)[107] pseudo-potentials were used for the description of the core electron-ion

interactions and an exchange-correlation functional [108] within the local density

approximation (LDA) [109] was considered. The Γ(~k = 0) point was utilized for these

calculations along with periodic boundary conditions. The kinetic energy cutoff of the

plane-wave varied between 300 and 450 eV with the energy difference criteria being

10−4 − 10−5 eV. A time step of 2 fs was used for the integration of Newton’s equations of

motion and a constant temperature was achieved by employing the Nose’-Hoover

thermostat[110].

3.3 Model

The initial configuration of the Ag0.2(Ge35Se65)0.8 system consisted of a

random-generated structure of 20 Ag atoms, 28 Ge atoms, and 52 Se atoms for a total of

100 atoms. Due to the lack of an experimental atomic density value, an initial guess of 5.0

g/cm3 with an associated lattice constant of 14.0199Å was considered for the initial cubic

simulation cell. The initial guess was obtained from an experimental investigation of a

similar MQ structure.

The MQ model was constructed by forming an equilibrated liquid at 2500K for 12

ps, followed by quenching from 2500K to 1500K over 10 ps, then equilibration at 1500K

for 6 ps, and quenching from 1500K to 300K within 12 ps and equilibration at 300K for
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20 ps. Relaxation at zero pressure was performed which resulted in a triclinic cell having

lengths of 13.907Å, 13.334Å and 13.936Å, and a corresponding atomic density of 5.348

g/cm3. The B/A and C/A ratios for this cell are 0.9568 and 0.9979, respectively. We

relaxed the MQ model so the forces were smaller than 0.01 eV/Å. The final structure was

then analyzed for the structural, electronic, vibrational, and Ag ion dynamics properties.

For the Ag dynamics calculations a temperature of 1000K for 40 ps was used.

3.4 Results and Discussion

3.4.1 Structural Properties

The total and partial pair correlation functions are illustrated in Fig. 3.1. The first and

second peaks of the total g(r) correspond to the contributions of AgSe and GeSe, and

AgGe, GeGe, and SeSe correlations, respectively. The first peak of gGeGe for 2.52Å≤ r

≤2.67Å is associated with the three Ge-Ge homopolar bonds and the Ge2Se3 compounds.

The second peak at r= 4.0Å is quite broad and represents the second-nearest neighbors.

The distance between Ge atoms of the Ge(Se1/2)4 tetrahedra was found to be at r= 4.65Å.

The gGeS e correlations within the range of 2.33Å≤ r ≤2.64Å are linked to the Ge2Se3

compounds, corner-sharing Ge(Se1/2)4 tetrahedra and GeSe2 compounds. Three Se-Se

homopolar bonds are represented by the gS eS e correlations for 2.50Å≤ r ≤2.80Å whereas

the second-nearest neighbors are located in the range of 3.25Å≤ r ≤4.63Å. There exist

gAgAg correlations within the range of 2.62Å≤ r ≤3.48Å. Also, the Ag2Se compounds have

gAgS e correlations in the range of 2.42Å≤ r ≤2.63Å.

Figure 3.2 depicts the static structure factors (total and partials) and reveals that the

first sharp diffraction peak (FSDP), a signature of medium range order, is due to the

correlations of AgSe and GeSe, which is in contrast to previous studies for other materials

that indicate Ge-Ge correlations, located between tetrahedra, are responsible for

FSDP[87, 93, 111, 112]. We have produced a rather realistic model for this composition
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Figure 3.1: Total (top) and partial (center and bottom) pair correlation functions for the
Ag20Ge28Se52 model.

Figure 3.2: Total and partial static structure factors for the Ag20Ge28Se52 model.

that will now be the ”simulation benchmark” for future studies of this material. The total

structure factor S(q) of our model as compared to the experimental data of Piarristeguy

and co-workers[113] is of similar profile and magnitude, but for our model there is a slight



43

shift to the right for most of the peaks. The experimental value of FSDP is approximately

1.08 Å−1, reasonably close to our value of 1.29Å−1. This variation is not surprising in part

because the experimental results were for a Ag0.2(GeSe3)0.8 system. The first primary peak

is basically a result of AgAg, AgGe, GeGe, and SeSe correlations. Both the first and

second primary peaks correspond to short-range order (SRO).

