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Until recently, structural models used to represent amorphous silicon (a-Si) in
computer simulations were either perfectly fourfold connected random networks or
random networks containing only miscoordinated atoms. These models are an ap-
prozimation to the structure of the real material and do not uniformly comply with
all the experimental data for a-Si. In this dissertation we make an attempt to go
beyond this approximation and construct and examine models that have two major
types of defects, encountered in real material, in their structure — nanovoids and
crystalline grains.

For our study of voids in a-Si we have calculated vibrational properties of struc-
tural models of a-Si with and without voids using ab initio and empirical molecular
dynamics techniques. A small 216 atom and a large 4096 atom continuous random
network (CRN) models for a-Si have been employed as starting points for our a-Si
models with voids. Our calculations show that the presence of voids leads to an emer-
gence of localized low-energy states in the vibrational spectrum of the model system.
Moreover, it appears that these states are responsible for the anomalous behavior of
system’s specific heat at very low temperatures. To our knowledge these are the first
numerical simulations that provide adequate agreement with experiment for the very
low-temperature properties of specific heat in disordered materials within the limits

of harmonic approximation.



For our study of crystalline grains in a-Si we have developed a new procedure
for the preparation of physically realistic models of paracrystalline silicon based on
a modification of the bond-switching method of Wooten, Winer, and Weaire. Our
models contain randomly oriented c-Si grains embedded in a disordered matrix. Our
technique creates interfaces between the crystalline and disordered phases of Si with
an extremely low concentration of coordination defects. The resulting models possess
structural and vibrational properties comparable with those of good CRN models
of a-Si and display realistic optical properties, correctly reproducing the electronic
bandgap of a-Si. The largest of our models also shows the best agreement of any
atomistic model structure with fluctuation microscopy experiments, indicating that
this model has a degree of medium-range order closest to that of the real material.
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Chapter 1

Introduction

1.1 Why we study amorphous silicon

Amorphous silicon remains at the center of attention of modern amorphous/glassy
solid state physics community for two main reasons. First, this material — mostly
in its hydrogenated and doped forms — is technologically important. Thin film tran-
sistors (TFT) made from a-Si:H are commonly found in today’s electronic devices,
for example, in liquid crystal flat panel displays. Other possible applications of a-Si
include light sensors, microchips and solar cells — see R. A. Street’s book[1] for more
details.

The second reason, which is of main interest to solid state theory and computer
simulation scientists, is that amorphous silicon is one of the simplest systems readily
available to test new theoretical and simulation techniques and methods, some of
which are developed especially for disordered systems. The advantages of using a-Si

in particular as a model system for a disordered solid include



e a-Si being an elemental material, which makes it easier to study than binary

compounds like a-GaAs or a-SiO,,

e to a certain level of abstraction, bonds in a-Si can be considered as formed
exclusively by sp3-hybridized electron orbitals, which is also a benefit compared,

for example, to a-C where numerous bonding types do exist: sp?, sp® and even

5P,

e a-Si forms a rigid overconstrained network, the dynamics of which can be ade-
quately described by simple empirical 2 + 3 body potentials. A counterexample
here can be a-Se that forms a network mostly consisting of weekly interacting
strings that remain floppy and thus require a more advanced treatment for the

calculation of interatomic forces — namely an ab initio method,

e an abundance (in certain fields) of experimental data for a-Si making the com-
parison of material properties, derived from theory or simulation, to experiment

€asy,

e some excellent quality atomistic models for a-Si have been recently created,
which can serve as a good starting point in many theoretical or computational

investigations of the properties of this material —

all of these items make a-Si an excellent “testing ground” for studies of numerous
generic properties of amorphous and glassy materials.

The focus of this dissertation is mostly on the last item of the list presented



above: investigation of the properties of existing topological models for a-Si, study
of strengths and weaknesses of their preparation methods and, most important, im-

provement of the models to make them resemble the real material more closely.

1.2 Beyond the continuous random network model

Up until recently, practically all the structural models for a-Si were of “continuous
random network” (CRN) type. If we consider the diamond crystal, where all the
interatomic distances and angles are exactly the same for all atoms (i.e. long range
order is present) and only six- and eight-membered rings are allowed in the network,
as a perfectly ordered case, then the difference between it and the CRN is that in
the latter the disorder in bond-lengths and bond-angles is introduced and the odd-
membered rings are allowed to form. A system like this has no periodicity and the
long range order in it is broken while some kind of “local order” remains because for
every atom it is still most energetically favorable to have four bonds, with length of
the bonds and angles between them close to the crystalline values. Both crystalline
silicon and CRN amorphous silicon structural models are shown in Fig. 1.1.

It has been confirmed by numerous experiments that the CRN model can success-
fully represent some major topological and other features of a disordered tetrahedrally
bonded material[2, 3, 4] but obviously the CRN is an approzimation and the structure
of the real material is much more complicated. Experiments show that in addition

to dangling bonds and other “atomic miscoordination” defects[5, 6] a-Si network



Figure 1.1: Crystalline Si and CRN amorphous Si models. Left: 64 atom model

of crystalline silicon; right: 216 atom CRN model of amorphous silicon.

— depending on the preparation procedure of a given experimental sample — can
also contain two more complicated types of defects, namely voids[7, 8, 9] of tens to
hundreds of angstroms in diameter and crystalline grains (paracrystallites)[10, 11].
Usually, a certain fraction of miscoordination defects is present in the CRN models,
which are well studied, so that in this dissertation we will not be particularly in-
terested in modeling and studying the properties of this type of defect. Instead we
will concentrate our attention on the two latter types — voids and crystalline grains
— which are not naturally present in the CRN models and require special modeling
techniques to be introduced into them, thus taking our a-Si models beyond the CRN

approximation.



1.2.1 Voids in amorphous silicon

In the fourth chapter of this dissertation we will construct models containing hy-
drogenated and unhydrogenated voids in a-Si and study their vibrational properties.
As we will show, the presence of voids leads to an emergence of new vibrational states
in the phonon spectrum of our model systems. These states are spatially localized —
on voids or in a string-like fashion between voids and strained parts of the network
— and have rather low frequencies. The local nature of the states suggests that they,
unlike “common” delocalized acoustic phonons, do not participate in heat conduction.
The low energy (frequency) of the states rases the question of kinship of these states
to the so called tunneling or two-level states[12, 13] — a theoretical construction
used to explain anomalous (non-Debye) low-temperature specific heat and thermal
conductivity behavior in glasses and amorphous materials. We will show that the
void-associated localized low-energy states, though not being equivalent to tunneling
states, also explain the deviation of low-temperature specific heat dependence from

Debye’s law.

1.2.2 Modeling of paracrystalline silicon

Recent state-of-the-art fluctuation electron microscopy experiments[10, 11] suggest
that there are traces of order in as-deposited amorphous semiconductor thin films on
the scale of approximately 10 A. Structure at this length scale in Si is called medium-

range order (MRO). The results of these experiments can be interpreted as indicating



6
the presence of topologically crystalline grains (10-30 Ain diameter) in the disordered
network of amorphous material. As it is hard to verify this hypothesis experimentally,
computer modeling can be used to create new models for a-Si that contain crystalline
grains embedded into the disordered matrix and study MRO-related properties of
these models.

In the fifth chapter of this dissertation we will present our technique for prepara-
tion of physically realistic models of paracrystalline silicon (an amorphous material
that contains crystalline grains embedded into the disordered matrix); models that
have their structural, vibrational and electronic properties in uniform agreement with
experiment. We will also present the first calculation of the MRO in a large and re-
alistic model for paracrystalline Si which is in excellent qualitative agreement with
the fluctuation electron microscopy experiments. We must add that the modeling
procedure we have developed can be easily adjusted to produce not only the models
containing grains but also crystalline-to-amorphous interfaces in Si, SiOy and like
materials.

In addition we will show that our models for paracrystalline silicon can be turned
into models for another important semiconducting material: nano/polycrystalline sil-
icon — consisting of relatively large randomly oriented crystalline domains and con-
taining disordered or amorphized atomic layers only on the boundaries between these
domains — by means of simulated constant temperature annealing with molecular

dynamics technique.



Chapter 2

Modeling methodology for
amorphous silicon

There is a wide variety of computational methods that can be applied for study-
ing the structural, vibrational and electronic properties of various phases of silicon,
ranging from the state-of-the-art ab initio molecular dynamics techniques to simple
empirical potentials. In this chapter we will review the underlying physical ideas,
discuss and classify the actual implementations of such methods, point out their
strengths and weaknesses, and draw some conclusions on situations and particular
studies in which certain methods should be used.

The first and the most important task this method should perform is generation
of the trajectories of atomic motion in molecular dynamics (MD) or Monte Carlo
(MC) schemes used for modeling of our material under the limitations of a particular

statistical ensemble we are working in.! This means that the method should produce

!The ensembles widely used the modeling procedures are the microcanonical const-NV E, the
canonical const-NVT, the isothermal-isobaric const-N PT and the isoenthalpic-isobaric const-N PH
ensemble.



accurate forces acting on atoms in our model system. Physically reasonable atomic
forces combined with appropriate preparation techniques will result in a model ex-
hibiting physically reasonable structural properties, which is paramount for successful
investigations of more complicated properties of our models, like, for example, heat
transport or interaction with light.

Secondly, if we need to obtain the phonon spectrum of our model system, the
method should be able to create a physically reasonable dynamical matrix[14] for
it. Ideally this stipulation is equivalent to the one mentioned above (accurate inter-
atomic forces) but for many empirical or semiempirical methods this means additional
fitting to experimental data, like positions of acoustic/optical phonon peaks in the
experimental Raman spectra or vibrational density of states.

Finally, if we want to study the electronic properties of our model material we
need a method that could produce the electron bandstructure energies and possibly
their conjugate eigenvectors.

In an ideal situation, of course, we would prefer to have a single computational
method that can perform all of the aforementioned duties and — which is also bene-
ficial — give us a uniform view on the properties of our model (i.e. we do not switch
techniques to study different properties). Currently the closest methods to this ideal
case are the first principles or ab initio methods. Unfortunately, due to the substan-
tial computational effort involved, today’s level of computer development restricts the
use of such methods to relatively small model systems (tens to a couple of hundred of

atoms). Simpler and less computationally demanding methods are required to study



larger models, but the algorithm simplifications and the increase in computational ef-
fectiveness can be achieved only by the simplification of the underlying physics, some
loss of precision, poorer transferability? and increasing specialization of the method,
which means that it can’t perform all of the three main tasks.

In the succeeding sections we will review and classify all the main techniques used
to compute atomic forces in silicon and discuss the limits of their applicability and

their merits and drawbacks.

