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Abstract

LI, YUTING, Ph.D., May 2014, Physics

Simulations and Electronic Structure of Disordered Silicon and Carbon Materials

Director of Dissertation: David A. Drabold

Urbach tails are the exponential band tails observed universally in impure crystals

and disordered systems. Evidence has been provided that the topological origin of the

Urbach tails in amorphous materials are filaments formed by short or long bonds[20]. One

aspect of my work focuses on the size effects and choice of Hamiltonian with respect to

the structure of the Urbach tails. The dynamical properties of filaments have been studied

by performing Molecular Dynamics simulation under constant temperature. The response

of filaments under external pressure has also been explored. The second portion of this

dissertation is about carbon in two-dimensional sp2 phases. Carbon has shown itself to be

the most flexible of atoms, crystallizing in divergent phases such as diamond and graphite,

and being the constituent of the entire zoo of (locally) graphitic balls, tubes, capsules and

possibly negative curvature analogs of fullerenes, the Schwartzites. In this part, we

explore topological disorder in three-coordinated networks including odd-membered rings

in amorphous graphene, as seen in some experimental studies. We start with the

Wooten-Weaire-Winer models due to Kumar and Thorpe, and then carry out ab-initio

studies of the topological disorder. The structural, electronic and vibrational

characteristics are explored. We show that topological disorder qualitatively changes the

electronic structure near the Fermi level. The existence of pentagonal rings also leads to

substantial puckering in an accurate density functional simulation. The vibrational modes

and spectra have proven to be interesting, and we present evidence that one might detect

the presence of amorphous graphene from a vibrational signature. We also explore the

energy landscape of amorphous graphene and report the eigenstates near the Fermi level.
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1 Introduction

Amorphous materials, especially amorphous semiconductors, have drawn increasing

attention from scientists and engineers. To understand the structural and physical

properties of these materials, researchers have to overcome difficulties due to its lack of

long-range translational periodicity. It is for this reason that computer simulation has

become a key tool to study amorphous materials.

1.1 Computational Methods

To model amorphous systems, the interatomic potential is the basic tool to accurately

understand the total energy and interatomic forces. For amorphous materials the chemical

bonding between atoms gives rise to the interatomic potential Φ(~r). Unlike crystalline

solids, the details of chemical bonding in amorphous system sensitively depend on the

local topology, which creates a big challenge to construct a realistic potential.

When facing the many-body nature of the interactions between electrons, it is nearly

impossible to solve the problem directly, thus approximation is required. Nowadays, there

are three commonly used paths to the interatomic potential: “empirical” potential (using

an ad-hoc functional form), tight-binding approximation and ab-initio methods [1]. All

these three methods have their own advantages and suitable cases. Both empirical and

tight-binding potentials suffer from lack of transferability. By carefully handling this

problem, in various cases these two methods are powerful tools which can yield

sometimes accurate results in vastly shorter computer time than ab-initio methods

1.1.1 Empirical Potentials

Empirical potentials are based on classical chemical concepts. The bonds between

atoms may be treated as elastic springs whose distortion determines the potential energy.

Typically the interatomic potentials includes some or all of the following terms[2]:
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* Bonded terms: These terms include bond-stretching, bond-angle-bending, dihedral

angles, torsion etc.

* Non-bonded terms: These terms include electrostatics and van der Waals

interactions.

* Corrections: These terms are used to fit the experimental data.

Carefully considering different contributions and fitting the experimental data, known

properties, such as bond length, bond angle, melting point, etc., in the reference materials

can be reproduced.

1.1.2 Tight-binding Approximation

Another commonly used method is the tight-binding method. In this approximation,

the electrons are considered as tightly bound to the nuclei, and have limited interactions

with nearby atoms. Then the hamiltonian can be simplified (following [3]):

H = Hat + ∆U(~r) (1.1)

Here Hat is the hamiltonian for one single atom in the lattice located at origin, ∆U(~r) is the

potential generated by all the other atoms in the crystal. Assume ψn(~r) is the eigenfunction

of Hat, and ψ(~r) is the eigenfunction of H. First the wave function localized around one

atom can be expanded as a linear combination of ψn(~r):

φ(~r) =
∑

n

bnψn(~r) (1.2)

Then the single particle hamiltonian can be simplified to:

H =
∑
~R

U~R|
~R〉〈~R| +

∑
~R~R′

t~R~R′ |~R〉〈~R
′| + t~R′~R|~R

′〉〈~R| (1.3)

Here ~R′ represents the set of nearest neighbors of ~R. The first term in Eq. 1.3 describes the

potential of electron at a lattice site, the second term is a hopping term producing



15

interaction energy between nearest neighbors. For disordered systems, the off-diagonal

hopping matrix elements depend on ~R, which means their values vary from site to site.

The free parameters in tight-binding hamiltonian are obtained by fitting to density

functional or experimental results.

1.1.3 ab-initio Methods

The third well developed set of methods is characterized as ”ab-initio”. One

approach is density functional theory (DFT), which is based upon the ground state charge

density as the fundamental variable instead of the many-particle wave functions[34]. The

well-accepted theory is introduced by Kohn and Sham (1965). This approximation

introduces a set of N single-electron orbitals |ψl(~r)〉, then the Schrödinger equation can be

written as:

−
~2

2m
∇2ψl(~r) +

[
U(~r) +

∫
d~r

e2ρ(~r′)
|~r − ~r′|

+
∂Exc[ρ]
∂n

]
ψl(~r) = Elψl(~r) (1.4)

In Eq. (1.4) the exchange-correlation Exc[ρ] is still unknown. Two common

approximations have met with widespread use.

The simplest approximation for the exchange-correlation term is the Local Density

Approximation (LDA). This key approximation can be expressed as:

Exc[ρ] =

∫
εxc[ρ(~r)]ρd~r (1.5)

Here εxc[ρ(~r)] is the exchange-correlation energy per particle of the homogeneous electron

gas. The exchange energy is given by a simple analytic form εx[ρ] = −3
4 ( 3ρ

π
)

1
3 [34] and the

correlation energy has been calculated to great accuracy for the homogeneous electron gas

with Monte Carlo methods[4].

Another valuable approximation that is sometime helpful is the Generalized Gradient

Approximation (GGA), for which[34]:

Exc[ρ] =

∫
εxc[ρ(~r), |∇ρ(~r)|]ρd~r =

∫
εxc[ρ(~r)]Fxc[ρ(~r), |∇ρ(~r)|]ρd~r (1.6)
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Here εxc[ρ(~r)] is the exchange-correlation functional of the homogeneous electron gas, and

Fxc is dimensionless, and based upon three widely used forms of Becke (B88)[5], Perdew

and Wang (PW91)[6], and Perdew, Burke and Enzerhof (PBE)[7]. This approximation is

expected to improve results for less homogeneous systems.

Both empirical potential and tight-binding approximations are computationally cheap

relative to ab-initio, but suffer from a lack of transferability and reliability in arbitrary

bonding environments. Ab-initio methods are applicable to many systems, but at a

significant computational price. Nowadays, SIESTA[8] and Vienna ab-initio simulation

package (VASP)[9] are two widely used ab-initio programs to calculate band structure,

electronic density of states, total energies, forces and other quantities. SIESTA uses

pseudopotentials and both LDA and GGA functionals. While VASP is based on

pseudopotentials, it employs a plane-wave basis and offers various density functionals.

1.2 Structure Analysis

Unlike crystalline materials, amorphous materials lack long-range order. Scientists

have developed a wide range of theoretical and experimental methods to study the

structure of amorphous materials. X-ray and neutron diffraction are two widely used

methods; whereas in simulations ab-initio is the method of choice. Some statistical

functions are used to study the atomic structures, for both experimentally and computer

models.

1.2.1 Radial Distribution Function

One of the most commonly used functions is the radial distribution function (RDF)

g(r), also known as the pair distribution function, which describes the probability of

finding an atom as a function of distance from one particular particle. The general form of
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radial distribution function is[10]:

g(~r) =
1
ρ2V

N(N − 1)〈δ(~r − ~ri j)〉 (1.7)

Where ρ is the number density, V is the volume of the model, and ri j is the distance from

any atom to the central atom. The last term means average over all configurations, which

can be expressed as:

〈δ(~r − ~ri j)〉 =
1

N(N − 1)

∑
i,i, j

δ(~r − ~ri j) (1.8)

Plug Eq. (1.8 into Eq. (1.7), the g(~r) can be written as:

g(~r) =
1
ρ2V

N(N − 1)
1

N(N − 1)

∑
i,i, j

δ(~r − ~ri j)

=
1
ρ2V

∑
i,i, j

δ(~r − ~ri j)
(1.9)

Then to find the radial distribution function g(r), we need to average g(~r) over all the

space:

g(r) =

∫
dΩ

4π
g(~r)

=
1
ρ2V

∑
i,i, j

∫ ∫
sinθ
4π

dθdφ
1

r2sinθ
δ(r − ri j)δ(θ − θi j)δ(φ − φi j)

=
1

ρ2Vr2

∑
i,i, j

δ(r − ri j)

(1.10)

The radial distribution functions provide important information about local structure

in amorphous materials. The nth peak in the function indicates the average distance

between any atom and its nth neighbor. Since amorphous materials do not have long-range

order, the g(r) eventually goes to one at large r.

1.2.2 Ring Statistics

Ring statistics is another commonly used measure in my work. In a network, a path

means a series of nodes and links connect sequentially without overlap. Then the simplest
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definition for a ring is a closed path. In real calculations of ring statistics, the definition of

ring and the properties of the model have also to be taken into consideration. There are

four commonly used definitions of rings:

* King’s shortest path criterion This is the first definition of rings given by Shirly V.

King [11], where a ring is defined as the shortest path between two of the nearest

neighbors at a given node (atom).

* Guttman’s shortest path criterion Latter Guttman gave another definition which

defines a ring as the shortest path from one node (atom) to one of its nearest

neighbors[12].

* Primitive rings A primitive (also known as irreducible) ring means it can not be

decomposed into two smaller rings[13] [14] [15].

* Strong rings This definition is obtained by extending the definition of primitive

rings [13] [14]. A strong ring means it can not be decomposed into any number of

smaller rings.

From the ring statistics calculation, we can get an impression about the connectivity of the

system, which is important to understand the local structure of amorphous materials. In

my study, most of the ring statistics calculations are done by a convenient public domain

program called ISAACS [16].

1.2.3 Electronic Structure Analysis

Applications of amorphous materials often depend upon their electronic properties.

The electronic structure is usually analyzed by the electronic density of states (EDOS) and

projected density of states (PDOS)[3].
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The EDOS can be written as:

g(E) =
1
N

Nbasis∑
i=1

δ(E − Ei) (1.11)

Here Ei is the eigenvalue of the system and Nbasis is the number of basis orbitals. An

important message we can get from EDOS is the band gap and states near it, from which

we can get a general picture about the electronic properties of given material. The other

important information is the shape of the band tails near the Fermi level. For crystalline

materials, due to the Van Hove singularities, we expect sharp edges at the band tail. But

for amorphous materials, without the long-range order, they’ll have smooth edges, which

will be explained in a later chapter.