A comparison of the radial distribution function (RDF) between the experiment of

Fischer-Colbrie et al[114] and our model was performed. The experimental data, shown in

Table 3.1, was obtained from a photo-diffused 1500Å film of Ag25Ge25Se50 structure with

an atomic density of 5.5 g/cm3, where our model had 5.35 g/cm3. As reported in [114], the

experimental Ag25Ge25Se50 structure was prepared in a three-step process: 1) thermal

evaporation of 1500Å a-GeSe2 onto a single crystal Si substrate; 2) thermal evaporation of

Ag onto a-GeSe2; and 3) exposure to UV light for causing the Ag photo-diffusion. The

a-GeSe2 film was created from a source of 99.999%-pure Ge and Se materials, and were

degassed, melted together, and homogenized at 800◦C for two days. The rates of

deposition were 10 Å/s for a-GeSe2 and 1 Å/s for Ag. Operating pressure was less than

10−9 Torr. For the UV exposure, an unfiltered 200 W Hg lamp was used as well as a

one-hour exposure time for complete Ag diffusion.

Table 3.1: Peak positions for experimental sample (Ag25Ge25Se50) and model (Ag20Ge28Se52).
The peak positions correspond to the three primary peaks and the additional peaks associated with
the model are probably due to the small structure size.

Sample Peak positions (Å) Additional peaks (Å)
Experiment (ref. 42) 2.62 3.97 6.15

Model 2.59 3.99 6.25 3.55 5.87

For comparison, this composition Ag25Ge25Se50 is closest to our composition of

Ag20Ge28Se52 . The peak positions for both the model and experimental sample are shown
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in Table 3.1. As seen from Table 3.1, three peaks exists experimentally and five for our

model. The locations of the first and third peaks of our model are in agreement with the

first and second peaks of the experimental results. Our model has an additional two peaks

at 3.55Å and 5.87Å, which may be due to small model size.

The total and partial coordination numbers and first peak positions for the glassy

phases of GexSe1−x are provided in Table 3.2 for this work, a simulation study[92], and an

experimental investigation[115]. According to Table 3.2, Ge is somewhat

under-coordinated and Se two-fold coordinated as compared to experiment. The partial

coordination numbers indicate, in general, reasonable agreement with experiment, except

for Se pairs which is significantly reduced due to bonding with Ag, resulting in other

substructures.

Table 3.2: Total and partial coordination numbers and first peak positions for the glassy phases of
GexSe1−x. Ref. 14 is a simulation and ref. 43 an experimental study.

Structure Ge35Se65(this work) GeSe2(ref. 14) GeSe2(ref. 43)
nGeGe + nGeS e 3.75 3.80 4.00
nS eGe + nS eS e 1.94 2.08 2.05

nGeGe 0.21 0.25 0.25
nGeS e 3.54 3.55 3.70
nS eS e 0.04 0.30 0.20
rGeGe 2.60 2.44 2.42
rGeS e 1.85 2.36 2.36
rS eS e 2.00 2.37 2.32

The host network (Ge36Se65), according to Phillips and Thorpe constraint

theory[116–118], has an average coordination number < n > of 2.58 as compared to the

’rigidity percolation threshold’ value < np > of 2.4 implying that the host network is

’rigid’ or ’over-constrained’.

The 100-atom Ag20Ge28Se52 model includes corner-shared Ge(Se1/2)4 tetrahedra as

exemplified by Fig. 3.3. Because the bond angles of these tetrahedra vary significantly (∼
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90◦ to 130◦) the tetrahedra are quite distorted. As mentioned earlier, this Ag20Ge28Se52

model has revealed some interesting substructures, in particular Ag2Se and Ge2Se3, only

found in Se-rich and Ge-rich materials, respectively. These substructures are depicted in

Fig. 3.4 along with some bond angles.

Figure 3.3: An illustration of the two Ge(Se1/2)4 units of the Ag20Ge28Se52 structure. The Ag, Ge
and Se atoms are represented by the color white, blue and red, respectively. The tetrahedra are
depicted by the blue shaded regions.

To obtain further insight into the Ag20Ge28Se52 structure and its connectivity, ring

statistics for each type of atom were computed as illustrated in Fig. 3.5. The 3- and

6-member rings are dominating for Ag and Se, whereas 3-, 4- and 8-member rings

dominated for Ge. All three atom types consisted of 10-member rings whereas Se also has

12-member rings. The ring statistics results were obtained by utilizing King’s method[29]

from the ISAACS software[28].
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(a) (b)

(c)

Figure 3.4: Some substructures that exists in the Ag20Ge28Se52 model, (a) a corner-sharing
tetrahedra, (b) two Ge2Se3, and (c) three Ag2Se. The green, gold and silver balls represent the Ge,
Se and Ag atoms, respectively.