2.1 Ab Initio methods

2.1.1 Density functional theory and pseudopotentials

The ab initio methods employed in solid state MD computations provide the
most flexible and accurate ways to calculate the forces acting on atoms in the model
system and the models’ electronic and vibrational properties. Both methods that we
are going to discuss in more detail below as well as the majority of other methods
available make use of the local density approximation within the limits of the density
functional theory (DFT). Here we present a short summary of the DFT and some
additional concepts. An exhaustive review of the ab initio MD and total-energy
calculations can be found in the paper of Payne et al.[15]

In general, the accurate determination of the atomic forces and the nature of

2Under transferability of a method we understand its ability to be applied to different topological
systems (for example, different phases of Si) without explicitly refitting the method: i.e. one and
the same fitting works for all systems.
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chemical bonding in the system requires a precise calculation of its quantum electronic
structure. In order to accomplish that, the many-body Schrédinger equation should

be solved:
Hyp® ({7}, {R,}) = Emp®({7}, {RW)), (2.1)

where ® is a true many-body wave function of the system (possessing the correct
symmetry), Eyp is the eigen energy, {7}, {RM} are the sets of electronic and ionic
coordinates where indexes ¢ and p number all electrons and ions respectively. The

system Hamiltonian
~ 2

P, pi° 1 1 Z, 1 Z,7,
Hyp = E_ 4+ — 4+ - o7 —F 4= —,
MB Z2MM : 2m 2% |7“Z'—7"j| Z |" _RM| 2; |RM Ry|

[ wi T4

(2.2)

where Z,, and M, are ionic charges and masses and I—’A’M and p; are momentum operators
for ions and electrons respectively.

Obviously an attempt to solve this equation rigorously in a solid is almost futile.
Numerous simplifications are required for this problem to become tractable and the
first one is to decouple the electron and ionic motions — the Born-Oppenheimer

approximation[16):

Hyp = Y 2]31\"4“ +E({R,}), (2.3)
(HMB N Z QPJ\ZM)\II{RH}({ﬁ}) = E({RM})W{RH}({ﬁ})- (2-4)

In

Here E({E,}) is the ground state energy of an electron system with frozen ionic
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coordinates {&,} and ¥ (7,3 ({7i}) is the many-body electron wave function (which
should be antisymmetric).

The atomic forces can then be obtained by taking partial derivatives of E({RM})

F‘ _aE({RM})

= ) 2.5
R (2.5)

v

but the calculation of the derivatives as well as E ({RM}) itself is still impossible at the
current level of complexity — a new simplification step is required which can be done
with the mean field theory approach by applying of the density functional theory[17,
18]. Density functional methods are based on the Hohenberg-Kohn theorem|[17] which
states that

(i) The total energy of a system of interacting electrons can be represented as a

functional depending only on the electron charge density

o(7) =Ne/|\II{RN}(F,F2...FNE)|2dF2...dFNe,

where N, is the number of electrons in our system. Thus E = E[p] effectively maps
our many-electron problem into a one-electron problem.

(ii) The ground state electron density p,,(7) minimizes the functional E[p]:

E[p(?)] > Elpys(7)]

The energy E|[p,s(7)] represents the electronic part of the total system energy

E({R))

E((R,) = Blo(] + 5 3 % (26)
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Here instead of solving the true many-body equation 2.4 in order to find E({ﬁu})

we only need to find a minimum of the functional E[p]. The cost for this great sim-
plification is that we actually don’t know the exact form of the functional E[p]. Nev-
ertheless, this problem can be solved by applying the method of Kohn and Sham[18].

In this method the electronic energy functional E[p(7)] is split into four parts:

Elp] = Te[p] + Eionlp] + Enlp] + Exclp], (2.7)

where T,[p] is the kinetic energy of electrons, E;,,[p] is the energy of electron-ion

interaction

Bunlp] = [ Vi p(P)7, Vi) = =3 7 (28)

Eylp| is the energy of classical Hartree electron-electron interaction

1

Enlpl = 9 / Vi (7)p(¥)d7, Hartree potential Vi (7) = /

p(7
|F(_ 72,,|df', (2.9)

and finally E,. is the term that accounts for electronic exchange and correlation

effects and is unknown. We can write a formal expression for an exchange-correlation

potential using the functional derivative:

0 Ege[p]

Vwc(F) = 5P(7?> -

(2.10)

Since it is difficult to evaluate the kinetic energy of electrons T, [p] directly from the
electron charge density p(7) Kohn and Sham suggested use of single-electron orbitals

¢;(7) (Kohn-Sham orbitals) to define p(7) as 2", .. |¢:(7)|*> and T¢[p] as the kinetic

energy of a system of non-interacting electrons with electron-charge density equal to
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T,=2Y (6 - 5 VI 2.11)

Now the variational principle can be applied to equation 2.7 resulting in a set of

equations for Kohn-Sham orbitals ¢;(7):

_ %V2 + Vion (7) + Vi (7) + Vie(7) ¢i(7) = €:i(7),

517 = [— 3V + Vi

(2.12)
where ¢; is the Kohn-Sham eigenvalue for orbital ¢;(7) and V() is the self-consistent

potential?:

Via(7) = Vien(7) +/ |7f(_7ﬂ7)j|d? + 5(%(05]. (2.13)

The only problem that still remains in simple Schrodinger-type single-electron
equation 2.12 is that the exchange correlation potential Vi (¥) = 0Eg[p]/dp(7) is
unknown. If the functional E,.[p] were known, then the Kohn-Sham method would
give us the exact value of the ground state energy E({RM}) from which the atomic
forces could be obtained. Unfortunately we don’t know the form of E,.[p], so that
an approximation should be made for it. A very straightforward (and successful)
approximation for the form of the exchange-correlation functional is the so called
local density approximation (LDA) in which E,[p] is assumed to be smooth and

reasonably slow varying functional of p:

E;P4p) = / €ac(p) p(F)dF,

3In the sense that it depends on the electron-charge density p(7)




14
where €,.(p) is the exchange-correlation density of a homogeneous electron gas of
electron density p. €,.(p) has been computed by Ceperley and Alder[19] with quantum
Monte Carlo technique and later parametrized by Perdew and Zunger[20)].

Finally, one additional technique we would like to mention in this review is pseu-
dopotentials that are used in the first-principles MD calculations to simplify the in-
teractions with core electrons. The pseudopotential method exploits the fact that for
the most of the atomic species the core electrons only weakly participate in chemical
bonding in the solid and thus their contributions can be approximated by a smooth
and slow varying potential, which can greatly increase the efficiency of computations.
For example, in silicon instead of considering all 14 electrons on a single atom we can
use only four valence electron orbitals, “hiding” the contribution of all the rest inside

the pseudopotential.

2.1.2 Implementations: local basis vs. plane-wave basis sets

There exist various implementations of the first-principles MD methods which can
be roughly divided into two families: one where the Kohn-Sham orbitals ¢;(7) are
expanded into the plane-wave basis set and another where they are expanded into a
local basis set.

A widely known example of the former type is the method of Car and Parrinello[21]
(CP). In this method the self-consistent Kohn-Sham equation 2.12 is solved with no
further approximations except for the plane-wave basis cutoff. In order to avoid re-

peated matrix diagonalizations (the typical size of the Hamiltonian matrix in the CP
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method is 10° x 10°), which is required in a direct self-consistent approach to solving
Eq. 2.12, CP introduce a fictitious Lagrangian technique which treats electronic and
ionic degrees of freedom as well as any external constraints imposed on the system
simultaneously. The electron-ion interactions in this method are usually described
in a form of “soft” (for example, Trouillier-Martins type[22]) or “ultrasoft” pseu-
dopotentials, so that fewer plane waves can be used, and exchange and correlation
energies and potentials are used in the parametrized form of Perdew and Zunger[20].
Unfortunately the CP method has extremely high computational demands, partially
because a very large number of plane waves is required for an accurate expansion of
Kohn-Sham orbitals.

As an example of the latter type we can examine the local-basis ab initio tight-
binding method of Sankey-Niklewski-Drabold[23] (SND) which has been successfully
applied to studies of amorphous Si and C and chalcogenide glasses. In addition to the
LDA and the use of pseudopotentials in the form of the nonlocal, norm-conserving
Hamann-Schliiter-Chiang type[24] parametrized by Bachelet et al.[25] this method
exploits the following major approximations aimed at boosting the efficiency of com-
putations.

(i) The total energy functional E[p] can be replaced with the non self-consistent
Harris functional[26]. The idea here is to replace the self-consistent electron density
p(7) with the sum of some reference density po(7) (in the SND method it is taken to
be the sum of neutral-atom spherical atomic densities) and a small term §p(7) which

accounts for the difference between the reference and the true densities. The py(7)
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then is used as an “input density” in the Kohn-Sham eigenvalue equation 2.12 to

generate the wave functions and construct an approximation for §p(7):

¢i(F) = &ii(7),

1
[ - %V2 + V[Po] (7?)

B =23 B = pol) + 5507,

i acc
Here the density change 0p(7) reflects the formation of bonds in the system and
can be used as the first-order approximation to the self-consistent bond formation
represented by dp(7). The Harris functional can be successfully used in systems
where charge transfer between orbitals is not too large and the bonding is largely
covalent, not ionic.

(ii) The Kohn-Sham wave functions are expanded as a linear combination of

pseudo-atomic-orbitals (PAQO’s):

[$:(P) =D at®lpl (7~ Ry)),

where index « represents all the valence orbitals on a single atom (for example, in
case of C or Si atom we need four PAO’s — s, pg, p, and p,). Another requirement
imposed on the form of PAO is the boundary condition that it should vanish outside

some predetermined radius r.:

QDPAO (F) |r=rc =0,

which has the physical effect of mixing in slight amounts of excited orbitals of the

atom inside r.. This condition shortens the interaction range of PAO’s thus effectively
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reducing the number of the Hamiltonian matrix elements required to be computed
for them.

The Harris functional and the use of local pseudo-atomic-orbital basis make the
SND ab initio MD method much more computationally effective than its plane-wave

counterpart.

2.1.3 Merits and demerits

In this section we present the advantages and disadvantages of using the first-
principles methods for computer modeling of materials.

Merits:

@ The interatomic forces and electronic eigenstates are computed from first princi-
ples requiring no fitting to any external parameters. The method is transferable
to different material phases and can be used for modeling of complicated bond-
ing environments like glasses and amorphous solids. It can be also used for

modeling materials for which no experimental (fitting) data is available.

@ The interatomic forces and electron eigenvalues/eigenvectors produced are usu-
ally very accurate. Structural, electronic and vibrational properties of a model

material can all be computed employing one and the same technique.

@ Numerous atomic species can be easily incorporated into the computations by

the use of appropriate pseudopotentials.

Demerits:
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© Substantial computational effort is required thus limiting the applicability of

the method to relatively small systems.

2.2 Empirical Tight-Binding Hamiltonians

2.2.1 Tight-Binding method

In order to investigate the properties of larger model systems a simpler and less
computationally demanding method is required. One of the straightforward simplifi-
cations over the first-principles LDA techniques still sometimes capable of producing
accurate atomic forces and electronic structure is the tight-binding (TB) Hamiltonian
method. The details of this method have been described by Harrison[27].