The second important tool for analysis is the projected DOS (PDOS), which can be

written as:

gn(E) =

Nstate∑
i=1

δ(E − Ei)|〈φn|Ψi〉|
2 (1.12)

where gn(E) is the projected density of states on nth site, φn is the orbital localized on

given site and Ψi is the ith eigenvector whose eigenvalue is Ei. From this function, we can

find the relation between spatially local structure and the electronic structure.

Another frequently used quantity is inverse participation ratio (IPR), which provides

a useful tool to associate topological irregularities with localization of eigenstates in

amorphous materials and glasses. The IPR of jth eigenstate is defined as[17]:

I(ψ j) = N
∑N

i=1 a j4
i

(
∑N

i=1 a j2
i )2

(1.13)

Where N is the number of atoms in given model, and ψ j =
∑N

i=1 a j
iφi is the jth eigenvector.

In principle, for extended state, which is uniformly distributed over atoms, I(ψ j) = 1/N.

For highly localized state, I(ψ j)→ 1. I have assumed that the basis is orthonormal in Eq.

1.13.

Moreover, for certain highly localized eigenstates, PDOS calculation for this

eigenstate will provide valuable information about its structural signature. Thus
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combining the calculation results of IPR and PDOS, the key structure features that greatly

influence the electronic properties could be found.

1.3 Organization of Dissertation

The rest part of this dissertation is organized as: In Chapter 2, properties of Urbach

tails in amorphous silicon will be discussed. The thermal and vibrational properties of

Urbach tails in amorphous silicon models will be emphasized. In Chapter 3, the electronic

and vibrational properties of various sp2 phases of carbon will be discussed, involving

crystalline graphene, carbon nanotubes, fullerenes, and schwarzites. The studies of

potential energy landscape of amorphous graphene will be presented, and the electronic

structure of both planar and puckered amorphous graphene will be discussed in Chapter 4.

In each chapter, the computation and analysis methods will be explained in detail.
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2 Urbach Tails

Part of the following work in Chapter 2 is published in D. A. Drabold, Y. Li, B. Cai,

and M. Zhang, Physical Review B 83, 045201 (2011).

2.1 Introduction

The so-called ”Urbach tails” were first observed by Franz Urbach in a set of

measurements in the absorption spectrum of silver bromide crystals in 1953 [18]. In these

experiments, he observed the absorption edges were close to straight lines in plot of the

logarithm of absorption coefficient versus frequency. Later on, scientists found

exponential absorption edges are not unique, but a common phenomena in amorphous

materials, liquids, other disordered materials and even defective crystals. One of the most

important topics of amorphous semiconductors (because of the universality of the effect)

is to find the link between structural features and electronic or optical properties of the

materials. Anderson, Mott and others gave the first clue in the late 1950’s, their work

indicates that electrons are localized by disorder [19]. In subsequent decades, a lot of

theoretical models have been proposed to explain how disordered structure would give rise

to these exponential tails, but most of them suffers of lack of applicability to all systems or

incompleteness in theory.

In a previous study of amorphous material models in our group, it has been shown

that in our best available models the Urbach tails are associated with topological filaments

containing short or long bonds [20] [21], and the short (long) bonds are spatially

correlated forming subnetworks in the system. The short bonds tend to form a 3-D cluster,

whereas the long bonds form 1-D filament. And there is little long to short bond

correlation. Also it was found that the valance (conduction) tail states are localized at

short bond cluster (long bond filament).
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In the following sections, I demonstrate the existence of Urbach tails in three large

scale models using a tight-binding calculation. I study the character of the strain field

centered on particularly short bonds, the effect of thermal disorder on the band tails, and

filaments, and finally the phonon trapping effect of the cluster formed by short bonds.

2.2 Calculations on a Large Systsem

To investigate the role of finite size effects, models with up to 10000 atoms have been

carefully studied. We extend this to 100000 atom models and show that a well-made

model of this size produces highly exponential tails.

By carefully exploiting locality of interactions and implementing various clever

computational tricks, Mousseau and Barkema[22] have proposed genuinely enormous, but

nevertheless high-quality, models of α-Si, the largest to date being 100000 atoms. These

models are cubic and periodic boundary conditions are applied. To determine whether the

Urbach edges are a property of a large system, we compute the density of states for this

model. We show that both tails are quite exponential and indeed very close to an earlier

calculation[23] on a smaller (4096-atom) model proposed by Djordjevic and

coworkers[24].

In recent years there have been significant advances in obtaining the electronic

structure of large systems. While the roots of these approaches extend back at least to

Haydock and Heine’s recursion method[25], conceptual advances in the nineties showed

how to compute total energies and forces in a fashion that scales linearly with system size

- the so-called order-N methods[26]. For the present topic, we are concerned primarily

with the spectral density of states for a singleparticle Hamiltonian in a local basis

(orthogonal tight-binding) representation.

Within a tight-binding approach, the electronicHamiltonian matrix H of a large

model of α-Si is readily computed because it is extremely sparse (meaning that the
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overwhelming majority of the matrix elements vanish). Using the Hamiltonian of Kwon et

al.[27] (with four orbitals per site and a cutoff between the second and third neighbors for

Si) we find that about 54 million matrix elements are nonzero, out of 4000002 matrix

elements in total, so that only about 1 in 2800 entries in the matrix is nonvanishing. As

such, one can take advantage of sparse matrix methods formulated to carry out all matrix

operations using only the nonzero matrix elements.

The principle of maximum entropy (maxent) provides a successful recipe for solving

missing information problems associated with spectral densities, such as the electronic (or

vibrational) density of states[28]. Let ρ be the maximum entropy estimate for this density.

The maxent framework prescribes that we maximize the entropy functional:

S [ρ] = −

∫
dερ(ε)log[ρ(ε)] (2.1)

subject to the condition that ρ(ε) satisfies all known information about ρ, and with implied

integration limits over the support of ρ.As discussed elsewhere[29], it is easy to get

accurate estimates of the power moments µi =
∫ b

a
dεε iρ(ε), i = 1,N. By using simple

tricks, one can generate hundreds of power moments in seconds for systems with 105 or

more atoms (this is because the only operations involving H are of the form matrix applied

to vector). Then maximizing Eq. 2.1 (solving the Euler equation) subject to the moment

data leads to

ρ(ε) = exp

 N∑
i=0

Λiε
i

 (2.2)

From a computational point of view, the maxent moment problem is solved by

finding the Lagrange multipliers {Λ} that satisfy the moment conditions. This system of

equations presents a dreary nonlinear problem, but by using orthogonal polynomials

rather than raw powers and converting the calculation into a convex optimization problem,

practical solutions are available for more than 100 moments[29][30][31].
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Figure 2.1: Electronic density of states for 100 000- atom α-Si model from maxent
reconstruction based on 107 and 150 moments. As the curves are nearly identical, ca.
100 moments appears to be sufficient to accurately reproduce the state density. The Fermi
level is in the middle of the gap.

In Fig. 2.1 we reproduce the electronic density of states for the 105-atom model. We

carry out the maxent reconstruction for 107 and 150 moments; the results are nearly

identical, implying that the density of states is converged with respect to moment

information for of order 100 moments. We show the global density of states, including a

state-free optical gap. In Fig. 2.2, we show a blowup of the gap region.By fitting the tails

to an exponential exp(−|E − Et|/EU), where Et indicates the valence or conduction edge,

we obtain Urbach energies of EU = 200 meV for the valence tail and EU = 96 meV for the

conduction edge. Semilog plots of the density of states for tail energies (not reproduced

here) exhibit the expected linear behavior. These Urbach decay parameters are very close
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Figure 2.2: Least-squares fits to exponentials for valence and conduction tails for maxent
reconstruction of the density of electron states for 100000-atom model, based on 107
moments.

to earlier calculations on somewhat smaller systems[23][32]. The small spikes near -16.0

eV are ”real”: the moment data and maxent technique produce respectable δ functions for

isolated states with extremal energies.

We have also determined that the exponential edges are not limited to the valence and

conduction tails. The ”extremal tails” (near -15 and +8 eV) are also highly exponential.

The high-energy edge has an Urbach parameter EU = 130 meV. The low-energy tail is

much sharper than the other three, but still plausibly exponential when plotted on a log

scale. It is not possible to access these extremal tails optically or electronically, being so
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far removed from the Fermi level, yet they do contribute to quantities like the total energy

and forces.

We make two additional points. First, the exponential form is in no way due to the

maxent approach, which is nonbiased. While the identical calculation has not been

published on diamond Si, there are published calculations on very large fullerenes (with

up to 3840 atoms, asymptotically approaching graphene) that show a sharp band edge as

in crystals, not an exponential, an edge that is essentially identical to an exact calculation

of the graphene electronic density of states obtained from Brillouin-zone

integration[33][34]. From a mathematical point of view, it is no mean feat for the maxent

form [Eq. 2.2] to produce simple exponential tails in the gap. In effect, the network

structure of connected filaments (and the consequent electronic Hamiltonian matrix)

causes
∑N

i=0 Λiε
i ≈ λε for ε ∈ E, where E defines a spectral energy range including the two

band tails and λ is characteristic of the decay of the valence or conduction tail. Other

illustrations can be found in the theory of magnetic resonance[35][36]. Finally,

calculations with more sophisticated (density functional) Hamiltonians (and necessarily

smaller models that require Brillouin zone integrations) show exponential tails for

topologically similar models[20][37].

2.3 Strain Recovery for Short Bonds

We have shown in earlier work that if a particularly short bond appears in the

network, it will tend to be connected to other short bonds, which tend to be connected to

additional short bonds, etc. Let us name the central short bond a ”defect nucleus”. As one

progresses away from the nucleus, the bond lengths must asymptotically return to the

mean bond length of the network. In effect, there is a strain field induced by the

anomalous short bond. In Fig. 2.3, we illustrate this strain field. There is a reasonably

consistent form to the curves, which are plotted for the shortest few bonds in the 512-atom
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Figure 2.3: Strain recovery in a 512-atom model of α-Si: shortest few bonds. ∆r is the
difference in bond length from the mean; r is the distance from the short bond defect
nucleus.

model. By fitting a power law δr = Arγ (or alternatively, examining a log-log plot), we

find that γ = −1.86 ± 0.52. For several reasons (poor statistics, only a small range of r

contributing meaningful information, etc.) this number is not to be taken too seriously. In

fact, we are inclined to wonder if a more refined attempt will not yield a 1/r law, as

predicted for a point deformation for a continuum model by Lord Kelvin[38].

Despite these uncertainties, the consistency of this decay between the different short

bond centers is interesting. It seems that to a significant degree, anomalous bonds

determine their local topology. Bond length defects have a characteristic spatial range
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associated with them, and the range is quite predictable for short bond defects, at least.