Figure 3.5: Rings per cell (Rc) for the three atomic species. Note: the scale for Ag is more
than twice that of Ge and Se.
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3.4.2 Electronic Properties

Figure 3.6 reveals the EDOS results for the Ag20Ge28Se52 structure. We considered

the localization of electronic states by calculating the inverse participation ratio (IPR)

given by equation (1.7).

Figure 3.6: Electronic density of states (black line) and Inverse participation ratio (red drop lines)
for the Ag20Ge28Se52 structure. The Fermi energy is represented by the green line at 0 eV.

As seen in Fig. 3.6, there are extended states near the Fermi level for both the valence

and conduction bands in agreement with previous work of Tafen et al.[5]. The LDA

energy gap for the Γ-point is approximately 0.40 eV, which is about half of the actual

value since it is well known that LDA underestimates the gap energy.

3.4.3 Vibrational Properties

The Ag20Ge28Se52 structure can be thought of as two subnetworks (Ag and GeSe

host), where the Ag and GeSe subnetworks are weakly and strongly bonded, respectively.

It is interesting and novel to understand the dynamics of each subnetwork as well as

collectively. One would expect ”soft phonons” for the Ag system, in particular.
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Conceptually, there is something akin to an Ag melting transition in which the Ag can

hop, but the host is rigid.

A comprehensive understanding of the eigenvectors and eigenvalues of the dynamical

matrix enables a detailed analysis of this new composition. The mode analysis consists of

the following investigations: i) the degree of mode localization, ii) the amount of bond

stretching and bending, iii) mode character (acoustic-like or optical-like), iv) amount of

atomic vibrational participation, v) substructure unit vibrations, and vi) tetrahedral

breathing A1 vibration modes of the host network tetrahedra.

The vibrational density of states (VDOS) and inverse participation ratio (VIPR) are

both characterized by equations (1.8) and (1.9), respectively. As mentioned in Chapter 1,

VIPR quantifies which normal modes are extended or localized.

Figure 3.7: Vibrational density of states (red line) and Inverse participation ratio (green drop lines)
for the Ag20Ge28Se52 structure.

The VDOS and VIPR results, which are presented in Fig. 3.7, indicate extended

vibrational states at the low frequencies (0 - 150 cm−1) and more localized states from
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approximately 200 - 310 cm−1. When compared to the work done by Cobb and

co-workers [87] our VDOS results show the possible influence of the Ag atoms with

additional peaks across the vibration spectrum, while our VIPR results having a similar

trend with de-localized states at low frequencies and localized ones at higher.

For the total and partial VDOS calculations, Gaussian broadening with a standard

deviation sigma value of 3.0 cm−1 was employed. As illustrated in Fig. 3.8, the partial

VDOS for Se is mostly responsible for the profile and magnitude of the total VDOS which

is in reasonable agreement with [87]. Silver makes no contribution beyond approximately

270 cm−1, whereas Ge and Se do.

Figure 3.8: Total and partial vibrational density of states for Ag20Ge28Se52 structure.

The stretching character quantifies bond stretching or bending as defined by equation

(1.10) and illustrated in Fig. 3.9. There are basically three regions of interests: 0-50,

80-160, and 160-310 cm−1. The low-frequency region is mostly of bond-bending

character (S≤0.2) with a small amount of stretching, mid-frequency range has a mixture of

bending and stretching characteristics (0.2≤S≤0.55) with the stretching contribution
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increasing with frequency, and the high-frequency range having approximately an equal

mixture of bending and stretching characters (S≥0.55). An interesting feature is the abrupt

change of S that occurs at 160 cm−1, which may be a result of the Ge and Se atoms

beginning to increase and decrease their vibrational contribution, respectively, as revealed

in Fig. 3.12. The plateau in the high-frequency range is due to the Ge atoms increasing

their participation at a higher rate than Se atoms decreasing theirs, and the fact that there

are almost twice as many Se atoms as Ge atoms.

Figure 3.9: Stretching character of the vibrational modes. Note the abrupt change at 160 cm−1.