In this method the ground state total energy E of the system can be approximated
as a sum of two terms — the band-structure energy Epg and the repulsive potential

Urep:

E({R}) = Eps + Upepy = Y _&n + Urep, (2.14)

where {RZ},Z =1...N,is a set of atomic positions. The band-structure energy Epg is
the sum of the occupied electron eigenvalues &, where {¢,} is a set of the eigenvalues

of the system Hamiltonian H:

The electron eigenvalues €, of course, may have an extremely complex dependence

on the atomic coordinates {R;}).
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In order to find the electron energies {¢,} we need to construct and diagonalize

the Hamiltonian matrix {H,,,} which elements

Hmn = <'¢}m|H|'¢}n> (2'16)

The true eigenfunctions {1} of Hamiltonian 2.15 are, of course unknown, so that, as
usual, we need to expand them in a basis of functions that we know. In molecules or
solids a convenient basis for such an expansion is naturally available: our eigenfunc-

tions can be expanded in a linear combination of atomic orbitals (LCAO):

(%) =D Ci®|bia)- (2.17)

i

Here index ¢ spans all the atoms in the system and index o — all the basis orbitals
positioned on a given atom. For example, in the case of Si or C we can choose our
minimal atomic orbital basis to be the valence s, p;, p, and p, orbitals located on
every atom in the system. Then the total number of the basis functions in our system
will be 4N.

Depending on whether or not we consider the basis functions |¢;,) orthogonal to
each other our method will fall into either orthogonal TB (OTB) or nonorthogonal
TB category.

Now, if we substitute expansion 2.17 for |¢,) into equation 2.16, we can see that
the matrix elements H,,, can be obtained as linear combinations of matrix elements

between the basis orbitals:

Hiqjp = ($ia| H|djg)- (2.18)
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If we consider the simplest case of two silicon atoms with their p,, p, and p,
orbitals parallel to each other respectively and p, orbitals lying on the same axis,
matrix elements H;, ;3 can be all represented by a small set of terms, that depend
only on the interatomic distance R;;. Two different diagonal terms are just “atomic

orbital energies” E; and E:
Eo = Higjia, @ =s,p,

and four offdiagonal terms are “hopping elements”

Vise = Higjs,

Vipe = Hisja, = pg,Py,Ds,

Vere = Hip, jp.,

Voor = Hip, jp. = Hip, jp, -
Matrix elements between p-functions perpendicular to each other (like H;,, j, ) are
considered to vanish due to the othogonality of the basis functions.

In a general case (for example, in real crystalline Si lattice), when atomic orbitals
are not arranged in such a simple way, p-orbitals can be geometrically decomposed as
vectors which enables us to reduce this problem to the previous case and still express
offdiagonal elements H,, ;3 as linear combinations of terms V4, Vips, Vppe and Vip.
The generalised method for performing such kind of decomposition has been proposed
by Slater and Koster[28] (Slater-Koster table).

As we now see, the key element required for constructing the Hamiltonian matrix

{Hmn} is knowing the terms Visq, Vipo, Vopos Vppr and their dependence on interatomic
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distance. In the empirical tight-binding (ETB) approach these terms are fitted to the
results of first principles calculations and parametrised in a form of simple functions
depending on distance.

The repulsive potential Uy, in 2.14 consists of two terms: the repulsive energy
between nuclear charges Z; and the term that corrects for the double counting of the

electron-electron energy in the band-structure term Epgg:

1~ ZiZ;
Urep == Y _ =2 — Epc. (2.19)
2 4= Ry

Y]

Here we assume that U, has a simple dependence from the atomic geometry and
can be represented as a sum of short-range two-body potentials, each depending only
on the distance between the corresponding atomic pairs. In the same way as for the
TB-Hamiltonian matrix elements the repulsive potential can be fitted to the ab initio
data.

Finally, the atomic forces are calculated with the help of the Hellmann-Feynman
theorem[29]. In the case of fixed (not moving with the atoms) basis orbitals the forces

look as follows:

) Oz oH
Fim =305 == 2l ) (2:20)

2.2.2 Implementations

There exist more than a few empirical tight-binding Hamiltonians for silicon.
The first TB-Hamiltonian for Si worth noting is due to Chadi[30] who used it to

calculate the electronic densities of states and the bandstructure of diamond-like
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and zincblende crystals and the atomic structure of silicon surfaces. Other well
known ETB Hamiltonians are the orthogonal Hamiltonians of Goodwin, Skinner and
Pettifor[31], Mercer and Chou[32], Kwon et al.[33], Wang et al.[34] and Lenoskyet
al.[35] and the nonorthogonal Hamiltonians of Menon and Subbaswamy[36] and Frau-
enheim et al.[37]. Another nonorthogonal TB-Hamiltonian for Si has been recently

proposed by Bernstein et al.[38].

2.2.3 Merits and demerits

Merits:

@ The method provides information about the electronic structure of model ma-

terial.

@ Still is relatively transferable if the atomic geometry is not too distorted com-

paring to the phase it has been fitted to.

@ Much more computationally efficient than ab initio methods.

Demerits:

© Depends on fitting to experimental data or ab initio calculations. Fitting
the TB-Hamiltonian to simultaneously reproduce phases with different bond-
ing/geometry (for example, liquid and amorphous phase) is a matter of art and

sometimes is not possible at all.
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© The repulsive energy term can only be defined by an empirical formula (i.e. can

not be fitted to ab initio calculations).

© Fitting to certain data makes the method somewhat “more specialized” than ab
initio techniques. For example, the TB-Hamiltonian of Kwon, Biswas et al.[33]
is good for force and total energy calculations but not for vibrational spectrum

or band-structure calculations.

© Still requires to solve at least one matrix eigenvalue/eigenvector problem on
every step of the MD simulation. This limits the applicability of the method to

systems containing hundreds but not thousands of atoms.

© Practically all of the ETB Hamiltonians have problems reproducing the optical

part of the phonon spectrum of a-Si.

2.3 Empirical potentials

2.3.1 Major families of empirical potentials for silicon

An empirical interatomic potential is one of the most simple and straightforward
methods available to study the dynamical and structural properties of solids. Such a
potential looks like a simple “prescription” describing the atomic interactions in a solid
and containing a number of adjustable parameters. These parameters are fitted to
experimental data and the results of ab initio calculations, usually in such a way that

the potential reproduces as closely as possible the cohesive energy curves for different
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highly symmetric phases of solid under investigation. For silicon the most popular
symmetric fitting phases are diamond-cubic (dc), simple-cubic (sc), face-centered-
cubic (fec), body-centered-cubic (bee) and hexagonal-close-packed (hep) structures.

The general idea for constructing this “prescription” for atomic interactions is the
following: for a system containing N identical particles the total energy of the system

can be expanded into one-body, two-body, three-body, etc. contributions:

-+ Z U3(Ri,éj,Rk)+...+ Z UN(RiI,... ,RiN). (2.21)

<iyjk> i1y iy >

The single particle potential v; usually describes an external force applied to the
system; in most situations we can consider any external forces to be absent and
consequently can ignore this term.

In order for the expansion 2.21 to be practically useful for computations the com-
ponent functions v, must fall quickly to zero with increasing n. Obviously this prop-
erty strongly depends on the nature of cohesion in a material under investigation.
For example, for the liquified noble gases (Ar, Kr, Xe) only pair interactions are
important, which reduces 2.21 to

E({R:}) = ) w(Ri &),
<i,j>

where pair potential v, can be represented by the famous Lennard-Jones potential

vrs(Rij) = —4€[(o/Ri;)"* — (0/Ry;)°].
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Of course, for covalent materials such as Si, pair potentials alone are inadequate
to describe the cohesion — the equilibrium diamond lattice is unstable without three-
body forces. The natural way to solve this problem is to use more terms in expan-
sion 2.21 in order to account for non pair interactions in the material.

One of the oldest well known interatomic potentials for Si is the potential of
Keating[39] which has been successfully applied to studies of the strain energy in the
diamond-like crystals. This potential incorporates two- and three-body interaction
terms:

2

E({R}) = 13—6]% 2]: (R — R2)* + SR% (Rij R+ %Rﬁ) C (222)
Here v and 3 are the bond-stretching and bond-bending force constants and R, is the
equilibrium interatomic bond length in the diamond structure. The interaction range
for both two- and three-body terms is limited to the first shell of neighbors, so that
indexes j and k mark only the nearest neighbors of a given atom i (exactly four for a
perfect diamond lattice). For small distortions that do not alter the bonding topol-
ogy of the network, the Keating model can provide some insight into the network’s
structure but for more drastic reconstructions a better model is required.

A model that is currently widely used for studies of the structural and dynamical
properties of silicon is the empirical interatomic potential of Stillinger and Weber[40]
(SW), which has been originally fitted to the crystalline (c-Si) and liquid (1-Si) silicon

phases. Like Keating model this potential also consists of sums of two- and three-body
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interaction contributions:

E({R})= Y w(Ry)+ Y vs(Ry, Ru), (2.23)

<%,j> <i,j,k>

where the two-body term

’UQ(RZ']') =€eA o

B(@)_p_ll exp{%}@(&j/a—a), (2.24)

and the three-body term

s B g g
RZ,RZ = €A X
U3( J k) €A €XP [RZ]/O_ —a + RZk/O_ _ a:|

% (cos B + %) O(Ry; /o — a)O(Ra)o —a). (2.25)

Here O(z) is the Heaviside step function, 6,;; is the angle between bonds R;; and
Ry and €, A, B, 0, p, a, A and « are the fitting parameters (see Table 2.1). The
interaction range of the potential is governed by parameters ¢ and a that place the
interaction cutoff at approximately 3.77A — between the first and second-neighbor
distances for c-Si. The main property of the three-body term is that it penalizes any
deviation from an ideal diamond structure bond angle (for which cos 8 = —3) thus
favoring perfect tetrahedral bonding in the material.

Another example of the 2 + 3 body interatomic potential is the potential of Biswas
and Hamann. The generalized Morse two-body potential has been used to describe

pair interactions in this potential:

va(Ryj) = Aje M Rii 4 Ay R
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Table 2.1: Parameters for the standard SW and the modified SW potentials.

Parameter standard SW modified SW
e (eV) 2.16826 1.64833

A 7.049556277 7.049556277

B 0.6022245584 0.6022245584
o (A) 2.0951 2.0951

P 4 4

a 1.80 1.80

A 21.0 31.5

v 1.20 1.20

and the three-body term has been expanded in spherical harmonics (which can also

be done for the SW potential):
U3(Rij7 Riy) = Z Cii(Rij)pi(Rir) Pi(cos Oj4,).
]

The key simplification here is an assumption that for each [ the dependence on R;;
and R;; is a separable and symmetric product of functions ¢; of each bond length,
which leads to computations of the energy and atomic forces in n? steps instead of
n® for a general three-body potential. Another peculiar feature of this potential is
its long range. A cutoff of 15A is barely adequate — this corresponds to counting all
two-body interactions out to fifteen shells of neighbors and three-body contributions
to forces for all neighbors within 20A.

One more widely employed model that uses a different potential-construction

strategy is the family of interatomic potentials developed by Tersoftf[42]. The main
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idea incorporated into this potential is that bonding in the material depends upon
local environment, i.e. for different local atomic coordinations (or the number of com-
peting bonds) the “prescription” formula should favor different bonding geometries.

The form of the potential is as follows:

B(R,R;) = Boexp{—Z(Ei,Rj)/b .

Here f.(R,;) is a cutoff function which truncates the potential at a point between
the first- and second-neighbor distances for ¢-Si (around 3A) and B(R;, B;) is the
term that describes all deviations from a simple pair potential via the dependence
upon the local atomic environment. The term

-1

Z(R;, R)) = Z [w(RZk)]n (c+exp(—dc0s Gjik)) ,
ki,

where w(r) is the “bare” bonding potential, w(r) = f.(r) exp(—Aqgr), is a weighted
measure of the number of bonds competing with the bond R;;, and b determines how
rapidly the bond strength falls off with increasing effective coordination.