The main point is that one must be careful about thinking in overly local termsone

anomaly affects many atoms. For the case of short bonds, this discussion is salient to the

valence tail. In α-Si, the valence tail is known to be broad and mainly due to static (not

thermal) disorder[39]. In other terms, an individual point defect can introduce density

fluctuations on a scale of order 5 − 7Å[1]. Since short bonds beget short bonds (always

with electronic signature at the valence edge), there is a cumulative electronic

consequence at the valence edge. Presumably it is this nonlocality and the tendency of the

network to local density that makes the valence tail broad (as in an experiment in α-Si : H

in Ref. [40]). For hydrogenated material, the broad valence tail impedes hole mobility.

Thus, our calculations suggest that a maximally homogeneous material is ideal for

applications. How homogeneous this can be, either in the experimental material or in

models is not clear, though we know that the WWW class models are exceptionally

uniform compared to models made in other ways[41].

Where long bonds are concerned, the pattern is less clear because there is a basic

asymmetrysufficiently long bonds are not bonds! Clearly there is no pattern so clear as

Fig. 2.3 for long bonds (since it is silly to imagine that very long, e.g., nonexistent, bonds

could induce slightly shorter long bonds, etc.) The experimental observation that the

valence tail is much broader than the conduction tail is presumably connected to this basic

asymmetry. Bond length distribution is almost symmetric about long and short in a good

model. Because thewave functions of the conduction states are mainly distributed in the

dilute regions, the disorder potential they feel is weak; thus the conduction tail is less

broadened.
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Figure 2.4: Comparison of electronic density of states between the 512-atom model and
the 100 000-atom model.

2.4 Size Effects and Hamiltonians

Because we cannot perform molecular dynamics (MD) simulations on the

100000-atom model or even the 4096-atom model, we are led to investigate the effects of

thermal motion on the filaments and associated electronic structures at the tails. First, we

consider the possible importance of size artifacts on the energy spectrum by comparing

the 100000-atom model with a 512-atom model made in a similar way[24], and we show

the result around the gap in Fig. 2.4. Both plots have similar general features, though the

electronic density of states (EDOS) of the 100000-atom model is of course smoother than

that of the 512-atom model. Within finite size artifacts, the 512-atom model is producing a
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fairly exponential tail which indicates that the 512-atom model is an appropriate basis to

study some aspects of the tails in α-Si.

Figure 2.5: Electronic density of states of 512-atom models obtained by SIESTA self-
consistent calculation with single-ζ and single-ζ-polarized basis sets, by the tight-binding
method, and by a Harris functional calculation with a single-ζ basis.

Next, we compare the EDOS of an α-Si 512-atom model obtained via different

Hamiltonians and plot the results in Fig. 2.5. The EDOS of a 512-atom model are

computed by SIESTA self-consistent calculation with single-ζ and single-ζ-polarized

basis sets, by the tight-binding method, and by SIESTA using a Harris functional

calculation with a single-ζ basis. We point out that the Harris functional calculation gives

a significantly bigger highest occupied molecular orbital (HOMO)-lowest unoccupied
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molecular orbital (LUMO) gap and, as expected, the more complete the basis the smaller

the gap. Though the shapes of EDOS are different for different basis sets, we observe that

different basis sets all produce qualitatively exponential tails at least within the finite size

effects for the small 512-atom model.

2.5 Filament Dynamics

Total yield photoelectron spectroscopy measurements have shown interesting

behavior in the band tails of α-Si : H and related materials[42][39]. In the experiments of

Aljishi et al.[39] it was found that the valence tail was due primarily to structural disorder

and that the conduction tail was much more temperature dependent, and thus linked to

thermal disorder. MD simulations have been applied to model these effects[43].

Figure 2.6: Instantaneous snapshot of short bonds in the 512-atom model at 300 K. Only
bonds less than 2.3Å are shown. A bar connecting the spheres indicates a chemical bond.
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Figure 2.7: Another instantaneous snapshot of short bonds in a 512-atom model at 300 K.
Bonds less than 2.3Å are shown.

As another step toward understanding the effect of a dynamic lattice on the band tails,

we have created animations of the dynamics of the short bonds in the 512-atom cell[24]

using the local orbital ab initio code SIESTA[8] for temperatures from 20 to 700 K (in

each case using constant temperature dynamics). In Fig. 2.6 and 2.7 we show

instantaneous snapshots of the shortest bonds at two different times at 300 K. As

inspection of the animation suggests, there is considerable fluctuation in the identity of the

shortest bonds. While it is not easy to infer from our figures, there is a clear (and

expected) tendency for short bonds to occur in the denser volumes near a defect nucleus

rather than in other parts of the network. Moreover, we computed the EDOS for a
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”nonfilament” model and tried to relate it with the Urbach tail. We have also made similar

animations for long bonds, and we see extended, highly connected filaments fluctuate into

and out of existence. We illustrate the case of short bonds here, as there is less ambiguity

in definition. Thus, we note that the filaments persist at room temperature at least[37],

though not by retaining a static form, but with considerable temporal fluctuation.We

illustrate these points with animations elsewhere[44].

Figure 2.8: Electronic density of states for 512-atom models with and without filaments.

We end this section by comparing the EDOS of models with and without filaments.

Two 512-atom α-Si models are presented: one with short and long filaments and the other

without filaments[45]. We used the tight-binding method to compute the electronic

density of states, and the results are plotted in Fig. 2.8. A clear band gap exists for the
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configuration with filaments but a smaller gap is revealed for the model without filaments.

Furthermore, we sought to understand the differences by performing exponential fits to

tails in both models. Because of the incompleteness of the basis set for states above the

Fermi level, we only fit the valence tail and we report the outcome in Fig. 2.9. We found

that exponential fits for the structuralmodels with filaments are better than those without

filaments. The Urbach energy, EU ≈ 193 meV, is essentially the same as that for the

100000-atom model for the model including filaments and is ≈ 99 meV for the model

without filaments. Modification of the filaments leads to significant changes in the Urbach

tail.

Figure 2.9: Exponential fitting for valence edges of 512-atom models with and without
filaments.
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2.6 Filaments under pressure

Figure 2.10: Filaments in 512 a-Si under hydrostatic and one-dimensional pressure of
5Gpa. The green sticks represent the filaments from the system under external pressure,
blue atoms illustrate the filaments in original 0Gpa model.

So far we study the response of filaments under different temperatures, now we focus

on how filaments respond to the external pressure. This time the 512 a-Si was relaxed

under hydrostatic and one-dimensional pressure of 1Gpa and 5Gpa.
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Figure 2.11: EDOS for 512 a-Si under hydrostatic and 1D pressure of 1Gpa and 5Gpa.

As shown in Fig 2.6, the filaments have spatial consistency after relaxed under

external pressure, which is similar as the results of 512 a-Si from thermal MD. The

filaments still tend to occur near especially long or short bonds. Also the fluctuation of

filaments is not very significant after relaxed under the pressure. There are certain

filaments which have more bonds than itself under 0 pressure, which is pretty natural since

when the system was placed in the external pressure, the configuration would be

compressed. Thus certain bonds near nucleus defect would be more sensitive to the

external field, and some of the filaments grew bigger than the original model.

Next we compute the EDOS for the systems relaxed under pressure using SIESTA,

with a SZ basis. As shown in Fig 2.11, similar as heating the system up, the external
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Figure 2.12: Correlation between Urbach energy (Ek) and pressure.

pressure also will close the gap, no matter whether the pressure is hydrostatic or 1D. After

fitting the valence tails using Eq. 2.3, it seems there is a correlation between Urbach

energy (Ek) with pressure. In Fig 2.12, for both hydrostatic and 1D external fields, the

increasing of pressure will lead to the rising of Ek.

2.7 Necessity of Filaments

To test the relationship between band tails and the structure of the 512-atom

amorphous silicon, every atom was randomly moved by δr (|δr| ≤ 0.01, 0.03 and 0.05),

which can be related with thermal fluctuation under certain temperatures (around 8.03K,

32.12K and 72.26K) [47]. After we introduce random distortion into the system, the
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Figure 2.13: EDOS of 512 α-Si system with thermal disorder before and after relaxation
around fermi level. The lines without symbols represent relaxed results, and unrelaxed
models are illustrated by lines with symbols.

filaments become fewer with increasing of δr. These distorted structures are relaxed by

SIESTA using a single-ζ polarized (SZP) basis and a double-ζ (DZ) basis. The final

electronic density of states (EDOS) from these two calculations are similar, as both of

them show an asymmetric broadening of the conduction tail with extra disorder, and little

change in valence tail as shown in Fig 2.13, which is in agreement with the well-known

fact that the conduction tail is more sensitive to thermal disorder than valence tail [48].

By further fitting the EDOS tails with an exponential function:

ρ(E) ∝ e
−|E−Eb |

Ek (2.3)
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Figure 2.14: Correlation between initial disorder and the Urbach energy Ek. The solid line
represents data of valence tail and the data of conduction tail is illustrated by dashed line.

Where Eb is the band-edge energy and Ek is the Urbach energy. In Fig 2.14, it seems there

is a correlation between the initial disorder (illustrated by σ, which is the width of the first

peak in radial distribution function (RDF g(r)) of the model) and Ek. It appears the more

disorder is, the higher EK will be, which implies the tail will look more and more sharp.

Also during the fitting, there is a clue to show that the fitting of Eq. 2.3 is better for

the relaxed model than the initial model with disorder. It can be deduced that when the

number of filaments decreases, the band tails (especially conduction tail) will become less

exponential. However, in Fig 2.13, it is hard to tell whether the filaments will effect band

tails or not.
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2.8 Normal Mode Calculation

The phonon calculations were performed for 512-atom amorphous (512 α-Si) and

cystalline silicon model (512 c-Si). The dynamical matrix was constructed by calculating

forces of each atom from six orthogonal displacements by 0.04 Bohr using SIESTA. The

vibrational density of states (VDOS) are given in Fig. 2.15. The calculation of VDOS for

crystalline silicon is in great agreement with other publised results[46].

Figure 2.15: Normalized VDOS of 512 α-Si and c-Si models.

Inverse paricipation ratio (IPR) has been calculated for 512 α-Si model based on the

phonon eigenvectors, as shown in Fig. 2.16. In the low-frequency range, there are a few

localized states around 25cm−1. Take the state maked as 1 in Fig. 2.16 as example, this
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Figure 2.16: Scaled VDOS and IPR of 512 α-Si model. The atomic structure where each
state is loclalized is shown by blue atoms.

state is localized on short bonds, whose average bond length is around 2.308Å, comparing

to the average bond length of amorphous silicon (2.35Å). As illustrated in Fig. 2.16, these

short bonds cluster togeter, forming a short-bond filament. Peak 2 in Fig. 2.16 is the most

localized state in 512 α-Si model, which is localized on bonds with average bondlength

2.298Å. These atoms also interlink with each other. As shown in Section 2.3, the short

bonds induces a strain field around them. Thus these strain field around short bonds may

act as a phonon trap, leading to high localization around short bonds.
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2.9 Conclusion

In this chapter, the existance of Urbach tails in large scale three dimensional

configurations using tight-binding calculation is discussed. Also I present the character of

the strain field centered on particularly short bonds, the effect of thermal disorder on the

band tails and filaments. And finally vibrational density of states is discussed.
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3 sp2 phases of Carbon

Part of the following work in Chapter 3 is published in Y. Li and D. A. Drabold,

Handbook of Graphene Science (CRC Press) (submitted) 2013.