We calculated the phase quotient q along with its parallel q‖ and perpendicular q⊥

components as illustrated in Fig. 3.10. All three phase quotients can vary from +1

(acoustic-like modes) to -1 (optical-like modes).

The overall phase quotient q is varying almost linearly from the acoustic-like modes

to optical-like modes. The parallel phase quotient q‖ exhibits an abrupt change in the

range of 100-150 cm−1, whereas the perpendicular phase quotient q⊥, in general, is

changing linearly in the acoustic-like range until reaching a frequency of 100 cm−1 where
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Figure 3.10: Phase quotients of the vibrational modes. The parallel quotient represents the
longitudinal modes and perpendicular the traverse modes.

its remains relatively constant to 150 cm−1; thus, exhibiting weak optical-like

characteristics. Beyond 150 cm−1 there are progressively increasing oscillations of q⊥

until reaching a frequency of 300 cm−1. After careful observation of the vibrational

behavior of the structure, it appears that this abnormality is due to severe rocking

vibrations of a Ge-Ge bond where one of the Ge atoms is bonded to three Se atoms and

the other Ge atom to two Ag and Se atoms. This compound is illustrated in Fig. 3.11.

Figure 3.11: Compound responsible for large variations of the perpendicular phase quotient. The
color scheme is the same as Fig. 3.4.
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Atomic participation ratios[32], as defined by (3.1), were calculated to determine the

amount of contribution that each atomic type provided over the vibrational frequency

spectrum.

Pα(p) =

Nα∑
i=1
|up

i |

N∑
i=1
|up

i |

(3.1)

where the numerator is summed over all atoms of atomic type α, the denominator is

summed over all atoms in the model, and
∑
α Pα = 1, ∀α. As depicted in Fig. 3.12, the Se

atoms contribute the most with a peak around 160 cm−1, which is also where the Ge and

Ag atoms begin to diverge.

Figure 3.12: Atomic participation ratios for the three atomic species.

Three different types of atomic motion[35] are illustrated in Figs. 3.13 and 3.14.

Figure 3.13 represents the three types of atomic motion associated with Ge atoms that are

bonded to two Se atoms; whereas, the motions described in Fig. 3.14 are linked to the Se
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atoms which are bonded to two Ge atoms. Figures 3.14 and 3.15 reveal that the rocking

motion dominates for both Ge and Se atoms, but more for the Se atoms.

Figure 3.13: Projections of bending, stretching and rocking motions for Ge atoms bonded to two

Se atoms.

Figure 3.14: Projections of bending, stretching and rocking motions for Se atoms bonded to two
Ge atoms.



54

The host network of the Ag20Ge28Se52 model consists of corner-sharing tetrahedra,

which exhibits A1 vibration modes[119, 120]. The A1 modes (arrows) are illustrated in

Fig. 3.15. The quantification of A1 breathing modes was performed by considering the

equation

BM(p) =

∣∣∣∣∣∣
Nb∑
i=1

ûp
i · r̂i

Nb

∣∣∣∣∣∣ (3.2)

where i, Nb, ûp
i , and r̂i represent neighboring atoms, total number of neighboring atoms,

unit displacement and unit distance vector of central atom and neighboring atoms,

respectively. The results from equation (11) are shown in Fig. 3.16.

Figure 3.15: A1 modes of a corner-sharing tetrahedron.

3.4.4 Silver Ion Dynamics

A key property for applications of these materials is the high mobility of silver[121]

in a GexSe1−x host network. We computed the mean square displacement (MSD) functions

for the three atomic species as depicted in Fig. 3.17. The MSD functions were determined

by using

〈
r2(t)

〉
α =

1
Nα

Nα∑
i=1

〈
|ri(t) − ri(0)|2

〉
(3.3)
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Figure 3.16: Normalized A1 breathing modes for two corner-sharing Ge(Se1/2)4 tetrahedrons
utilizing equation (3.11). Two bands of A1 breathing modes exist having a range of 140 cm−1 to
200 cm−1 (top panel) and 165 cm−1 to 205 cm−1 (bottom panel).

where a summed statistical average (
〈〉

) was performed for the three atomic species α. As

shown, the MSD of the Ag ions are increasing rapidly with time in contrast to Ge and Se,

which implies that Ag ions are more mobile than Ge and Se. The diffusion calculations

were performed at a temperature of 1000K. From Fig. 3.17, the self-diffusion coefficient