The Tersoff potential has been fitted to a wide set of different bulk phases of Si
and is considered to be somewhat more transferable than SW potential.

Quite recently a new environment-dependent interatomic potential (EDIP) for

silicon has been introduced by Bazant, Kaxiras et al.[43, 44] which can be regarded as
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a “crossbreed” between the SW and Tersoff potential formats. Like the SW potential
it consists of two- and three-body terms, but both of these terms depend on the
local-environment parameter Z;:

E({R}) = > (R Zi)+ Y vs(Rij, Bir, Zi),

<%,j> <i,j,k>

Zi = Y f(Rim),

m#i

where f(R;,) is a cutoff function that measures the contribution of neighbor m to
the coordination of atom ¢ in terms of interatomic separation R;,,.

The two-body term includes repulsive and attractive interactions

(&) 7| e {7}

ij
which go to zero at the cutoff distance a (approx. 3.124). The environment dependent

’UQ(RZ']', Zz) = A

part is represented by a Gaussian function: p(Z;) = exp(—£Z7;).

The three-body term contains radial and angular parts:
vs(Rij, Rir, Zi) = 9(Ri)g(Rix) h(cosjiw, Z3),

where the radial function g(r) has the SW form: g(r) = exp(;2;) and goes to zero
smoothly at the cutoff distance a. The angular function h(cos 8, Z) has strong depen-
dence on the local coordination through two functions that control the equilibrium
angle and the interaction strength and will not be discussed here in further detail.

The potential has been fitted to reproduce not only the ab initio cohesive energies

but also the elastic constants of the diamond-cubic structure.
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2.3.2 Flaws in empirical potentials fitted to highly ordered
Si phases

Unfortunately none of the above mentioned potentials can correctly describe the
phonon spectrum of a-Si, especially its high-frequency part — the correct height and
position of the transverse-optical peak (see section 3.2.2 and references in Table 3.2).
This is partially because the reproduction of the phonon dispersion curves in Si or
Ge is a problem barely tractable without high quality ab initio calculations[45], but
another important contribution to the occurring errors is fitting to the properties of
highly ordered Si phases only. Obviously the potential that is intended to be used for
calculations of properties of the amorphous phase of silicon should be fitted to this
actual phase.

In case of the popular SW potential a new set of fitting parameters has been found,
that can provide an adequate simultaneous description of crystalline and amorphous
phases (but not the liquid phase). More than ten years ago it has been noticed that the
50 to 100% increase in strength of the three-body term in the SW potential produces
a-Si models with structural properties in a much better agreement with experiment
than for standard SW[46, 47] but in order to further improve the description of the
vibrational properties of a-Si models created or studied with this potential additional
changes in the fitting procedure are required.

Recently Vink et al.[48] have explicitly fitted the SW potential to reproduce the

correct positions of experimentally measured (see Ref. [4]) transverse-acoustic (TA)
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and transverse-optical (TO) peaks of the vibrational density of states (VDOS) of a-Si.
It turns out that these modifications also lead to structural properties of models re-
laxed with this potential that are in excellent agreement with experiment (see section
3.4 for more details). The adjusted potential will be referred to in what follows as
the modified Stillinger-Weber (MSW) potential. The fitting parameters for the MSW

potential are presented in Table 2.1.

2.3.3 Merits and demerits

Merits:

@ Very computationally effective.

@ Very easy to implement in a form of program code.

Demerits:

© Poor transferability to phases the potential has not been fitted to. Reproduction

of the amorphous phase of Si requires explicit fitting to this phase.

© Very poor transferability between phases with different bonding environment

(Example: a-Si and 1-Si).

© Electronic structure properties are unavailable.



32

Chapter 3

Modeling of amorphous silicon

The generally accepted topological model used to represent the structure of amor-
phous tetrahedral semiconductors is a so called “continuous random network” (CRN)
first proposed by Zachariasen[49] in 1932. In this model the main building blocks
of the material are the same as in its crystalline incarnation — i.e. tetrahedra for
silicon or germanium — but unlike in a perfect crystal these blocks can be randomly
oriented and connected, allowing “play” in atomic bond lengths and angles.

The first mechanical CRN model was constructed by Polk[50] in 1971. It reflected
the general topology of elementary amorphous semiconductors but, due to physically
unmotivated construction procedure, contained free surfaces in its structure. It was
obvious that next generation CRN models should be created on a computer and
employ physically relevant topology building algorithms.

In this chapter we will present all the major computer based methods for gen-
erating the CRN models of amorphous tetrahedral semiconductors, analyze their

advantages and disadvantages and study the properties of the models created with
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these methods. Our discussion will be mostly focused on three major issues that can

be used to characterize a particular modeling technique:

e model’s template i.e. a starting structural configuration (a list of atomic coor-
dinates and sometimes an additional list of bonds between atoms) from which

the model will be created,
e a recipe (potential) describing interatomic interactions in the model,

e a procedure that tells us how to rearrange the initial configuration’s geometry

to turn it into a structure with specified properties.

3.1 Bond-switching method of Wooten, Winer and

Weaire

3.1.1 Method description

The bond-switching method of Wooten, Winer and Weaire (WWW), introduced
in 1985, was successfully applied to modeling of CRN structures for a-Si, a-Ge and
amorphous diamond[51, 52]. In this section we give a description of this method.

The initial structure used in the WWW method is a perfect diamond crystal. Peri-
odic boundary conditions are imposed on the cubic supercell containing the structure,
so that every atom is 4-fold coordinated and there are no dangling bonds anywhere.

We may regard this representation of our system as a list of N atoms and a list of
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2N bonds between these atoms.
The interactions between the atoms are described by 2 + 3 body harmonic (Keat-
ing) potential[39]:

3 « V2o 38 - o 1.,)\°
E=_—_ 2 . Ri; - Ry + - Rj 3.1
6 2 (s = R 8R§Z< A 0) ! (3.1)

ij jk
where o and 3 are the bond-stretching and bond-bending force constants, Ry is the
equilibrium strain-free interatomic bond length in the diamond structure, index i
spans all the atoms in the system and indexes j and & — the nearest neighbors
(exactly four) of a given atom .

And finally the main structural rearrangement used to transform the perfect crys-
tal into the CRN is a so called WWW bond transposition or bond switch shown in
Fig. 3.1. For a bonded pair of atoms BC' a pair of nearest neighbors A and D is cho-
sen, so that A is the neighbor of B and not the neighbor of C, and D is the neighbor
of C and not the neighbor of B. Then bonds AB and CD are broken (deleted from
the bond lists for atoms B and C') and new bonds AC and BD are created (added to
the appropriate bond lists), i.e. atoms B and C exchange neighbors. This procedure
effectively introduces five- and sevenfold rings — which are a characteristic structural
feature of the CRN — in the network while preserving the tetrahedral bonding in it.

Turning the initial highly ordered structure into an amorphous structure is done
in two stages. On the first stage, the initial diamond structure is randomized by
a large number of WWW bond transpositions at temperature close to the melting

point of the model. Bond transpositions are accepted with the Metropolis acceptance
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.
St o

Figure 3.1: Wooten, Winer, Weaire bond transposition. (a) configuration be-

fore the bond transposition, (b) configuration after the bond transposition, (c)

configuration after the bond transposition (unfolded).

probability[53]
P =Min|[l,exp((Ey — Ef)/keT)], (3.2)

where k;, is the Boltzmann constant, T is the temperature, Ej is the total energy of
the system before the proposed bond transposition and E; the total energy of the
system after the bond transposition and a full structural relazation succeeding this
transposition. The aim of this procedure is to get rid of the crystallinity, so that
subsequent bond rearrangements at lower temperatures do not return the system to
the perfect diamond structure.

On the next stage the system is subjected to many more bond-switching events

that are accepted or rejected with Metropolis probability while the temperature is
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lowered in small steps, and thermal equilibrium is established at each new temper-
ature. The resulting structure appears to be a well relaxed CRN with low strain,
physically reasonable bond-angle and bond-length distributions and practically 100%
4-fold coordination of atoms (see section 3.2 for the discussion of properties of a-Si

models created with this method).

3.1.2 Improvements over the method of WWW

Despite the fact that the WWW method allows us to create the CRN models
of very high quality it suffers from a number of disadvantages: (i) since the initial
configuration of the system is a crystal, even after a substantial number of bond
transpositions the system may retain its memory of the crystalline state[54], (ii)
for a model, presented in Ref. [51] the bond-angle distribution width Af (see be-
low) is slightly wider' than the experimental value[3], (iii) the acception/rejection
and relaxation procedures are not effective enough to try all combinations of bond
transpositions.

Recently Barkema and Mousseau have introduced an improved version of the
WWW bond-switching method[55] (called the modified WWW method in what fol-
lows) that does not have the aforementioned problems. In the next few paragraphs
we summarize the advantages of the improved bond-switching method.

(1) The initial configuration for the model is completely random which guarantees

LGenerally, the value of A depends on the MC annealing time. With slower anneals it may be
possible to receive smaller bond-angle distribution widths.
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Figure 3.2: Bond list construction procedure for modified WWW method. One
step in the expansion of the loop, that eventually visits all atoms four times.
Three atoms A, B, and C are involved, of which B and C are bonded, while A
is bonded to neither B nor C, and of which A is not four-fold coordinated. The

bond BC is then replaced by bonds AB and AC.

that it is not contaminated by any memory of the crystalline state. The atoms
are randomly placed in a cubic box with periodic boundary conditions and volume
corresponding to the crystalline density under constraint that no two atoms are closer
than 2.3A to each other. After all the atoms are positioned in the box, the bond list
is constructed by finding a loop visiting four atoms somewhere in the network, so that
every two atoms that are neighbors in the loop are closer than some cutoff distance to
each other. The loop is then expanded until it visits each atom exactly twice, and the
steps of the loop become the bonds in the tetravalent network. The loop-expansion
step is made as follows (see Fig. 3.2): a group of three atoms A, B and C is randomly

selected, such that A is not four-fold coordinated and is within a distance of . from B
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and C but not bonded to either, while B and C are bonded. The bond BC is replaced
by bonds AB and AC.

This procedure results in a configuration where every atom has exactly four bonds,
but of course this structure has a very wide bond-angle distribution and a vast number
of bonds that are unphysically long. We should stress that these bonds are not
intended to represent real physical bonds in the material, instead they are merely
mathematical abstractions stating that atom A is connected to atom B. During the
quenching procedure these bonds will be surely broken — their energy is too high —
and new, physically relevant bonds will be formed.

(2) A trial bond transposition can be rejected without doing full relaxation of the
model system. In order to do that, a so called threshold energy E; is evaluated before

the proposed bond switch:
Et = Eb - kBT ln(s), (33)

where s is a random number between 0 and 1. The bond transposition is then accepted
only if E; < E,. Since in a well relaxed configuration the energy is harmonic around
the minimum, then the decrease in energy due to further relaxation can be estimated

as the square of force times some proportionality constant:
E — E; ~ ¢t |F)?.