3.1 Introduction

Carbon-based semiconductors are one of the hottest topics in condensed matter

science. Although silicon-based electronics have achieved tremendous success, scientists

and engineers are always seeking alternative materials. One of the main reasons is that the

size of silicon-based transistors, which are the building blocks of electronics, is reaching

basic limits. One challenge of these short length scales is the requirement of rapid heat

dissipation. Nowadays, remarkable improvements in growth techniques allow scientists to

build carbon structure with reduced dimensionality in high precision. The advances in

computational tools and theoretical models make it possible to investigate and make

plausible predictions about the electronic, vibration or optical properties of carbon

materials.

Single-layer graphene was first isolated by Novoselov et al. using mechanical

exfoliation[49]. Graphene’s two dimensional structure, which consists only of hexagons,

gives rise to its unique and interesting electronic properties and promising potential for

applications[50]. However, different categories of defects have to be taken into account

for applications. It has been shown that these defects may lead to various graphitic

arrangements, associated with a menagerie of local minima on the sp2 carbon energy

landscape. Among these analogs of graphite, we will briefly consider the properties of

crystalline graphene, fullerene, carbon nanotubes and schwarzite, and focus mainly on

amorphous graphene.
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Figure 3.1: The density functional band structure of crystalline graphene. The result of
VASP is given by solid line. The results by SIESTA using SZ basis and Harris functional
is represented by the dash-dotted curve[57].

3.2 Crystalline Graphene

3.2.1 Band Structure

Crystalline graphene refers to one layer of graphite, where carbon atoms are arranged

on a perfect honeycomb lattice. After experimental isolation in 2004, graphene’s

electronic properties have been predicted theoretically[49][51][52][53]. Since there have

been extensive studies on crystalline graphene, here we will briefly discuss the electronic

properties. To calculate the band structure of crystalline graphene, we employed a single-ζ
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Figure 3.2: Density of states of 800-atom crystalline graphene using both DFT and tight-
binding methods. The Fermi energy is 0eV. Solid line represents the result of SIESTA. The
density of states due to tight-binding is shown by the dashed line.

(SZ) basis set with or without Harris functional[54], a double-ζ polarized (DZP) basis set

with SIESTA, and also VASP to compute the eight lowest-energy bands. For both SZ and

DZP calculations by SIESTA, 20 k-points along each special symmetry lines were taken,

and for VASP 50 k-points along each line were sampled. The result from SIESTA using

SZ basis and Harris functional is essentially identical with the one based on DZP basis for

the four occupied bands. These results of SIESTA with SZ basis and Harris functional and

of VASP show excellent agreement with published results for each code

respectively[55][56], as shown in Fig. 3.1. For energies above the Fermi level, agreement

of results for the four unoccupied bands are rather poor, which can be amended by



46

carefully choosing the energy cutoff to minimize the total energy as shown by Machon et

al.[58]. While this is presumably irrelevant for ground state studies, these artifacts would

be significant for transport or optics.

Figure 3.3: Optimized structure of C240 using SIESTA with SZ basis and Harris-functional.

3.2.2 Density of States

The comparison of density of states of crystalline graphene between DFT using

SIESTA and tight-binding methods is shown in Fig. 3.2. The tight-binding result is

calculated based on Eq. (14) in Ref. [50], where t′ = 0, t = 2.8eV . Both of these two
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results around Fermi level can be approximated as ρ(E) ∝ |E|. The broadening of the DFT

DOS is due to incomplete Brillouin Zone sampling.

3.3 Fullerenes

In 1985, Kroto et al. found that there exist cage-like molecules containing purely

three-fold carbon atoms (sp2 hybridization)[59], which are named fullerenes. This

discovery stimulated extensive investigations into this molecular graphite allotrope.

Generally speaking, fullerenes refer to a family of closed carbon cages formed by 12

pentagons and various numbers of hexagons, which can be prepared by the vaporization of

graphite in an electric arc at low pressure[60]. In this section the electronic properties of

C60 and C240 will be discussed. Their structures were optimized by SIESTA with SZ basis

and Harris-functional without any symmetry constraints. The relaxed C240 model is shown

in Fig. 3.3.

Table 3.1: The HOMO-LUMO gap and total energy relative to crystalline graphene of
various fullerene and schwarzite models.

Allotropes Models Gap (eV) Etot/Natom (eV)

Fullerene
C60 1.724 0.402

C240 1.231 0.132

Schwarzite

G-384 schw 0.183 0.188

P-536 schw 0.151 0.112

P-792 schw 0.086 0.090

P-984 schw 0.394 0.077

The comparison between DOS of these two fullerenes and crystalline graphene are

shown in Fig. 3.4. It appears the curved topology of fullerene opens a gap around the

Fermi level. According to Fig. 3.4 and Table. 3.1, the HOMO-LOMO gaps of C60 and
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Figure 3.4: DOS of C60, C240 and crystalline graphene. The upper panel shows the whole
spectrum, and DOS around Fermi level is given in the lower panel.

C240 decrease with rising of the number of atoms, which is consistent with the other

calculations[61].

3.4 Carbon Nanotubes

Carbon nanotubes can be visualized as a graphene sheet rolled into a cylinder. There

are three different types of carbon nanotubes due to different ways in rolling the graphene

sheet. Distinct geometry of these three types give rise to varied electronic behaviors[62].

Their structures can be characterized by a chiral vector ~Ch as shown in Fig. 3.5. Since
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carbon nanotubes are derived from crystalline graphene, the geometric properties of a

carbon nanotube are commonly described by the ones of graphene.

Figure 3.5: The chiral vector ~Ch shown in honeycomb lattice. ~T is the translation vector,
representing the axial direction of the carbon nanotube. Shaded region represents the unit
cell of carbon nanotube and Θ is the chiral angle. ~a1 and ~a2 are the lattice vectors of original
honeycomb lattice.[63]

Recall that the two unit vectors in the honeycomb lattice are defined as ~a1 =
( √

3a
2 , a

2

)
and ~a2 =

( √
3a
2 ,−a

2

)
, where a ≈ 1.42Å. To represent the geometry of carbon nanotube

according to the original honeycomb lattice, chiral vector ~Ch defines the diameter of

carbon nanotube, and translation vector ~T defines the axial direction along the nanotube.

Both of them are expressed as:

~Ch = n~a1 + m~a2

~T =
2m + n

dr
~a1 +
−2n + m

dr
~a2

(3.1)

Here both m and n are integers and n > m. dr is the highest common divisor of

(2n + m, 2m + n). (n,m) values are crucial to the properties of nanotubes. N anotubes with

the same number of unit vector indices (n, n) are called armchair nanotubes. Chiral vector

indices (n, 0) with m = 0 represents the zigzag nanotubes. Besides these two cases, if the
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chiral vector indices (n,m) are n , m , 0, the nanotube is called chiral, with a screw

symmetry along the axis of the tube[64]. A few examples of these three types of

nanotubes are shown in Fig. 3.6.

Figure 3.6: Three examples of carbon nanotubes with chral vector indices (4, 4), (6, 0) and
(4, 3) respectively.

To evaluate the electronic properties of carbon nanotubes, we use three carbon

nanotubes with different chiral vector indices: (4,4) tube with n = m = 4, (6,0) tube with

n = 6,m = 0, and (4,3) tube n = 4,m = 3. Carbon nanotubes exhibit either metallic

behavior or as semiconductor depending on their chiral indices. Theoretical derivations

show that if the indices (n,m) of nanotube satisfy the greatest common divisor of (n-m, 3)

is 3, the given carbon nanotube behaves like metal, otherwise, it will be a

semiconductor[63]. The Γ point DOS calculation results using SIESTA with SZ basis are

shown in Fig. 3.7. Consistent with the theory, (6,0) tube has more states around the Fermi

level, and obviously is metallic, and (4,3) tube exhibits a gap and is a semiconductor. On

the other hand, the (4,4) tube which should be metallic exhibits a gap. In our case, we

found SIESTA calculations with SZ basis always tend to overestimate the gap, due to
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incomplete basis set and Brillouin Zone sampling. By carefully choosing the basis set and

fully integraing over the Brillouin Zone, the gap would be reduced. Details on this

calculation will be discussed elsewhere.

Figure 3.7: Normalized DOS of (4,4) tube, (4,3) tube and (6,0) tube. Fermi level is 0 eV.
The full spectrums are shown in the higher panel, and lower panel shows in the zooming-in
structures around the Fermi level.

We also compute the Γ (
−→
k = 0) density of states using a similar approach for carbon

nanotubes. Here we use one zigzag (30,0) tube and one armchair (40,40) tube. According

to the law of greatest common divisor of (n − m, 3), (30,0) tube should be metallic, which

is consistent with our results as shown in Fig. 3.8. Also, by comparing the contributions

from all three sp2 orbitals and the p orbital, PDOS on p orbital have significant weight



52

Figure 3.8: Comparison between density of states (DOS) and projected density of states
(PDOS) of (30,0) tube and (40,40) tube.

around Fermi energy. And in Fig. 3.8, the PDOS curves of p orbitals in (30,0) tube and

(40,40) tube have identical shape with the DOS around the Fermi level. Thus the

electronic properties around the Fermi level is determined by the interaction between p

orbitals. This result is in fine agreement with bandstructure calculations, in which the two

π bands, which are due to the interaction between p orbitals, determine the metallic

behavior of carbon nanotubes[63].
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Figure 3.9: Structure of primitive 792-atom schwarzite model. Only half of this model is
shown here[67].

3.5 Schwartzite

Unlike fulllerenes and carbon nanotubes, which have positive Gaussian curvature due

to the presence of five-membered rings, schwarzites have negative curvature, which are

induced by seven and eight-membered rings as shown in Fig. 3.9. As in crystalline

graphene, all the atoms of schwarzite are three-fold[65]. To study the electronic properties

of schwarzite, four models are used: gycoid 384-atom (G-384 schw), primitive 536-atom
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(P-536 schw), primitive 792-atom (P-792 schw) and primitive 984-atom (P-984 schw)

schwarzite models. DOS of these four models are calculated by SIESTA using SZ basis

and Harris-functional with at least 2 × 2 × 2 Monkhorst-Pack grid[66]. The calculation

results are given in Fig. 3.10.

Figure 3.10: Normalized density of states (DOS) of four schwarzite models. Fermi energy
is 0eV.

As shown in Fig. 3.10, with increasing schwarzite unit cell, DOS curve near fermi

level approaches to the shape obtained for crystalline graphene as shown in Fig. 3.2.