D is calculated using the Einstein relation[122]

〈
|ri(t) − ri(0)|2

〉
= 6Dt + C (3.4)

where C represents an integration constant. The conductivity of Ag atoms is calculated

using the equation

σ =
ne2D
kBT

(3.5)

where n is the number density of the Ag atoms. Table 3.3 provides a comparison of the

diffusion coefficient and conductivity for the Ag20Ge28Se52 model, Ag0.2(GeSe3)0.8
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model[7], and Ag0.2(GeSe3)0.8 experimental data [123]. As shown in Table 3.3, the DAg

and σ values are less for the Ag0.2(Ge35Se65)0.8 model as compared to Ag0.2(GeSe3)0.8

(model) and Ag0.2(GeSe3)0.8 (experimental). This discrepancy may be because of the host

network of the Ag0.2(Ge35Se65)0.8 model is more similar to GeSe2 than GeSe3.

Figure 3.17: Mean square displacement for the three atomic species for the Ag20Ge28Se52 structure
at T= 1000K.

Table 3.3: Self-diffusion coefficient D and conductivity σ at T=1000K for Ag0.2(Ge35Se65)0.8,
Ag0.2(GeSe3)0.8 (model), and Ag0.2(GeSe3)0.8 (experimental) .

DAg (cm2/s) σ (S cm−1) S ource
Ag0.2(Ge35Se65)0.8 2.22X10−5 0.330 This work

Ag0.2(GeSe3)0.8(model) 2.53X10−5 0.347 Ref.(23)
Ag0.2(GeSe3)0.8(expt) 0.354 Ref.(57)

We use trajectories of the Ag ions to obtain three-dimensional projections of those

trajectories for the most and least mobile Ag atoms in the Ag20Ge28Se52 model. Figure
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3.18 reveals that the most mobile ion Ag1 has diffused a significant distance in the z

direction.

Figure 3.18: Trajectories of the most (red) and least (blue) mobile Ag atoms in Ag20Ge28Se52
structure (T=1000K).

As Ag atoms diffuse through a material they can become trapped by their neighboring

atoms; thus, affecting the self-diffusion coefficient D and conductivity σ. We have

considered the trapping characteristics of the most mobile Ag ion in the Ag20Ge28Se52

model. The non-trapping events for this model, illustrated in Fig. 3.19, are represented by

abrupt changes in displacement. Possible non-trapping events are highlighted by the

shaded regions, which have non-trapping times of approximately 1 to 3ps. These possible

events are showing release and capture processes. To accurately determine when a particle

is trapped or not is very difficult. At high temperatures the thermal fluctuations would

decrease the chances of Ag atoms being trapped resulting in larger diffusion distances.



58

Figure 3.19: Displacement of silver ion A1 after its initial starting position for T=1000K. The
shaded regions depict possible non-trapping events.

The Ag diffusion appears similar to the ”Fluctuating Bond Center Detachment”

(FBCD)-assisted diffusion as described by Abtew and coworkers[124].

3.5 Conclusion

Several properties, such as structural, electronic, vibrational, and Ag dynamics were

considered for evaluation. Interesting substructures (Ag2Se, Ge2Se3) were revealed, which

are commonly associated with Se-rich or Ge-rich systems. Our model showed a FSDP for

a high Ag concentration in agreement with other published results, but was due to

correlations of AgSe and GeSe, not from GeGe correlations as is typically reported. We

revealed that the radial distribution function of our model yielded fairly good agreement

with experiment. We believe that this is a first attempt to provide a detailed analysis of the

vibrational modes for a AgGeSe system. Both the vibrational density of states and atomic

participation ratios calculations revealed that Se atoms are a major contributor across the

vibrational spectrum. The abrupt change and plateau of the stretching character may be

due to vibrational contribution changes and a difference in the rate of change for the Ge
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and Se atoms, respectively. We learned that the divergence of the perpendicular phase

quotient is due to the rocking motion of a Ge-Ge compound. We investigated A1 breathing

modes of the corner-sharing tetrahedra which revealed that these breathing modes are

non-local and involve the mixing of modes of different symmetry resulting in two bands

of A1 breathing modes. Despite the existence of some interesting substructures the

self-diffusion coefficient and conductivity values were reasonably close to published

results. Trapping and release processes associated with the most diffusing Ag ion were

briefly discussed.
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4 Conclusion and FutureWork

This dissertation considered two different materials for investigation. These were a

non-glass former (a-Si) and a glass former (Ag0.2(Ge35Se65)0.8). Several physical,

electrical, and dynamical attributes of these materials were evaluated, which revealed new

insight into our understanding of the behavior for these materials with regards to various

applications.