If at any moment during the relaxation E — ¢s|F'|* becomes bigger than E, the trial

bond switch is rejected and a new one is started.
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With a conservatively chosen ¢; (well below 1 in well relaxed systems) this method
is equivalent to the usual Metropolis procedure, but it allows us to reject a trial bond
switch as soon as it becomes evident that the threshold energy can’t be reached, i.e.
before the full relaxation of the system is over. Since in a well quenched model system
only a few percent of proposed bond transpositions are eventually accepted, this im-
proved “rejection procedure” provides us with a significant increase in computational
efficiency.

(3) Efficient quenching techniques: (i) to reduce the number of force calculations
the relaxation of atomic positions is being done only locally (up to the third neighbor
shell) during the first ten relaxation steps. In combination with technique (2) this
makes the computation effort per bond transposition almost independent of the size
of the system. (ii) in case of zero temperature quenching, the threshold energy 3.3
remains constant, which means that a bond transposition that is once rejected will
keep on being rejected as long as no other bond transpositions are accepted in the
meantime. Then all the bond transpositions rejected since the last accepted bond
transposition can be marked to avoid retrying them. When all possible bond transpo-
sitions have been tried and rejected the quenching process is regarded to be complete.
At this point the model system is not only in the local energy minimum but no single
bond transposition can lower its energy.

With all the aforementioned advantages the modified WWW modeling method
works in the following way. First a truly random atomic configuration is created

(see point (1) above) and the atoms in it are connected, so that each one of them
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has exactly four neighbors. Then this initial configuration is alternately subjected to
the Metropolis MC bond-switching runs at temperatures of 0 and 0.25 eV until the
desired structural properties of the model (usually the narrowing of the bond-angle
distribution width Af down to 10° or less) are reached. Due to the fact that in
the Keating’s model atoms interact only with their bond-list neighbors, some atoms
might get close to each other without being bonded. In this case they are bonded
together and the bonds between them and their neighbors are rearranged in such a
way that the four-fold coordination is preserved. The decrease in energy mostly takes
place during the 0 eV quenching runs, while the 0.25 eV annealing runs are used
merely to provide a fresh starting point for the next quench. Once the angular spread
Af is brought down to 11-12° the alternating annealing/quenching procedure yields
smaller and smaller energy drops. In order to lower energy even further the system
is slightly expanded or compressed and the annealing is done again.

The described modeling procedure produces perfectly 4-fold networks that are
structurally and electronically better than those created with the standard WWW
method. The properties of the models created with both of these methods are pre-

sented in the next section.
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3.2 Properties of a-Si models, created with the

WWW and modified WWW methods

In this section we will discuss structural, vibrational and electronic properties of
two families of models for a-Si that are extensively used in our research projects.
The first family is the set of models created by Djordjevié, Thorpe and Wooten[52]
with standard WWW bond-switching method. Models of two sizes will be dis-
cussed: a small 216-atom model, called DTW216, and a large 4096-atom model,
called DTW4096 (which exists in two variants — with and without 4-membered
rings). The second family is the set of models constructed by Barkema and Mousseau
using the modified WWW technique[55]. We will present the properties of 1000-atom
(BM1000) and 4096-atom (BM4096) models of Barkema and Mousseau.

We do not discuss here the properties of the original 216-atom model of Wooten,
Winer and Weaire. Its structural and vibrational properties can be found in Ref. [51,

54] and electronic properties in Ref. [56, 57].

3.2.1 Structure

The structural properties of a CRN model of a-Si can usually be estimated as a col-
lection of certain parameters and distributions. The most important parameters are
model’s density, average coordination number, bond length (r) with its distribution

spread Ar and bond angle (#) with its distribution spread A#.
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The coordination number shows how many nearest neighbors (or bonds) on av-
erage each atom in the model has. It can be derived from experimental data by
careful integration of the area under the first peak of the radial-distribution function
92(7)[2, 3] (see below). As we know, the real amorphous silicon has a very low density
of point defects[1] — 0.1% or lower. It is then paramount for a good model of a-Si to
have as few coordination defects as possible — the presence of an unphysically large
number of coordination defects (more than a couple of tenths of a percent) in a model
ruins its electronic properties, turning it from a semiconductor to a poor metal (see
subsection 3.2.3 for a detailed discussion).

Another important parameter which is a de facto figure of merit for the CRN
models of tetrahedral amorphous semiconductors is the bond-angle distribution width
Af. When it is close to the experimentally measured value of 9-10°, it means that
the model is well relaxed and contains few if any strained regions. The experimental
value for Af can be inferred from the X-ray diffraction[3] (structure factor) or Raman
spectra measurements.

Important distributions that help us gain insight of the structural properties of
a-Si are different forms of atomic position-correlation functions[58] — the most widely
used one is the pair-correlation or radial-distribution function — bond- and dihedral-
angle distributions and ring statistics.

The position-correlation function of order n g, (1,79, ... ,7,_1) Mmeasures a proba-

bility for a given atom ¢ to have a neighbor at certain distance r; and simultaneously
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another neighbor at distance r, and another at r3 etc. up to a neighbor at r,,_, av-
eraged over all the atoms in the system ¢ = 1,... , N. With the increasing order this
function gives more and more complete description of geometrical structure of our
material. It is, of course, relatively easy to calculate the high order atomic position-
correlation functions for a model but unfortunately the experimental data commonly
available for comparison usually comes in a form of the lowest order pair-correlation
function go(r)[2, 3|, which, for the sake of shortness, we will call in what follows g(r).
Only the most recent state-of-the-art fluctuation microscopy experiments allow us to
probe for the fourth order correlation function g4(r1,72,73)[10, 11].

According to the more general definition given in the previous paragraph the
radial-distribution function g(r) measures the probability for a given atom ¢ to have
a neighbor at a certain distance r, averaged over all the atoms in the system, i.e.

9(r) 47rpN7"2 226 (34)

=1 j#i

where p is system’s density.

In the case of an ordered solid (crystal) the long-range environment for every atom
is exactly the same, so that the pair-correlation function of the system will have a
form of a set of d-functions positioned at the distances corresponding to the distance
between an atom and a certain shell of its neighbors. For example, for diamond-type
Si crystal we will get peaks at 2.35A (first shell of neighbors), 3.8A (second shell of

neighbors), 4.5A (third shell of neighbors) etc.
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In an amorphous solid the long- and medium-range order is broken and conse-
quently the local environment for every atom is different. The interatomic distances
are not fixed any more, so that é-functions in Eq. 3.4 will not be all concentrated at
certain values of r like in the crystal case — instead they will be spread around these
values. Usually, before plotting out the pair-correlation function, d-functions are ther-
mally broadened (by representing them as é-shaped Gaussian functions), which gives
us a smooth curve for g(r). For a specially normalized pair-correlation function the
integration of the area under its first peak provides information about the average
number of the nearest neighbors for an atom, i.e. average coordination number.

The ¢(r) can be inferred from experimental data by taking the Fourier transform
of the structure factor S(g) obtained by the X-ray diffraction[2, 3]. It is useful to note
that a comparison of the model g(r) to an experimental one should not be regarded
as an ultimate test of model’s quality. The good agreement of both is a necessary
condition for a CRN model to serve as a good representation of amorphous material,
but it is not sufficient! The geometrical structure of the material is three-dimensional
while the g(r) “flattens” all this information into a single curve, which makes it
possible to create absolutely unphysical models that still perfectly agree with the
experimental pair-correlation function data?.

We collect the structural properties of the large DTW and BM models in Table 3.1.
Note that we do not present any information about the coordination of the models

because by the virtue of construction procedure all of these models are almost perfectly

20ne of the recent examples of this kind of approach can be found in Ref. [59]
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four-fold coordinated. We also stress that this data refers to the models that are not
relazed by the means of any MD technique. Relaxation with a potential, poorly fit
for the job, may ruin the perfect tetrahedral coordination of the model, which is the

case, for example, for the standard SW potential[44, 55].

Table 3.1: Structural properties of models relaxed with the Keating potential.
The first two models, DTW4096() and DTW40962 are prepared with the
WWW method (Ref. [52]) and refer, respectively, to a model with and with-
out four-membered rings. The models BM1000A and B are 1000-atom models
and BM4096 is a 4096-atom model prepared with the modified WWW method.
All three models are without four—-membered rings. The ring statistics are for

irreducible rings and p; is based on ry = 2.35 A.

DTW4096()  DTW4096(2 BM1000A BM1000B BM4096

o/ po 1.000 1.000 1.043 1.040 1.051
(r)/ro 0.996 0.997 0.982 0.982 0.980
Ar [y (%) 2.52 2.65 3.94 3.71 4.17
(0) 109.24 109.25 109.30 109.27 109.28
Al 10.51 11.02 9.21 9.20 9.89
Rings/atom
4 0.015 0.000 0.000 0.000 0.000
) 0.491 0.523 0.472 0.480 0.490
6 0.698 0.676 0.761 0.750 0.739
7 0.484 0.462 0.507 0.515 0.467
8 0.156 0.164 0.125 0.116 0.148
9 0.034 0.033 0.035
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The radial-distribution function and the bond- and dihedral-angle distributions
for all the DTW and BM models of a-Si look pretty much the same. In Fig. 3.3 we
present the curves only for BM4096 model which can serve as a good example. Notice

the clear gap between the first and the second-neighbor peaks in the g(r) plot.

3.2.2 Vibrational properties

To investigate vibrations in a-Si we compute the vibrational density of states
(VDOS) or phonon spectrum for our DTW and BM models and study spatial lo-
calization of the associated vibrational states. We do not simulate Raman spectra
because both widely used theoretical models for its calculation (Alben et al.[60] and
Marinov-Zotov[61]) do not provide good agreement with experimental results[62].

We calculate the VDOS for a model system, constructing and then directly di-
agonalizing its dynamical matrix. In order to do that the system is first relaxed to
its equilibrium geometry by simulated quenching with an appropriate MD technique,
so that all the forces on every atom are close to zero. Once the equilibrium state is
reached, we proceed with the dynamical matrix calculation, displacing every atom
in the supercell in three orthogonal directions (by 0.03A, which is suitable for this
purpose) and computing the resulting spring constants as second derivatives of the
total energy of the system. The size of the dynamical matrix is 3N x 3N. Diagonal-
izing the dynamical matrix we receive all of its eigenvalues w?,7 = 1...3N, together
with the corresponding eigenvectors. The details of this procedure can be found in

Ref. [63].
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We plot out the vibrational density of states (VDOS)
VDOS(w) = 3N Z §(w — w;) (3.5)

for the set of phonon frequencies w;,7 =1...3N (usually the lowest three frequencies
corresponding to the elementary supercell translations are discarded), which gives us
the information about vibrational states distribution along the energy axis. As in the
case with g(r) representation we use Gaussian broadened form for §(w — w;) to make
our curves look smooth.

In Fig. 3.4 we present the VDOS for DTW216 model calculated with ab initio
local basis TBMD code “Fireball-96” based on the SND method[23, 63] (black line),
the environment-dependent interatomic potential of Bazant et al.[43, 44] (red line)
and the modified SW potential[40, 48]. The experimental data (diamonds) is taken
from the paper of Kamitakahara et al.[4]. For all the above mentioned calculations
we have found no negative eigenvalues w? in our dynamical matrix which means that
our system is at a true local energy minimum.