According to Table 3.1, increase of the schwarzite cell also leads to decline of

HOMO-LUMO gap. However, the trend breaks at P-984 schw. The total energy per atom
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also decreases with increasing unit cell size. And the difference in total energy between

crystalline graphene and large schwarzite cell approaches to 0.077 eV, which implies there

is a great chance to prepare real schwarzite models.

Figure 3.11: PDOS of P-536 and P-792 schw models on 7-member and 6-member rings,
and the DOS represent by the dot-dashed lines.

The calculations of Γ point PDOS of both P-536 and P-792 schwarzite models have

been performed. Since the primitive schwarzites contain only 6-member and 7-member

rings, and the negative curvature is introduced by 7-member rings, here we compare the

PDOS on the atoms within 7-member rings and the ones with 6-member rings, as shown
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in Fig. 3.11. It appears that for both of these two models, 7-member rings are responsible

for the structure of the DOS around the Fermi level.

3.6 Conclusion

In summary, positive curvature opens up HOMO-LUMO gap in fullerenes. For

carbon nanotubes, their electronic properties strongly depend on the chiral indices. On the

other hand, the influence of negative curvature on DOS is reduced by increasing

schwarzite unit cell size, and the difference of DOS between large schwarzite and

crystalline graphene diminishes. For both positively and negatively curved carbon

allotropes, the bigger the closed cage is, the lower the total energy per atom will be.
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4 Amorphous Graphene

The following work in Chapter 3 is published in Y. Li, F. Inam, A. Kumar, M. F.

Thorpe and D. A. Drabold, Phys. Stat. Sol. B 248, 2082 (2011), Y. Li and D. A. Drabold,

Phys. Stat. Sol. B 250, 1012 (2013), Y. Li and D. A. Drabold, Handbook of Graphene

Science (CRC Press) (submitted) 2013, and Y. Li, and D. A. Drabold, Electronic

Signatures of Topological Disorder in Amorphous Graphene (submitted) 2014.

As mentioned in the introduction, crystalline graphene and associated materials have

extraordinarily interesting electronic properties. The electronic, thermal, and vibrational

properties of graphene depend sensitively on the perfection of the honeycomb lattice.

Thus it is worthwhile investigating defects in graphene. Although extensive efforts have

been devoted to curved graphene derivatives such as carbon nanotubes and fullerenes,

little attention has been given to non-hexagonal defects and their electronic and

vibrational properties in a planar graphene. In this section, details about the progress in

producing real amorphous graphene samples in experiment, techniques on preparing

computational models and calculation results about electronic and vibrational properties

of amorphous graphene will be discussed.

4.1 Experimental results

From the 1980’s, the progress in the growth engineering and characterization

techniques made it possible to grow low dimensional materials under tight control. Recent

electron bombardment experiments have been able to create amorphous graphene

pieces[68][69]. Clear images of regions of amorphous graphene have been taken by

Meyer[70], following the method described in Ref[71].

Recently Kawasumi et al. successfully embeded non-hexagonal rings into a

crystalline graphene subunit in experiment, synthesized by stepwise chemical methods,

isolated, purified and fully characterized the material spectroscopically[72]. They reported
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the multiple odd-membered-ring defects in this subunit lead to non-planar distortion, as

shown in Fig. 2 in [72], which is consistent with our published results, as described in

following sections.

Figure 4.1: Top view of 800-atom crystalline and 836-atom amorphous graphene[57].

4.2 Amorphous Graphene Models

To investigate the electronic and vibrational properties of amorphous graphene, three

models are employed: 800 atom model (800 a-g), two 836 atom models (836 a-g1 and 836

a-g2). All these models are prepared by introducing Stone-Wales (SW) defects[73] into

perfect honeycomb lattice and a Wooten-Weaire-Winer (WWW) annealing scheme[74]

with varying concentration of five, six and seven member rings[57]. Their ring statistics

are shown in Table 4.1. All the atoms in these models are threefold, forming a practical

realization of the continuous random network (CRN) model, proposed by
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Zachariasen[75]. A comparison between crystalline graphene and 836 a-g1 model is

shown in Fig. 4.1.

Table 4.1: Ring statistics of 800 a-g, 836 a-g1 and 836 a-g2 models, shown as %[57].

Ring Size 800 a-g 836 a-g1 836 a-g2

5 33.5 25 24

6 38 53 52

7 24 19 25

8 4.5 3 0

Figure 4.2: DOS of 800-atom amorphous and crystalline graphene, the Fermi energy is 0
eV[57].
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The electronic DOS of the planar 800 a-g model is compared to a Γ point DOS of the

crystalline 800 c-g model in Fig. 4.2 due to SIESTA. The electronic structure of the 800

a-g model is vastly different from the crystalline graphene near the Fermi level due to the

presence of ring defects, as first reported by Kapko et al.[76].

4.3 Pentagonal Puckering

In all three amorphous graphene models, we introduced small random fluctuations in

the coordinates, in the direction normal to the graphene plane, and then relaxed with the

Harris functional and a SZ basis set. Starting with a flat sheet, the planar symmetry breaks

with curvature above or below initial the plane. The final distortion depends on the initial

conditions. However, a consistent theme emerges of pentagons inducing curvature as we

describe below.

Table 4.2: the influence of δr on 800 a-g system relative to initial flat model

δr (Å) δr′ (Å) Etot/Natom (eV)

0.01 0.520 -0.107

0.05 0.525 -0.107

0.07 0.526 -0.107

Table 4.3: the influence of δr on 836 a-g1 system relative to initial flat model

δr (Å) δr′ (Å) Etot/Natom (eV)

0.01 2.53E-3 0.0

0.05 1.402 -0.102

0.07 1.401 -0.102

As shown in Table 4.2, Table 4.3 and Table 4.4, first we randomly moved the atoms

along normal direction in the range of [−δr,+δr], as shown in the first column of these
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Table 4.4: the influence of δr on 836 a-g2 system relative to initial flat model

δr (Å) δr′ (Å) Etot/Natom (eV)

0.01 2.72E-3 0.0

0.05 1.183 -0.090

0.07 1.180 -0.090

Figure 4.3: Density of states of the original and relaxed crinkled system. a) The solid line
is the density of states of original 800-atom amorphous graphene model. b) The density of
states of crinkled systems are shown as marked in the plot. c) The Fermi level is corrected
to 0eV in the plot, as shown in dot-slash line.
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Figure 4.4: The flat view of the relaxed 836 a-g1 system (in gray). The blue background
illustrates the original 836 a-g1 model.

tables; and the results of relaxing by SIESTA in SZ basis are shown in the second, third

and fourth columns. The prime symbol refers to the relaxed model. Taking the 800 a-g

model as an example, the influence of puckering the system on the density of states

around Fermi level is shown in Figure 4.3; an intuitive view of the fluctuation after

relaxing is shown in Figure 4.4 and 4.5 when δr = 0.05Å. After breaking the planar

symmetry by a tiny amount, say δr = 0.05Å, all three models pucker and form the rippled

or undulated structure as shown in Figure 4.4 and 4.5.
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Figure 4.5: The side view of the relaxed 800 a-g system. The biggest separation along
normal direction is marked in the plot.

The radial distribution function g(r) is shown in Figure 4.6. From this plot, the mean

bond length of the relaxed systems with different initial δr remain near 1.42Å, the change

in ring statistics after relaxing is also not significant. And according to Fig 4.4, only one

bond broke after relaxation. This implies that the main difference between the original

amorphous graphene model and the relaxed ones is due to these undulations in Figure 4.4.

To compare with the puckering of the 800 a-g model, we also introduced the same

planar symmetry breaking into a 800 c-g model and relaxed it. As expected, the atoms in

this crystalline system maintained planar symmetry.

Also in order to find the relation between the ripples in the relaxed systems and the

initial random distortion, we tested different seeds in random number generator (RNG)

and also different RNG. The results reveals that the changing seeds or or employing

different RNG are quantitatively small: The maximum mean distortion from the original

flat plane (δr′) is about 0.545Å and the maximum change in total energy is around 0.01eV

per atom. Figure 4.7 shows the side view of the final configurations by using new and

original RNG when δr = 0.05Å, we can tell that the rippled regions are similar, except

certain regions have formed ”bucky domes” on opposite sides of the initial plane.

To further test the relation between the ripples and the initial distortion, instead of

randomly moving all the atoms of 800 a-g, we only distorted the atoms within pentagons
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Figure 4.6: Radial distribution function of flat and crinkled 800 a-g system.

Figure 4.7: The side view of the final configuration by using new and original RNG. a) The
gray balls and sticks show the result of new RNG. b) The blue frames represent the result
of original RNG.
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Figure 4.8: The side view of the final configuration with δr = 0.05Å of only moved atoms
within pentagons and the original relaxation (distort all atoms). a) The gray balls and sticks
show the result of moving atoms within pentagons. b) The blue frames represent the result
of original distortion.

and compared with atoms not included in pentagons. Figure 4.8 shows the side view of

the final configuration of relaxed 800 a-g system when the δr = 0.01Å and only the atoms

within pentagons were randomly moved . These results are similar as the previous test: a)

The maximum change in δr′ is around 0.625Å and the maximum change in total energy is

around 0.02eV per atom. b) No matter which atoms were distorted initially, the final

puckered regions involve the same atoms, but possibly puckered in the opposite direction

relative to the symmetry plane. Finally, we note that a 128-atom amorphous graphene

model made with ”melt quenching” [1] exhibits regions puckered around pentagons in a

similar fashion to what we report here.

Different initial symmetry breaking leads to different nearly degenerate states after

relaxing. However, as stated above, no matter how different initial condition is ( or how

different these degenerated state is), the puckered regions are almost the same. It is

evident that different rings induce these ripples. With this motivation, we searched for

regions where the height differences of two neighbor atoms are the largest and smallest in

the model (crinkled and smooth regions), as shown in Figure 4.9, 4.10 and 4.11. In these

plots, the gray atoms are the configuration of crinkled system, and the blue straight lines

represent the original model.



66

Figure 4.9: The enlarged plot of crinkled and smooth region of 800 a-g model. a) The top
view of the crinkled region. b) The side view of the crinkled region. c) The top view of the
smooth region. d) The side view of the smooth region.

As illustrated in Figure 4.9 and 4.10, the puckered areas are pentagon-dense areas.

The bonds with most distortion do not belong to these pentagons, instead they are within

the hexagons or heptagons connecting two pentagons. And the smooth areas have fewer

pentagons than the crinkled areas, and most parts of the smooth areas contain hexagons

and pentagons. These plots imply that the hexagons and heptagons alone will not lead to

planar symmetry breaking. These ripples formed by pentagons strongly remind us of the

fullerenes, especially the buckyball (C60) which only contains pentagons and hexagons.
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Figure 4.10: The enlarged plot of crinkled and smooth region of 836 a-g1 model. a) The
top view of the crinkled region. b) The side view of the crinkled region. c) The top view of
the smooth region. d) The side view of the smooth region.

The distance from the top to the bottom of the ripples for 800 a-g is around 5.809Å as

shown in Figure 4.5, which is comparable to the diameter of buckyball, 6.636Å. As shown

in Figure 4.9, 4.10 and 4.11, the crinkled regions are all associated with pentagons.