4.1 Conclusion

An investigation pertaining to the complex amorphous material (a-Si) was performed

with respect to its structural, electronic and vibrational properties. This investigation

consisted of several model types of different sizes which were constructed from the MQ

and FEAR methods. Models with less than 512 atoms were shown to be inadequate in

resolving the first peak in S (Q) for low Q, whereas the 1024 FEAR model was as good as

the much larger models. The electronic density of states for four models (216MQ,

216FEAR, 512FEAR, 1024FEAR) bear qualitative similarity, with some localized states

located near the Fermi energy, due to defects, for the larger models. The vibrational

calculations revealed that a double-zeta basis is required to obtain a satisfactory

vibrational spectrum. It was shown that the recently developed FEAR method provides

models, which correlates quite well with experimental data, even for relatively large

structures sizes, and with substantial efficiency improvements relative to standard

methods. Our VDOS result illustrates a much clearer picture of low energy excitations for

a-Si. A new density of amorphous silicon established by ab initio minimum was

determined to be extremely close to the experimental density.

The evaluation of several static and dynamic properties of an amorphous

Ag0.2(Ge35Se65)0.8 model was presented. Our static structure factor results revealed a

FSDP for a high Ag content which agreed with other published work, which was not due



61

to GeGe correlations as reported in other materials, but instead due to AgSe and GeSe

correlations. We revealed that the radial distribution function of our model yielded fairly

good agreement with experiment. The host network (Ge36Se65), which consists of three

and four-fold Ge atoms and two-fold Se atoms, has been found to be a rigid network, in

accord with simple coordination models of network rigidity. In addition, the model also

contains Ge(Se1/2)4 tetrahedra that have been shown to be very distorted. It was

determined that the partial coordination numbers, in general, agreed with experiment

except for Se pairs which was decreased significantly due to bonding with Ag, producing

other substructures (Ag2Se, Ge2Se3). We believe that this is a first detailed calculation of

the vibrational modes for a AgGeSe system. The VIPR results indicated that extended

vibrational states were located at the low frequencies and more localized states at higher

ones. When compared to previous work, the VDOS results illustrated additional peaks

which may be due to the influence of the Ag atoms. From both the partial VDOS and

atomic participation ratio calculations it was shown that Se atoms are a major contributor

across the vibrational spectrum. The stretching character increased rapidly around 160

cm−1 and a plateau, which is believed to be the result of vibrational contribution changes

and a difference in the rate of these vibrational changes for the Ge and Se atoms,

respectively. It was concluded, from careful observations, that the large variations of the

perpendicular phase quotient was due to the rocking motion of a Ge-Ge compound as a

result of an atomic weight imbalance of the Ge-Ge compound. Projections of the bending,

stretching, and rocking motions revealed that the rocking motion manifested for both Ge

and Se atoms, but more for the Se atoms. We investigated A1 breathing modes of the

corner-sharing tetrahedra which revealed that these breathing modes are non-local and

involve the mixing of modes for different symmetry resulting in two bands of A1 breathing

modes. Despite the existence of some interesting substructures the self-diffusion

coefficient and conductivity values were reasonably close to published results. The Ag ion
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study regarding the trapping and release processes for the most mobile Ag ion revealed

”diffusion” times of about 1 to 3 ps, which would increase as temperature increased.

4.2 Future Work

With regards to amorphous silicon, it would be interesting to contrast the results of a

FEAR model with size of 2048 atoms using a double zeta basis set with the results

presented in Chapter 2, just to see how much of an improvement in the results would

occur and in what areas. For the amorphous silver-doped chalcogenide glass, it may be

worth performing a similar study as was done in Chapter 3, but with a larger model (> 100

atoms) produced by the FEAR method and consisting of a GeSe2 host network. Results

from the larger model and Chapter 3 can be compared to determine any improvement as

well as the robustness of the FEAR algorithm. In addition, obtaining detailed analysis of

electrical conductivity on these systems may reveal interesting and unexplained

conductivity fluctuations in time.
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