As we can see from Fig. 3.4 the modified SW potential gives the best agreement
with the positions of the experimental TA and TO peaks at wr4 = 184.8 and wrp =
467.6 cm~! which is not surprising because this potential has been explicitly fitted to
these peak positions[48]. The ab initio and EDIP curves are in pleasing agreement
with each other at high frequencies but they are both shifted to the right from the
experimental TO peak. We have two comments about this remarkable shift. First,

as we have mentioned in Chapter 2, the extreme flattening of the optical phonon
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calculated with EDIP. Blue line: calculated with MSW empirical potential. The

experimental results (¢) are taken from Ref. [4].



50
dispersion curves in Si makes simulating the high-frequency part of the vibrational
spectrum of a-Si an intricate problem. Second, vibrational properties of a-Si also
weakly depend on sample preparation procedure and thus can vary slightly from
sample to sample.

The gap present in the calculated curves at low frequencies is an artifact of the
finite size of the model — obviously low-frequency phonons with wave length longer
than the size of our simulation supercell cannot be excited in the model. In our
opinion, out of three different simulation curves presented in Fig. 3.4 the ab initio
curve gives the best overall description of the low-frequency region of the VDOS.

In Fig. 3.5 we present the VDOS for BM1000 model calculated with the modified
SW potential. For this model the VDOS has an additional TO peak shift to higher
frequencies. This is because this model’s density has been slightly rescaled to fit the
equilibrium zero pressure density for Keating and modified SW potentials.

An important issue is the connection between the coordination in the model sys-
tem and its VDOS. We do not know of any works devoted to the investigation of
this question specifically for amorphous silicon[64] but numerous calculations of the
VDOS of this material by different authors and our own experience with the VDOS
computations tell us that the VDOS for a-Si is not very sensitive to small changes of
average coordination or changes in material composition (i.e. number of three-, four-,
five-fold coordinated atoms etc.) which leave its average coordination unchanged.

In order to understand the nature of the spatial localization of vibrational states

in our models, we use the dynamical matrix eigenvectors (which 3N components are
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Figure 3.5: The vibrational density of states for BM1000 model calculated with
MSW empirical potential. The experimental results (¢) are taken from Ref. [4].
The shift of the TO peak to higher frequencies in the model’s VDOS is due to

rescaled model’s density (see Table 3.1 and comments in text).
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just the displacements of every atom in the system along the X, Y and Z axes) to
construct the inverse participation ratio (IPR) graphs for these states. The IPR
measures the degree of spatial localization for a state (eigenvector) and for phonons

can be defined as

N =i 2iy2

[PR(w;) = 3N 2= (T " Th) -, (3.6)
N . .
(@)

where (ut),, (ut), and (ul), are the displacement components of atom k along the
X, Y and Z axes, i.e. an eigenvector U, conjugate to the eigenvalue w? in this repre-

sentation would look like this:

—

Us = { (W), (wh)y, (uh)z, (b, () (W) (s () () o (3T)

Of course, for an orthonormal set of eigenvectors {U'Z} the denominator in 3.6 is
equal to unity. With this definition a vibrational mode localized on a single atom
would have an IPR of N and a mode that is completely delocalized (i.e. present in
approximately equal proportions on every atom in the system) — an IPR of 1.
Finally, for any vibrational mode w; we can estimate the activity of every separate
atom, examining the components of the eigenvector 3.7 “belonging” to this particular
atom and comparing, for example, the sum of their squares on the reference atom, with
the sum over all atoms in the supercell. After forming this chart of individual atomic
IPRs we can employ this information for dynamical animation of the vibrational
mode (for example, by creating a file, consisting of set of frames, each containing

coordinates and displacement vector components for every atom in the supercell,
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which can be used as an input for Xmol molecular display and animation program[65])
or for creating its static equivalent in a form of a gray scale or color map (where atoms

are assigned different shades of gray or colors according to their vibrational activity).

3.2.3 Electronic properties

Analogous to vibrations, the electronic properties of a model can be investigated
by computing its electronic density of states (EDOS) by diagonalizing system’s Hamil-

tonian matrix H;;:

H;; = (¢i|H|y,),

Hl|p) = &y,
) = D CFora),
k.o

where H is an ab initio or ETB Hamiltonian and {¢y, ,} is the basis set (for simplicity,
we present the equations for orthogonal basis). Index k counts all the atoms in the
system and index o — all the basis orbitals on a single atom. The size of our basis
set governs the size of H;;. In case of minimal basis for Si (o = 4) the size of the
Hamiltonian matrix will be 4N x 4N.

The EDOS can then be written out analogously to equation 3.5:

EDOS(e) = aLN Y b -2, (3.8)

As usual we use Gaussian broadened form for the members of the sum in 3.8 to plot

out a smooth curve. Of course, when H is an ab initio Hamiltonian we commit a
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usual sin of taking the Kohn-Sham eigenvalues ¢; “literally” i.e. as if they were the
real eigenstates of our system.

If the information about the electronic eigenvectors {C¥®} is available, we can also
investigate the spatial localization of the electron states and create electron-charge
grayscales or colormaps in the same fashion we did that for vibrations in the previous
subsection. Of course (see Eq. 3.6) for a given electronic eigenvector its components
belonging to some single atom do not form a vector of any kind (like displacement
vector for vibrations). Instead they show how much charge density of an electronic
state associated with the aforementioned eigenvector is concentrated on the basis
functions “belonging” to this atom. For electrons we need to slightly adjust our
definition of the IPR:

[PR(e) = e EalOF)' 59)
[ Z Sa(Cley]

A very important question is the connection between the average coordination in

our model a-Si system and the features of its EDOS curve. Here, unlike in the VDOS
case, it turns out that the bandtail and bandgap regions of the EDOS are eztremely
sensitive to fluctuations of the average coordination. Numerous calculations show that
the dangling-bond defect (three-fold coordinated atom) in Si produces a very localized
electron state right in the middle of the bandgap. The floating-bond defects (five-fold
coordinated atoms) or even four-fold coordinated atoms that are severely strained
— i.e. some of atomic bond lengths and/or bond angles deviate significantly from

their perfect crystalline values — can also contribute to the bandgap EDOS[66, 67].
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As we cross the bandgap going from the valence to the conduction bandtail the
spatial localization of the electron states changes dramatically — from completely
delocalized Bloch-type in the valence band to exponentially localized in the bandgap
(defect states) to delocalized again in the conduction band. The nature of these
states and the mechanism of local-to-extended transition in a-Si have been recently
explained by Dong and Drabold[68].

For CRN models of a-Si this sensitivity in dependence of the EDOS on the aver-
age coordination means that the presence of numerous coordination defects or poorly
relaxed pieces of the network in a model makes its electronic properties completely
unphysical: even if only one percent of atoms in the model is under/overcoordinated?®,
the defect electron states associated with these atoms fill out the bandgap-bandtail
region making the bandgap nonexistent. The explanation of this picture is quite sim-
ple. Let us imagine a CRN network with a very low concentration of coordination
defects. Obviously these defects are situated far away from each other and, because
of their local nature, the overlap between the electron wave functions of these defect
states is effectively zero. Due to the lack of overlap, the Pauli exclusion principle
does not forbid these states to have the same energy. Consequently, what we have
in the bandgap is a set of discrete energy levels corresponding to the intrinsic defect
types in our system, i.e. one level for all dangling-bond defects with approximately
the same local environment, one for all floating-bond defects, a couple of levels for

various strained four-fold defects etc. Now, when the concentration of defects starts

3This is true, of course, for relatively large models, containing 500-1000 atoms or more.
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to grow, they become closer and closer to each other in space until they are so close
that the overlap integral between their wave functions is nonzero. In this case, if
these defects have similar energies (which will eventually happen as the concentra-
tion grows) a single defect level has to split into a band due to the Pauli exclusion
principle. Finally when we have a whole family of various intrinsic defects with dif-
ferent energies in our system at some point their defect bands start to overlap and
conduction percolates across the bandgap. Our experience from studying the spatial
localization of the defect states in silicon shows that, despite the exponential behavior
of this localization, a state like this still extends out up to the third or even fourth
shell of neighbors from its localization center (which is usually a defective atom). This
means that a model that has only a few percent of under/overcoordinated atoms can
already be in the percolated state i.e. — a poor metal instead of a semiconductor.
As we know, a-Si is a semiconductor, and consequently this behavior is wrong and
a model that has nonzero EDOS everywhere across the bandgap cannot be accepted
as a reasonable representation of this material, at least for any studies that involve
electronic properties of this model.

As we have pointed out earlier in this section, the DTW and BM models are almost
perfectly four-fold coordinated and should have no problems reproducing the correct
EDOS for a-Si including the bandgap region. In Fig. 3.6 we show the EDOS (Kohn-
Sham states) for DTW216 and BM1000 models calculated with the ab initio local
basis TBMD code “Fireball-96” (SND method). Both models have a well defined

bandgap but due to the improvements in the modeling procedure which we have
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Figure 3.6: The electronic density of states for DTW216 and BM1000 models

calculated with ab initio TBMD code “Fireball-96” (SND method).

discussed in the first section of this chapter the model of Barkema and Mousseau
appears to be a better relaxed structure consequently possessing the wider bandgap.
This behavior is in agreement with experimental results[69].

In Fig. 3.7 we present the band-gap region and the total EDOS, the bandgap and
bandtail states IPRs and the DC conductivity calculated by Dong and Drabold for
DTW4096 model[68]. An orthogonal TB Hamiltonian of Kwon et al.[33] was used to
construct the Hamiltonian matrix for the model. The maximum entropy method[70]

was then employed to compute the total EDOS. The eigenvectors of the bandgap
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region eigenstates were obtained with the Lanczos technique[71] and electrical con-
ductivity of the model was estimated with the Kubo formula[72]. As we can see from
the picture, this large model has a significant number of the bandtail states and a few
defect states sitting deep in the gap but it is definitely well below the conduction per-
colation point, which means that the model has a reasonable amount of coordination
defects.

Calculation of electronic properties of a CRN model of tetrahedral amorphous
semiconductor is probably one of the most stringent tests of model’s credibility. The
data presented here makes us believe that both families of a-Si models discussed in

this section can be regarded as reasonable representations of real material.

3.3 Failure of the “quench-from-the-melt” method

for modeling a-Si

3.3.1 Description of the method and its problems

Another well known method for modeling a-Si is the so called “quench-from-the-
melt” (QFM) method. The idea of the method is to use MD to mimic the experimental
procedure for preparation of a-Si by cooling from the liquid state. Diamond-like Si
crystal is taken as initial structure for modeling. The crystal is then melted and
the liquid state is formed. After the liquid has equilibrated it is gradually cooled

down into an amorphous phase. Finally the amorphous phase is let to equilibrate at
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constant temperature or temperature and pressure (the usual temperature is 300 K).