In conclusion, while the planar conformation is locally stable, a lower energy

solution is obtained that is puckered with local maxima and minima in the vicinity of

pentagons. The relaxation is performed using a density functional calculation of the

electronic energy. The scale of the puckering is consistent with the curvature found in
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Figure 4.11: The enlarged plot of crinkled and smooth region of 836 a-g2 model. a) The
top view of the crinkled region. b) The side view of the crinkled region. c) The top view of
the smooth region. d) The side view of the smooth region.

buckyball caps with a pentagon surrounded by larger rings. While we have demonstrated

that a well defined puckered state exits, further study is needed to determine whether the

puckered state is a single minimum, or rather a series of roughly degenerate local minima

with properties akin to the glassy state.
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4.4 Potential Energy Landscape of Amorphous Graphene

A key feature of matter in a disordered state is the existence of large numbers of

conformations with essentially degenerate energies, which may also be mutually

accessible with small energy cost. This is in contrast with crystals, which possess long

range order, few polymorphs and typically a deep energy minimum and large energy

barrier. The ground state is thus sharply defined, and the only low energy excitations are

phonons - transitions to other structures are prohibited. Where realistic models of

disordered systems are concerned, few attempts have been made to quantitatively

characterize the number, energetics, and proximity (in the sense of barrier) of these states.

In his inherent structure formulation of statistical mechanics, Stillinger argued that the

number of minima scales like N!exp(αN)[77], where N is the number of atoms in the

model, and a is a positive system-dependent constant. a was estimated to be around 0.8 in

a monatomic liquid[78], and flexible organic molecules exhibit larger α, as in the fragile

glass former ortho-terphenyl where a is around 13.14[79]. For temperatures well below

the melting point, these local energy minima are denoted inherent structures.

To further motivate this work, consider the following gedanken experiment. Consider

a sequence of molecules with N atoms. It is well known that asNincreases, the number of

minima accessible to the molecule also increase, and such conformations are extensively

studied in chemistry[80][81][82][83]. While it is unlikely that a rigorous theory

quantifying these minima as a function of N can be formulated, it is clear from computer

experiments that the number of minima grow drastically with N. For most molecular

systems it is difficult to be certain that the global minimum structure has been found in a

simulation as there are so many metastable minima in which the system can be trapped. In

this paper, we are concerned with the even more intractable problem of characterizing the

minima, or potential energy surface of a disordered condensed matter system in both

twodimensional (2D) and three-dimensional (3D) cases. For a 3D crystal, if one
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introduces small random distortions and relaxes the disturbed system, it returns to exactly

the same structure. This is not true for disordered systems. For 3D, we find there exits a

continuum of metastable minima for a-Si, in which a number of tiny distortions of bond

angles (and to a much lesser extent bond lengths) yield a distinct energydegenerate

conformation, which reveals the existence of an extraordinarily flat potential energy

landscape (PEL). Fedders and Drabold showed that starting from a well-relaxed α-Si:H

model, quenching a set of ”snapshots” during a constant-T MD simulation never returns to

the exact initial state, instead they fall into minima that are topologically equivalent (e.g.,

with the same network connectivity), but with small variations in bond angles and bond

lengths[84].We find that the behavior in α-Si is consistent with α-Si:H. The case of

α-g[76] is different in the following sense. Like α-Si, we find a continuum of essentially

energy degenerate states in which minute (but “real”) variations in bond angles and bond

lengths are displayed. Of course, such states retain identical connectivity since their

energies are identical to within a few µeV. However, α-g also exhibits a variety of local

energy minima associated with different puckering. These structures usually have similar

energies (within ∼ 10meV), but a significant barrier separating them. Thus, the picture

that emerges of the α-g energy landscape is a variety of inherent structures (with varying

puckering) with slightly varying energies but substantial barriers between them, and in

each of these basins (associated with a particular puckered state) an ambiguously defined

minimum with small variations in bond angles and bond lengths accessible as we describe

in detail below in Sec. 4.4.3.2. The structure of sp2 amorphous carbon has been much

discussed[85][86][87]. Our networks are quite different because of their strictly 2D

nature, though this is not obvious in gross features such as the radial distribution function.

Another class of potentially relevant structures are the “schwarzites”, 2D negative

curvature versions of the graphene materials[65].
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Beside the work described above on ultra-low energy excitations, we also discuss

other phenomena peculiar to α-g. There has been intensive study in understanding the

properties of crystalline graphene, but little is securely understood about amorphous

phases. Recent electron bombardment experiments have revealed the existence of

amorphous graphene[68] [69]. Clear images of regions of amorphous graphene have been

published by Meyer[70]. In previous work, we observed that planar amorphous graphene

is extremely sensitive to out-of-plane distortions[57]. Similar behavior has been verified

in amorphous graphene by experiment and other calculations[88][89]. We have found that

very slightly different initial conditions (e.g., in the transverse coordinates) lead to very

different puckering after relaxation[57]. These states exhibit little or no difference in

topological properties, i.e. ring statistics and coordination number. However, the total

energy differences between these metastable states are around 0.02 eV per atom, and the

full width of the puckering along the transverse direction (between extrema) is around

6 − 7Å.

A natural complement to these studies is an exploration of low-frequency classical

normal modes. These modes turn out to be rather delocalized. As presented for two level

systems, the tunneling between two equilibrium states triggers a number of low-energy

excitations[90][91]. Details are discussed in Sec. 4.4.3.3. In Sec. 4.4.4, we summarize our

findings about the degenerate states and localized imaginary-, low- and high-frequency

vibrational modes of amorphous graphene.

4.4.1 Models

To approach this problem computationally, we employ an 800-atom amorphous

graphene model (800 α-g) due to He and Thorpe generated by introducing Stone-Wales

defects into a perfect honeycomb lattice and a WWW annealing scheme[74]. This model

has perfect threefold coordination with varying concentration of 5, 6 and 7 member
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Figure 4.12: Comparison between crystalline and relaxed amorphous phases of graphene.
Periodic boundary conditions are employed.

rings[76] and is a practical realization of the continuous random network (CRN) concept

proposed by Zachariason[75]. The comparison between crystalline and amorphous

graphene is shown in Fig. 4.12. We have relaxed the 800-atom α-g model, and while small

rearrangements occurred, planar symmetry was preserved. We found that by very slightly

breaking the planar symmetry (by randomly moving each atom by ∼ 0.01Å) and again

carrying out the minimization, the resulting structures were always puckered[57].

The amorphous Si model we employ is a realistic 64-atom model (64 α-Si),

generated by Barkema and Mousseau using a modified form of WWW algorithm[22].

This model has perfect fourfold coordination and within the limitations of its small size, to

our knowledge is not in significant contradiction to any experiment.
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4.4.2 Procedure

Our calculations are performed with an ab-initio program SIESTA[8], using

pseudopotentials and the Perdew-Zunger parameterization of the local-density

approximation (LDA) with a single-ζ basis and Harris-Functional at a constant volume.

Earlier simulations are described in Refs. [92] and [93]. To investigate the nature of

minima on the potential energy surface, we employ a method proposed by Fedders and

Drabold[84] similar to the conformational space annealing approach mentioned in [94],

which has been used in locating and predicting low-energy conformations of various

proteins[95][96][97][98]. First, starting with a perfectly relaxed model (in our case 800

α-g and 64 α-Si), we run a sequence of four parallel simulations. We let the network

evolve for 8.0ps at four different mean temperatures of 20K, 500K, 600K or 900K. The

target temperatures are achieved by velocity rescaling (a “Berendsen thermostat”). From

these simulations, we relax these to find the metastable minimum (or inherent structure)

associated with the initial snapshots.

To investigate the structural changes between these minima (quenched configurations

from snapshots), we use two autocorrelation functions as defined by Fedders and

Drabold[84]:

∆θ(t1, t2) =
∑

i

((θi(t1) − θi(t2))2/N)
1
2 (4.1)

and

∆r(t1, t2) =
∑

i

((ri(t1) − ri(t2))2/N)
1
2 (4.2)

In Eq. 4.1 the index i runs through all the bond angles where θi is the ith bond angle. In Eq.

4.2 the index i runs over all nearest-neighbor pairs where ri is the ith distance between a

pair. The times t1 and t2 refer to the quenched snapshots. These autocorrelation functions

provide a close view of how thermal MD simulations induce transitions between different

energy basins.
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4.4.3 Discussion

We break the discussion into three parts. First, the nature of pentagonal puckering,

next, low-energy conformation fluctuations and finally an analysis of the classical

vibrational modes.

4.4.3.1 Symmetry Breaking

Figure 4.13: Correlation between the total energy per atom and magnitude of puckering for
constant temperature MD simulations. The zero total energy refers to the total energy of
original flat 800 α-g model.



75

As conjectured by Cataldo and co-workers using purely topological analysis,

fullerene-like structure may be expected in these films[99]. As we have shown in [57], the

original flat 800-atom α-g model is exceedingly sensitive to transverse distortion, and then

loses planar symmetry lowering the total energy of the supercell. In every case, even at

T = 20K, the planar symmetry breaks and the system puckers: thermal disorder is

sufficient to induce puckering. Fig. 4.13 shows the relation between the total energy of the

system and maximum separation of atoms along the normal direction (magnitude of

puckering) in constant-T MD simulations at the indicated temperatures. In the language of

PEL, starting from the flat 800 α-g, four MD simulations overcome tiny energy barriers

and take a down-hill path to regions with lower energy. Thus the flat 800 α-g model can

be considered as an exceptionally shallow basin on the PEL. The barrier between flat and

puckered is a few µeV for this Hamiltonian.

4.4.3.2 Conformational Fluctuations

The quenching procedures at sequential timesteps yield basins on the PEL. Here we

show the calculations at average temperatures of 500K, 600K and 900K. These results of

MD runs at different temperatures exhibit consistency with each other. Fig. 4.14 shows

how these two autocorrelation functions vary with time. Since temperatures of all the MD

simulations achieve equilibrium after 6.0 ps, here the autocorrelation functions are

calculated with t1 = 6.0ps. It appears ∆θ(t1, t2) and ∆r(t1, t2) from three MD runs at

different temperatures are qualitatively similar. They increase linearly and eventually

fluctuate about a constant. The continuity of the curves in Fig. 4.14 suggests that there is a

continuum of states, accessible albeit structurally varying only in very modest ways.

The total energy distributions of all the quenched supercells from MD runs at

different temperatures are shown in Fig. 4.15. For temperatures other than 20K, the total

energy distributions exhibit several peaks. The minor peaks in Fig. 4.15 correspond with
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Figure 4.14: Time variation of two autocorrelation functions. This figure shows
autocorrelation functions of ∆θ(t1, t2) and 100∆r(t1, t2) for t1 = 6.0ps and t2 varying from
6.0 to 7.95ps. The temperatures are 500K, 600K and 900K. The functions appear to be
continuous.

Table 4.5: Average value and standard deviation of Etot/Natom, ∆r(t1, t2) and ∆θ(t1, t2)
of quenched configurations from MD runs in the time period from 3.6 to 8.0 ps, where
t1 = 1.05ps.

T(K) Etot/Natom (eV) σEtot/Natom (eV) ∆r(1, t2) (Å) σ∆r (Å) ∆θ(1, t2) (◦) σ∆θ (◦)

500K −9.595 × 10−2 8.855 × 10−5 4.907 × 10−2 2.551 × 10−4 3.736 1.814 × 10−2

600K −9.435 × 10−2 9.917 × 10−5 7.503 × 10−2 1.973 × 10−4 4.181 6.464 × 10−2

900K −9.716 × 10−2 2.091 × 10−4 2.516 × 10−2 8.08 × 10−3 1.725 0.146
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Figure 4.15: Color. Total energy distribution functions of quenched supercells from MD
runs under 20K, 500K, 600K and 900K. The total energy of original flat 800 a-g is
considered as 0eV . Distinct structures correspond to different puckered states, broadening
within each major peak from conformational variations. Three major peaks from MD runs
at 600K, 500K and 900K are labeled as 1, 2 and 3 respectively.

the annealing process of MD runs. The major peaks (labeled 3, 2 and 1 in Fig. 4.15) are

derived from different puckering configurations sampled in the process of equilibration to

constant T. Correspondingly as shown in Fig. 4.14, the fluctuations of autocorrelation

functions (after thermal equilibrium is reached) reach an asymptotic state after of roder

7.0ps (1ps from the initial equilibrated state). Each of the three peaks in Fig. 4.15

demonstrates a basin on the PEL of α-G. These nearly degenerate quenched equilibrium

states are trapped in distinct basins on the PEL, and quenched minima within one basin

form a continuum metastable state around inherent structures. Details of variations in
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bond angles, bond lengths and total energies of these metastable states are shown in Table

4.5. The total energy variation between the basins corresponding to the major three peaks

are averaged as 1.405 × 10−3eV , which is one order of magnitude higher than the energy

of fluctuations within a basin. In spite of their different energy scales, these quenched

configurations belonged to distinct basins share identical local bonding. The only

difference is that they pucker in distinct ways, as shown in Fig. 4.16.

Figure 4.16: Side view of two quenched configurations. Gray balls and sticks show the
configuration from 900K MD, and blue lines represent the one from 500K.

For comparison, we repeat parallel calculations using 64 α-Si model quenched from

MD runs at 20, 300 and 500K. The autocorrelation functions are shown in Fig. 4.17. The

results are in agreement with Fedders and Drabold[84]. We see for α-Si systems, there

exists one general basin on the PEL (for a particular network connectivity), and the paths

lowering the total energy on the PEL will eventually go into this basin, leading to inherent

structures with minor changes in bond angles and lengths, and tiny energy scale.

Comparison between results of α-g and α-Si suggests that PEL of 3D system (α-Si)

is smooth and inherent structures are contained in one general basin. α-g is similar within

one puckered state.

For α-g, an MD run at higher temperature (annealing) can overcome the energy

barrier and hop to a basin associated with a different puckered state. Also by investigating

the correlation between topology and energy scale of these quenched supercells, it is
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Figure 4.17: Time variation of two autocorrelation functions for α-Si. This figure shows
autocorrelation functions of ∆θ(t1, t2) and 100∆r(t1, t2) for t1 = 6.0ps and t2 varying from
6.0 to 8.0 ps. The temperatures are 20K, 300K and 500K. The results are similar to [84].

revealed that lower total energy (stabler state) is associated with small variation in bond

lengths and angles from the original flat 800-atom model.

4.4.3.3 Classical Normal Modes

To investigate the vibrational modes in these supercells, we perform calculations of

dynamical matrix, its eigenvalues and eigenvectors, for the original flat 800 α-g model,

and two quenched configurations with certain region puckering along opposite direction,

designated “pucker-up” and “pucker-down” models, as shown in Fig. 4.18. The dynamical

matrix was constructed from finite difference calculations (using six orthogonal
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Figure 4.18: Color. Side view of pucker-up and -down 800 a-g models. Gray balls and
sticks illustrate pucker-up model, and pucker-down supercell is represented by blue lines.

Figure 4.19: Color. Vibrational density of states (VDOS) of 800 crystalline graphene,
pucker-up and -down α-g models. Note the distractive feature at ω � 1375cm−1 for α-G.

displacement of 0.04 Bohr for each atom). We also perform the phonon calculation for an

800-atom crystalline graphene model (for related calculations on very large fullerenes, see
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Ref. [33]). The vibrational density of states (VDOS) of 800 crystalline model, pucker-up

and -down 800 α-g models are shown in Fig. 4.19. The VDOS result of crystalline

graphene shows good agreement with a published calculation[100]. In Fig. 4.19 at a

frequency near 1375 cm−1, the spectrum of crystalline graphene has a minimum. In

contrast the spectrum of two puckered supercells achieve a local maximum. Thus Raman

scattering experiments are expected to provide a way to distinguish crystalline and

amorphous graphene. There is no difference in the spectrum between pucker-up and

-down 800 α-g models. In a mixed sample containing 3D amorphous carbon, this

discernible difference from ordered graphene near 1375 cm−1 is probably unhelpful

because of the many modes seen in various phases of α-C (with varying sp2/sp3 ratio)

near the relevant energy[101][102][103].

Figure 4.20: Color. Two examples of imaginary-frequency modes in flat 800 α-g model.
The contour plot represents the component of eigenvector along the direction transverse to
the plane.
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In the original flat 800-atom α-g model, the eigenvectors with imaginary eigenvalues

have large components along the normal direction of the graphene plane (at least four

orders of magnitude higher than the longitudinal components). These

imaginary-frequency modes are localized on pentagons in the network: two example are

shown in Fig. 4.20. As shown in Fig. 4.20 (c) and (d), these imaginary-frequency modes

are localized near structures that lead to puckering. As shown in [57], it is pentagons that

lead to puckering and symmetry breaking. Thus these imaginary-frequency modes are an

indicator of the instability of the flat 800 α-g model.

In the puckered models, we observe modes with a low frequency, around 14-20 cm−1,

reminiscent of “floppy modes” proposed by Phillips and Thorpe[104][105]. The structures

of these low-frequency modes are quite complex, as shown in Fig. 4.21. These modes are

rather extended, and have significant weight on pentagonal puckered regions and large

rings, analogous to what Fedders and Drabold have seen in α-Si:H[84]. The observed

energy scale of these low-frequency modes is around a few meV , almost half of the lowest

frequency of the acoustic phonon modes in a crystalline graphene with same size. As

proposed in the theory of “two-level systems”, there exists a distribution of low-energy

excitations, caused by tunneling of atoms between nearly degenerate equilibrium

states[90][91]. Goldstein pointed out that the dynamics could be separated into two

categories: vibrational motion about a minimum on PEL and transitions between

minima[106]. Then these low-frequency modes might be triggered by transitions between

degenerate minima within one basin on the PEL. As shown in Section 4.4.3.2, the energy

variations between minima within one basin is in the order of 10−4eV , and the energy

difference between basins is in the order of 10−3eV . The energy scales of these

low-frequency modes (∼ meV) are sufficient to drive conformational fluctuations, but not

high enough to overcome the energy barrier between different basins (quenched states) on

the PEL.
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Figure 4.21: Color. Examples of low-frequency modes in pucker-down and -up 800 α-g
models. The contour plots represent the intensity of eigenvectors on each atom. The blue
atoms illustrate the “puckering-most” atoms, and the green atoms represent “flat” atoms.

In the high-frequency domain, there also exist highly localized high-frequency modes

in the puckered configurations. These modes are triggered by the pentagonal defects and
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Figure 4.22: Color. Examples of localized high-frequency modes in pucker-down and -up
800 α-g models. The contour plots represent the intensity of eigenvectors on each atom.
The blue atoms illustrate the “puckering-most” atoms, and the green atoms represent “flat”
atoms.
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are highly localized, as shown in Fig. 4.22. This result is consistent with Biswas et al.

[107] and Fedders et al. [108], who have shown strain and topological defects are active at

highest frequencies.

Figure 4.23: Color. Temperature dependence of C(T) of pucker-up and -down 800 α-g
models.

We also compute the specific heat C(T ) using VDOS information[109]:

C(T ) = 3R
∫ Emax

0
(

E
kBT

)2 eE/kBT

(eE/kBT − 1)2 g(E)dE (4.3)

where g(E) is normalized VDOS. For room temperature (300K), specific heat of flat,

pucker-up and -down 800 α-g models are 25.151, 18.879 and 18.702JK−1mol−1

respectively. The temperature dependence of C(T) is shown in Fig. 4.23. This is
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presumably an academic result as it is currently hard to imagine an experiment for C(T )

for this 2D system.

4.4.4 Conclusion

In conclusion, we have found that α-g has a rich and interesting energy landscape.

We observe distinct energy scale of basins (∼ 10meV) associated with different puckered

configurations and then within such a configuration, an ambiguous energy minimum with

a continuum of bond angles and bond lengths with energy scale (∼ fewµeV) and a nearly

flat PEL. Within a given puckered configuration, this continuum is much like what was

seen for α-Si:H in 1996[84].

Vibrational calculations reveal the existence of localized imaginary-frequency modes

in flat 800 α-g model. These modes are localized on pentagons and play the key role in

losing planar symmetry and forming pentagonal puckering structures. We find delocalized

low-frequency phonon modes, similar to floppy modes, which have substantial weight on

defects and share the same energy scale as the energy difference between adjacent basins

on the PEL. Thus these low-frequency modes are triggered by the transition between

adjacent energy minima. Some high-frequency modes are detected and highly localized

on puckered regions and large rings.

4.5 Electronic Signatures of Topological Disorder in Amorphous Graphene

4.5.1 Introduction

Spatially localized electronic states occur uniquely in solid state systems with

disorder. Since the time of Anderson[19] in the 1950s, it was shown that in the presence

of sufficient disorder, certain electron states decay exponentially in space. The study of

localization has become one of the most important aspects of condensed matter theory.

Localization in three dimensional systems has been well studied[32][110][23][111]. The
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celebrated ”Gang of Four” paper discusses localization from scaling theory, and compares

one, two and three dimensions[112]. For the two dimensional case, it has been shown

theoretically and experimentally that localization can be introduced by defects, as seen in

the three dimensional systems[113][114]. In this paper, we’ll show that in amorphous

graphene, the localized eigenstates emerge from odd-membered ring defects in an

otherwise ideal sp2 system, and we characterize this localization with a realistic

Hamiltonian.

Previous calculations reveal that the planar symmetry of amorphous graphene could

be easily broken, due to the existence of odd-membered rings[57]. Here we’ll show a few

electronic states well above the Fermi level could be strongly coupled with several

high-frequency phonon modes, which are also highly localized at odd-membered rings.

This observation is perhaps reminiscent the polaron study in thin films of liquid He, where

Jackson and Platzman showed the motion of a single electron in the plane is highly

coupled with the thermally excited ripples in two-dimensional surface[115].