In the QFM method, the simulation procedure requires modeling of the liquid-to-
amorphous transition in silicon which is a challenging problem because (i) the liquid
silicon (1-Si) phase has an average coordination of 6-6.4 and (ii) the a-Si phase is
four-fold coordinated, and 1-Si phase is 10% more dense than the amorphous phase.
Due to such drastic difference in coordination and consequently the bonding geometry
of the two phases a modeling MD technique is required to adequately describe both of
them, which is not always the case. Evidently, ab nitio or good ETB MD algorithm is
preferable here. Due to the difference in the density of phases (the system is supposed
to expand while being cooled from the liquid into the solid phase) the MD algorithm
should also include some kind of pressure control. Usually in the absence of any
pressure-controlling routines the simulation is run at constant volume corresponding
to the experimental density of c-Si or a linear rescaling from the 1-Si to c-Si equilibrium
volume during the phase transition is performed. Both these techniques are of course
too crude to give an adequate description of the liquid-to-amorphous transition in
silicon. Finally, it is well known that quenching of real liquid silicon will result in
crystalline and not amorphous silicon phase.

Another major difficulty experienced by the QFM method is that on the current
level of computer development it is impossible to simulate equilibration/annealing
times comparable to their experimental analogs with conventional MD techniques.
Right now simulated annealing MD times for a system of hundreds of atoms treated

by two- and three-body empirical potential (the most computationally effective case)
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are in the order of tens to hundreds of nanoseconds, while during the experiment
an a-Si sample could be annealed for minutes and even hours. Because of these
incomparably shorter equlibration times the QFM amorphous models almost always
have some remains of the “parent” liquid phase in them that did not have enough time
to fully relax. These remnants usually manifest themselves in the model’s structural
properties as a small peak at 60° in the bond-angle distribution, and an unphysically
large number of coordination defects, especially five-fold atoms — obvious features
showing that some atoms in the network still have their local environments close to
hexagonal (six-fold) and not tetrahedral.

Unlike the WWW method, the QFM modeling procedure does not incorporate any
mechanism to enforce the four-fold coordination, so that, due to the aforementioned
difficulty with equilibration times, the coordination defects and highly strained regions
of the network do not have time to fully relax. And as we have pointed out earlier,
the presence of an unrealistically high number of coordination defects in a model
deteriorates its electronic properties making them completely unphysical (metallic
instead of semiconducting in the case of a-Si), and this is a major flaw experienced

by the models created with the QFM method.

3.3.2 Review of the existing models

During the last twelve years, modeling of a-Si with the QFM method has been a
very active field. Models have been constructed with every MD technique available

(see Chapter 2). Here we discuss the properties of the existing QFM models starting,
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analogously to our methodology review, with those created with ab initio MD.

The first attempts to model a-Si with ab initio MD have been made by Stich, Car
and Parrinello[73], and Drabold et al.[74]. The former group has used a plane-wave
basis MD code based on the method of Car and Parrinello[21] and the latter — a local
basis TBMD code utilizing the Sankey-Niklewski-Drabold method[23]. The model of
Stich, Car and Parrinello (SCP) is the real QMD model, it has been created by rapid
cooling of the liquid and subsequent constant temperature annealing without any se-
rious pressure control: during the simulation of liquid cooling to the amorphous phase
the volume of a supercell has been simply linearly expanded from the equilibrium 1-Si
to c-Si phase volume. The model of Drabold ef al. cannot be regarded as a true QFM
model: in order to overcome the mentioned above difficulty of “freezing in” too many
unrelaxed defects by rapid cooling of the liquid, Drabold et al. have elected to quench
to the amorphous phase from a so called “incompletely melted” configuration that
is sufficiently disordered not to quench back to c¢-Si phase but much closer to a-Si in
bonding geometry than 1-Si. This deviation from the standard QFM routine results in
the electronic properties of model of Drabold et al. being much more reasonable than
that of SCP model. The former one has a band gap with only three defect states in
it — two due to three-fold coordinated dangling-bond states and one due to a highly
strained four-fold atom. The latter has approximately 3.5% of coordination defects
and no clear band gap. We must point out that both of these models are very small

(only 64 atoms per supercell) which presents an additional computational difficulty:
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the Brillouin zone for such a small supercell is large enough to render the I'-point ap-
proximation (flat electronic bands) invalid. To receive correct interatomic forces, not
only the I'-point but other points in the Brillouin zone should be sampled[74]. Due
to much higher computational efficiency of their MD scheme Drabold and coworkers
have been able to do that, while SCP have evaluated their forces at the I'-point only
which makes their results even less reliable.

Other ab initio MD models for a-Si we can mention as well are of Lee and
Chang[75] (64 atoms, “incompletely melted” starting configuration), Takeuchi and
Garzén[76] (a-Ge: 64 atoms, no pressure control) and Cooper, Goringe and McKen-
zie[77] (64 atoms, no pressure control). All of these models have a few percent of
coordination defects which result in a substantial density of defect states in the band
gap.

Some of the structural properties of Stich-Car-Parrinello and Cooper, Goringe and

McKenzie models are presented in Table 3.2.

Of the ETB based QFM models of a-Si we would like to mention the ones con-
structed by Servalli and Colombo[78] (SC), Kim and Lee[79] (KL), and the recent
models of Urbassek and Klein[80] (UK).

Both SC and KL employ the TB Hamiltonian of Goodwin, Skinner and Pettifor[31]
in their MD scheme. Neither of the schemes has true pressure control. The KL
simulation has been performed at constant volume corresponding to the experimental

density of ¢-Si and resulted in a model with only approximately 83% of four-fold
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Table 3.2: Structural properties of “quench-from-the-melt” models for a-Si crea-
ted by Stich, Car and Parrinello (CP), Cooper, Goringe and McKenzie (CGM),
Kim and Lee (KL), Urbassek and Klein (UK), Kluge, Ray and Rahman (KRR),
Luedtke and Landman (LL) and Justo et al. (JBK). C,, is the percentage of atoms

with coordination n; n¢ is the average coordination.

SCP CGM KL UK KRR LL JBK

Ref. 73] [77] 79] 8] 82 [84] [44]

Type LDA LDA ETB ETB SW SW EDIP

N 64 64 64 128 216 588 1728
T (K) 300 300 0 300 472 360 300
Cs (%) 0.2 47 3.2 1.5 0 0.5 0.23
Ci (%) 96.6 92.6 828  96.9 88 87.8  94.43
Cs (%) 3.2 1.6 12.5 1.6 12 11.5 5.34

ne 4.03 3.96 428 4001 412 412  4.054

(6) 108.32  107.38  106.7 1084 1083  108.6

Al 15.5 15.2 16.3 13.6 14.7 14.0
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coordinated atoms and Af = 16.3° (see Table 3.2 for more properties). With such
coordination and residual strain the electronic properties of the model are quite poor.
In the SC simulation the linear volume rescaling scheme is used. Their best 64 atom
model has approx. 96% of four-fold coordinated atoms (average coordination of 4.02).
The EDOS for their 216 atom model which is claimed to have the same structural
properties as the 64 atom models still shows significant density of defect states in the
bandgap region.

The models of Urbassek and Klein have been constructed with the TB Hamiltonian
of Frauenheim ef al.[37] which includes s, p and d orbitals. The simulations have been
conducted at zero pressure, employing the pressure control technique developed by
Klein[81]. The resulting models, although having some coordination defects, possess
a clear bandgap which can probably be attributed to the absence of the external
pressure induced strain in the model. The structural properties of 128 atom UK
model are presented in Table 3.2. We consider these models to be the best models
created with the QFM method. Unfortunately the models are very small — 64 and
128 atoms — and can hardly be used in serious investigations of bulk properties of

a-Si.

The first QFM models for a-Si and a-Ge created with classical (empirical poten-
tial) MD in the late eighties are due to Ding and Andersen[46] (DA), Kluge, Ray
and Rahman[82] (KRR), Biswas, Grest and Soukoulis[83] (BGS) and Luedtke and

Landman[84] (LL). DA have created 216 and 512 models of a-Ge and studied their
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phonon dispersion curves using constant volume MD with the SW potential refitted
for germanium.

KRR and LL have also employed the SW potential in their MD schemes but in
their case the zero pressure simulations have been made using the pressure control
techniques of Andersen[85] and/or Parrinello-Rahman([86]. The serious problem en-
countered was that at zero pressure the standard SW potential is incapable to quench
the liquid into an amorphous structure directly and forms a supercooled liquid state
instead[87]. Different approaches have been taken to overcome this difficulty: KRR
have applied negative pressure to the liquid to help it expand and LL have magni-
fied the three-body interaction term in the potential during the cooling procedure.
In both cases the resulting models contain numerous coordination defects (see Ta-
ble 3.2). The VDOS curves for both models show the same shift of the TO peak to
higher frequencies. Mercer and Chou[88] have calculated the EDOS of the LL model
with the TB Hamiltonian of Chadi[30] and found high density of defect states in the
bandgap region.

BGS have made use of Biswas-Hamann potential[41] and constant volume MD
technique in their simulations creating 216, 512 and 2000 atom models of a-Si with
10-15% atomic density of coordination defects. The VDOS curve for their models
also has the TO peak shift to the higher frequencies. The 216 atom BGS model has
been then used to study the electronic structure of dangling and floating bonds in
a-Si[66]. The EDOS curve for the model, presented in Ref. [66], clearly shows the

presence of numerous defect states that effectively fill out the band gap.
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The more recent empirical potential QFM models have been constructed by Ishi-
maru, Munetoh and Motooka[89] (IMM), Justo et al.[44] (JBK) and Bording[59] (for
a-Ge). Both IMM and Bording have used the Tersoff potential[42] in their simula-
tions and received structures containing approximately 10% of coordination defects.
No pressure control has been applied in IMM’s case, while Bording has used crude
volume rescaling procedure to perform constant pressure MD. Surprisingly the VDOS
curve for the IMM model is in good agreement with the experimental results of Kami-
takahara et al.[4] displaying no TO peak shift.

The JBK model has been constructed with the environment-dependent inter-
atomic potential of Bazant and Kaxiras[43] (EDIP). The standard pressure control
techniques[85, 86] have been used for performing zero pressure MD. Unlike the SW
potential, EDIP has been able to quench the liquid directly into the amorphous
phase with almost 95% of four-fold coordinated atoms. The structural properties of
the model are presented in Table 3.2. The EDOS for the model has been calculated
by Bernstein et al.[38] and shows significant density of defect states in the bandgap
region.

Finally we would like to mention one additional work where the WWW model of a-
Si has been used for close to the melting point temperature empirical MD simulations.
In 1991 Holender and Morgan created large (up to 10° atoms) models of a-Si[90, 47]
stacking up the 216 atom WWW model supercells and heating them to get rid of
periodicity. The SW potential was used with normal as well as with magnified three-

body interaction term; the pressure control algorithm was implemented with the
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technique of Andersen[85]. After the heating and subsequent relaxation to 0 K the
perfect tetrahedral bonding was lost and the resulting models had 6% of coordination
defects?. Holender and Morgan have also calculated the EDOS for their models[91]
with the TB Hamiltonian of Chadi[30]. The best EDOS curve with only a couple of
defect states in the band gap has been obtained for a variant of their model where
eight 216 atom WWW blocks were put together but only 12.5% of the randomly

chosen atoms were given high kinetic energy to destroy the periodicity.

In conclusion of this section we would like to point out that in our opinion the QFM
method is inferior in quality of generated models to the WWW method because it
consistently produces models with unphysically large amount of coordination defects
and does not allow for adequate relaxation times to reduce strain in the model’s
network. As a result the electronic properties of the models are ruined which does

not happen for the models created with the WWW method.