4.5.2 Model

To evaluate the charge density and spatial localization, a 200-atom amorphous

graphene model (200 a-g), prepared by a Wooten-Weaire-Winer (WWW) annealing

scheme[74], is employed. This model has ideal three-fold coordination, and ring statistics

are given in Table 4.6. This 200 a-g model is a realization of CRN concept proposed by

Zachariasen[75]. A 288-atom crystalline graphene model (288 c-g) was also used to

compare the results with amorphous graphene models.

Table 4.6: Ring statistics of 200 a-g model, shown as %.

Ring Size 5 6 7

Percentage 38.5 53.9 7.7
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4.5.3 Charge Density

Figure 4.24: Simulated STM images (total charge density) for both crystalline and
amorphous graphene models. The atom configurations are represented by grey balls and
sticks.

To study amorphous graphene, we employ an ab initio program SIESTA[8], using

pseudopotentials and the Perdew-Zunger parameterization of local-density approximation

(LDA). In both crystalline and amorphous cases, the minimal basis set (single-ζ basis) and

self-consistency were applied. The simulated STM images according to charge density

calculation results are shown in Fig. 4.24. For crystalline graphene, the electrons in p

orbitals are delocalized on the graphene sheet giving rise to aromaticity. Then the charges

are expected to distribute uniformly on the honeycomb lattice of graphene, as shown in

Fig. 4.24(a). By contrast, the existence of odd-membered rings disturbs this uniformity,

introducing several holes associated with seven-membered rings, and charge is notably

localized at five-membered rings. These calculations are in close agreement with
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published DFT calculation results of pure crystalline graphene[116] and crystalline

graphene with defects[117].

4.5.4 Density of States

Figure 4.25: DOS of 200-atom a-g and 800-atom a-g models[57]. The solid line represents
DOS of 200 a-g, and DOS of 800 a-g is given by dashed line. Fermi level is at 0 eV.

The Γ-point density of states (DOS) of planar 200 a-g model was calculated using the

same computational approach as charge density. As we shown in Ref. [57], in an

800-atom amorphous graphene model, the odd-membered rings generate a number of

states around the Fermi level. The DOS of 200 a-g model are quantitatively the same as

the one of 800 a-g model, as shown in Fig. 4.25.
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4.5.5 Localized States

Figure 4.26: Scaled DOS and IPR of planar and puckered 200 a-g models. Fermi level is
at 0 eV.

As we previously pointed out, the planar symmetry of amorphous graphene is

unstable with respect to tiny external out-of-plane distortions, giving rise to pentagonal

puckering and lowering the total energy[57][118]. In the following, localization properties

of eigenstates for both planar and puckered models are explored. To characterize the

spatial localization of electronic states, inverse participation ratio (IPR) calculations were

performed. The IPR is defined as: I(ψ j) = N
∑N

i=1 a j4
i /(

∑N
i=1 a j2

i )2, where ψ j =
∑N

i=1 a j
iφi is

the jth eigenvector. The results are depicted in Fig. 4.26. Around the Fermi level (0 eV),

there are two localized states in planar 200 a-g model, marked as peak 1 and 2 in Fig.



91

Figure 4.27: Three localized eigenstates of planar 200 a-g model, depicted as peak 1-3 in
Fig. 4.26. Here E f = 0 eV.

4.26, and the most localized state is found around 5 eV, marked as peak 3.

Correspondingly, the eigenstates are named state 1, state 2, and state 3. Similar

calculations have also been performed for a puckered 200 a-g model. Similarly, the IPR

calculation shows two localized eigenstates around Fermi level (0 eV), marked as peak 1’

and 2’ in Fig. 4.26. And the most localized peak is also found around 5 eV, marked as

peak 3’ in Fig. 4.26. These peaks are named as state 1’, state 2’ and state 3’ respectively.
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Figure 4.28: Three localized eigenstates of puckered 200 a-g model, depicted as peak 1’-3’
in Fig. 4.26. E f = 0 eV.

To visualize the spatial structure of these localized states, the charge density of each

conjugate eigenstate is plotted, as shown in Fig. 4.27 and Fig. 4.28. For the planar 200 a-g

model, peak 1 is found around the valence tail, and localized around an area with a higher

percentage of pentagons, as shown in Fig. 4.27(a). In contrast, for the conduction edge,

peak 2 is distributed around an area with higher percentage of heptagons, as shown in Fig.

4.27(b). For the puckered 200 a-g model, the energy levels of peak 1’ and 2’ are close to
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peak 1 and 2. As shown in Fig. 4.28(a), at valence edge, state 1’ and state 1 are distributed

over an similar high-pentagon-ratio area. And at the conduction edge, state 2’ is localized

around an area with high heptagon-ratio, as shown in Fig, 4.28(b), analogous to state 2.

Thus the presence of odd-membered rings in amorphous graphene gives rise to various

eigenstates around the Fermi level, leading to vast difference in DOS between crystalline

and amorphous graphene[76][57].

Figure 4.29: PDOS of planar 200 a-g model. Fermi level is at 0 eV.

Next, we explored the electronic consequences of puckering, induced by pentagonal

structures. We employ the projected density of states (PDOS) computed for both planar

and puckered 200 a-g models, using SIESTA with SZ basis, as shown in Fig. 4.29 and Fig.
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Figure 4.30: PDOS of puckered (relaxed) 200 a-g model. Fermi level is at 0 eV.

4.30. Near the Fermi level, the contributions due to pentagons and heptagons are higher

than hexagons, which is consistent with our observation from the localized eigenstates:

the localization around Fermi level is associated with odd-membered rings. However,

most atoms in odd-membered rings are shared between pentagonal and heptagonal rings.

Then at valence edge or conduction edge, on the basis of PDOS calculation, it is hard to

distinguish whether the localization around the Fermi level originates from pentagons or

heptagons.

The most localized state in planar 200 a-g model is state 3. Its energy level is around

5 eV in the conduction band, and state 3 is highly localized on two atoms shared by two

heptagons, as shown in Fig. 4.27(c). In the puckered case, state 3’ is found at the exact
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same position at state 3, given in Fig. 4.28(c). This is similar to the situation observed in

glassy GeSe2 model by Zhang and Drabold[110]. They found that the most defective sites

lead to certain localized states far inside the valence and conduction bands.

As illustrated in Fig. 4.26, the global localization degree of puckered 200 a-g model

is lower than the planar 200 a-g model. Around the Fermi level, puckered models

illustrate localized eigenstates with relatively lower localization degree comparing to

planar model. The reduction in strain from puckering helps to delocalize the electronic

states. Whereas, in the valence and conduction bands, the localization degree of

eigenstates in puckered amorphous graphene model is significantly decreased compared to

planar model. Taking state 3 and 3’ as example, even though they are localized on the

same atoms, state 3’ possesses higher energy level and significantly lower localization

degree, as shown in Fig. 4.26.

4.5.6 Classical Normal Modes

Figure 4.31: Two localized high-frequency phonon modes in planar and puckered 200 a-g
modes.
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Phonon calculations were performed for both planar and puckered 200 a-g models.

Their dynamical matrixes were constructed, by computing forces on all atoms from six

orthogonal displacements of 0.04 Bohr. In the high frequency range, we found that several

phonon modes are localized at the same range as state 3 and 3’ in planar and puckered 200

a-g models respectively, as given in Fig. 4.27(c) and 4.28(c). Two examples of planar and

puckered 200 a-g modes are shown in Fig. 4.31. Thus the high localization degree in

conduction bands in planar and puckered amorphous graphene models could be originated

from the electron-phonon coupling due to these high-frequency modes. Also compared to

planar 200 a-g model, the intensity of these phonon modes are lower in puckered a-g

model, as illustrated in Fig. 4.31. Therefore, after the strain is released by pentagonal

puckering, the coupling effects due to these phonon modes decline, leading probably to

reduced electron-phonon coupling.

4.5.7 Conclusion

In conclusion, we found that localized eigenstates in both planar and puckered

amorphous graphenes originate from odd-membered rings. Around Fermi level, localized

states at valence edge are found in the high-pentagon-ratio area. And the localized states

at conduction edge are distributed in the area associated with more heptagons. Far inside

the conduction edge, the most localized states in both planar and puckered amorphous

graphene models are distributed on the same atoms associated with the junction of

heptagons, and are strongly coupled with high-frequency phonon modes. The transport

properties of amorphous graphene would be profoundly impacted by these localized states

as seen from applying the Kubo-Greenwood formula[119].

Also the IPR calculations reveal that the localization is higher in planar amorphous

graphene model compared to the puckered configuration. This could be due to the

reduction in strain by pentagonal puckering.
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4.6 Conlusion

In this chapeter, we show planar graphene is unstable under external distortion due to

pentagonal puckering. The potential energy landscape of amorphous graphene has been

explored using Molecular Dynamics approach. Also the electronic properties of planar

and puckered amorphous graphene have been discussed.
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5 Summary and FutureWork

In this dissertation, a few points related to the origin of the Urbach tails in α-Si have

been explored. First, the exponential tails clearly exist in large-scale systems (up to 105

atoms). These findings are high consistent with smaller models prepared by a similar way.

For the strain field induced by short bonds, we shown the most reasonable decay would be

a power law. And by phonon calculations, these short bonds behave like phonon traps,

causing highly localzied phonon states with frequency higher than 550cm−1. By

performing Molecular Dynamics calculations at constant temperature, we observe the

filaments persist at finite temperture, but they are extremely dynamic, even at room

temperature. Finally, by exploring the behavior of filaments under different temperatures,

it may imply that the external pressure leads to variation of the filaments and then affect

the Urbach tails.

For various phases of sp2 carbon, positive curvature opens up the HOMO-LUMO

gap. With the increase of schwarzite sizes, the influence of negative curvature on DOS is

reduced. The total energy also declines with the increasing size of closed cage.

For amorphous graphene, we have shown that the presence of pentagons and

heptagons induces many states around the Fermi level, and pentagons increase the

sensitivity of whole system to external distortions leading to puckered states. A series of

MD and quenching simulations suggest these puckered states correspond to distinct local

minima on the PEL of amorphous graphene, whose boundaries can be overcomed by

heating up the system. Each basin of the PEL is associated with a continuum of bond

lengths, bond angles and energy scale. Finally the electronic properties of both crystalline

and amorphous graphene have been calculated. The odd-membered rings could lead to

strong electron-phonon coupling in these models, and the coupling may be reduced due to

the puckered effect.
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5.1 Future Work

For the origin of the Urbach tails, there are evidences shown the correlation between

filaments and exponential tails. The next interesting thing would be to test the nessasity of

filaments to the exponential tials. For fullerenes and schwarzite, the correlation between

density of states and curvature of whole system requires further investigation. It would be

interesting to show how the electrons are localized in these models, and give rise to their

unique electronic properties. For amorphous graphene, since we have observed

low-frequency phonon modes akin to floppy modes, it would be a great start to explore the

origin of Boson peaks in VDOS of amorphous materials.
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