3.4 Other methods

3.4.1 Reverse Monte Carlo method

The reverse Monte Carlo (RMC) method is a technique for creating structural
models of materials using experimental data as an input fitting information. Mul-

tiple atomic species materials and materials of unknown stochiometric composition

“When the SW potential with magnified three-body interaction term was used. For the standard
SW potential the coordination defects concentration raises to 26%.
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can be modeled (like ternary chalcogenide glasses)[92]. Almost any experimental or
computed with a higher precision numerical method curve can be used for fitting.

The most widely used fitting data sets are:

the desired system coordination,

the desired bond angle distribution,

the pair correlation function g(r),

the x-ray diffraction data like structure factor S(q),

but even the VDOS or EDOS curve can be employed in the same fashion. This fitting
data is regarded as constraints imposed on the system.
The short description of the RMC modeling strategy is the following (the details

are given in Ref. [93, 94]):

1. The starting configuration of particles at the desired density is created. A set
of “constraint curves” Ff(z) is calculated for it, i.e. if we want to fit to the
experimental ¢(r), we calculate the model’s pair correlation function ¢¢(r); for
an additional fit to the experimental S(q), we calculate the S¢(gq) for the model

etc.

2. The goodness-of-fit factor

¢ =3 -3 (Fle) - Fr(@)
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is calculated, where Ff(x) are the experimental data sets (constraints) to which
the model is being fitted to. o; is the standard deviation of the experimental

data set 1.

3. A new trial configuration is created by randomly moving one particle. The set

of Ff(z) and factor x* (x2) are calculated for the new configuration.

4. If x2 < x2 the move is accepted. If not, the move is accepted with the

Metropolis-like probability p = exp{—1 (x% — x2)}.

The modeling process progresses by repeating steps 3 and 4; the model is regarded
to have achieved structural equilibrium when the goodness-of-fit factor starts to os-
cillate around a given value (which depends on ¢;) without any further improvement
of the fit. Note that this method does not require any interatomic potentials which
is of course an advantage.

The RMC method has been applied to modeling of a-Si by Pusztai and Kugler[95]
and a-Si, a-C and a-Ge by Gereben and Pusztai[96]. In both cases models were fitted
to experimentally measured structure factor with an additional requirement of 100%
four-fold coordination and bonding close to tetrahedral. The constructed models
contained up to 99% of four-fold coordinated atoms but they also contained a lot of
internal strain due to completely artificial preparation procedure. Recently Rosato
and Celino[97] have attempted to relax an RMC-produced model of a-Si with ETB
MD (empirical TB Hamiltonian of Kwon et al.[33]) and study its vibrational and

electronic properties. As constructed, their model had 88.5% of four-fold coordinated
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atoms but after the relaxation procedure this value dropped to 75% (with the average
coordination of 4.5), which resulted in very poor vibrational and electronic properties.

Our general conclusion about the applicability of this method is that the RMC is
a useful technique for modeling systems where no other modeling method is available.

It is definitely not a method of choice for modeling amorphous silicon.

3.4.2 Activation-relaxation technique

The activation-relaxation technique (ART) is a powerful method of investigating
the long-time dynamics of glassy materials that can also be used for modeling. It was
introduced by Barkema and Mousseau[98, 99] in 1996 and applied for modeling of a-Si
and a-GaAs[100] and studying of relaxation and diffusion mechanisms in a-Si[101].

As we have pointed earlier, the major problem of the conventional MD techniques
is their short simulation timescale comparable to only a few atomic oscillations. But
in disordered or glassy materials many important microscopic structural phenomena
often occur at timescales that are orders of magnitude longer than typical phonon
frequencies. Instead of following the atomic oscillations (like in MD), ART allows
us to sample the energy landscape for a system of interest in an attempt to find its
global energy minimum, thus performing more radical structural relaxations of our
system than those that are possible with MD techniques. The general idea of the
method is given below.

At low temperatures our system remains at some local energy minimum in the

configurational energy landscape. The energy barriers surrounding this minimum
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are typically much higher than system’s temperature and only rare fluctuations of
system’s thermal parameters will allow it to jump over a barrier and move to a
different energy minimum. For an MD simulation this means that our system can
spend all its time around this minimum and never escape it because a fluctuation
required to push it over an energy barrier is so rare that it never occurs during the
typical time interval an MD simulation can achieve. ART has been developed to
overcome this difficulty by providing the relaxation scheme based not on individual
atomic motions but rather on events which can include complex simultaneous motions
of many atoms.

An event in ART is defined as a move from one local energy minimum to another.
Each move contains of two separate steps: activation and relazation. The activation
step starts with pushing the system out of equilibrium (energy minimum). Then the
system is moved “uphill” in the configurational energy landscape to the nearest saddle
point along a path of minimal energy. After the system reaches the saddle point it
is brought “downhill” to the next energy minimum. For a system of N particles
this technique effectively reduces the 3N-dimensional configurational space (most of
which is highly energetically unfavorable and is never visited at low temperatures) to
a space consisting only of the local energy minima and paths connecting them.

ART can use any method for computing atomic forces — from classical interatomic
potentials to full ab initio techniques. At the same time, even when employing the ab
wnitio forces it stays much more computationally efficient than first principles MD.

Using ART, Barkema and Mousseau[98] have constructed 1000 atom model for



73
a-Si with average coordination of 3.97 and Af = 9.97°. The atomic forces have been
obtained with the SW potential with the three-body term increased by 50%. The
initial configuration have been taken as a random closely packed structure at c-Si
density. In general, models created with ART employing the modified SW potential
have structural properties as good as the properties of the best QFM models created

with ab initio or accurate ETB MD.
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Chapter 4

Vibrational signatures of nanovoids
in a-Si and a-Si:H

The computational project, presented in this chapter, investigates two important
issues related to vibrational properties of a-Si and a-Si:H. It is well known that a-Si/a-
Si:H, grown using conventional techniques like chemical vapor deposition, contains
nanovoids in its structure([l, 7, 8, 9]. Vibrational properties of voids and coordination
defects introduced in the a-Si CRN models have been studied by Biswas et al.[102, 103]
and by Chehaidar et al.[104]. Both groups have used models of average quality and
empirical potentials to perform MD simulations and compute dynamical matrices
and their results appear to be in contradiction. However in both cases a conclusion
can be made that the presence of defects (like voids) in the CRN gives rise to low-
energy (low-frequency) vibrational states that are spatially localized on these defects.
An immediate question arises: what is the connection between these states and the

celebrated tunneling or two-level states in glasses[12, 13] that are utilized to explain
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anomalous (non-Debye) low-temperature specific heat behavior in these materials?
Both groups have only speculated on this subject but failed to make any rigorous
conclusions about the nature of these localized low-energy states and their possible
kinship to the two-level states. Finally, a recent experimental work with a new hot
wire form of a-Si:H has been reported[105] which connects the absence (very low
concentration) of voids in the material with the absence of low-energy vibrational
excitations in it (and consequently excellent semiconducting properties of the new
material).

Motivated by these results we have performed studies of CRN models for a-Si, and
models with hydrogenated and unhydrogenated voids introduced into the network, to
understand how the presence of voids changes vibrational properties of the material
and what is the relation between these properties and the two-level states. On the
first stage of our investigation we have examined small models of a-Si without voids
and a-Si:H with hydrogenated voids using ab initio MD technique[106] and on the
second stage we have studied large models of a-Si without voids and a-Si with voids
employing empirical MD technique[107, 108]. The detailed description of the project

and the discussion of the obtained results are given below.
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4.1 Ab Initio MD studies of vibrational properties
of voids in a-Si:H

4.1.1 Model construction and calculations

Before we can actually study the vibrational properties of voids in a-Si/a-Si:H an
appropriate model of the material containing a void should be constructed. In this
section, due to the limitations of the ab initio MD technique that we plan to use, we
build only small models with voids (less than 216 silicon atoms). The 216 atom model
for a-Si (without voids) generated with the WWW scheme[51] by Djordjevic, Thorpe
and Wooten[52], DTW216, is employed as a “base” for construction of models for
a-Si:H with voids in the bulk. The structural, vibrational and electronic properties
of DTW216 are presented in section 3.2.

For our MD simulations we use the ab initio local basis TBMD code “Fireball-96”
developed by Sankey and coworkers[23]. In equilibrium geometry search, we consider
our models fully relaxed when total forces on any atom in the supercell are less than
0.03 eV/A.

In the first step (which we need to perform only once) we relax the DTW216
model, obtaining its equilibrium geometry configuration by dynamical quenching. In
our case relaxing the model resulted only in minor network rearrangements. The
radial distribution function, obtained for the relaxed model, appeared to be in good

agreement with experimental data, as was the case for the original model before
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relaxation.

In the second step we remove a cluster of Si atoms, thus creating a void in the
silicon network. The removal of these atoms out of the network results in dangling
bonds; we terminate them with hydrogen atoms. In the models, presented here, we
consider entirely passivated networks, where every dangling bond in the network is
terminated by a hydrogen atom, initially placed directly on the bond 1.5 A away from
a Si atom. This procedure is illustrated with Fig. 4.1.

After discarding the chosen cluster of Si atoms and saturating the dangling bonds
on the surface of the void with hydrogen atoms we perform the third step — another
MD quench, which gives us the equilibrium configuration for the new structure with
void. At this point the actual number of relaxation steps required to make forces on
every atom sufficiently small varies greatly, depending on the size and form of the
void.

When the equilibrium geometry for the model is obtained we construct and diago-
nalize the dynamical matrix for it[63] and then, using its eigenvalues and eigenvectors,
compute model’s VDOS, TPR and “vibrational activity” colormaps for certain vibra-

tional modes.

4.1.2 Discussion of results

In this subsection we discuss our results received for two different a-Si:H models
with voids. The first model has five Si atoms removed and twelve H atoms added (we

refer to it as “small void” model), the second one has 23 Si atoms removed and 36 H
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Figure 4.1: Creating a hydrogenated void in CRN model. Here Si atoms pictured
in dark gray are the ones we intend to remove, thus creating a void. Si atoms
represented by light gray are the nearest neighbors of the atoms that we are
removing. H atoms represented by small white spheres are placed on the bonds
between the atoms that we are removing and their nearest neighbors 1.5 A

away from the latter.
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atoms added (“large void” model).

To be able to compare the results for our a-Si:H models and results, obtained for
voidless DTW216 model, which serves as our “reference” model, we have performed
the set of all calculations, described in the previous subsection, for DTW216 as well
as for both models containing voids.

In Fig. 4.2 we present our results for voidless DTW216 model of a-Si; note that
the calculations show that for a model of this size there are no vibrational states
present with frequencies up to approximately 5560 cm~!. Now, if we compare these
results with the results obtained for the “small void” model, shown in Fig. 4.3, and
restrict our attention only to low energy states, we can see that for a model with
void a new vibrational mode emerges at 32 ¢m~! and this mode has high IPR and
can be considered spatially localized. The colormap for the aforementioned mode is
presented in Fig. 4.4. It enables us to estimate where this vibration is localized in the
supercell and how it decays in space. We can see that the mode has rather complicated
structure, although it is mostly localized around the surface of the void and decays
very rapidly when we move away from the void; there are certain directions where it
decays more slowly and a whole cluster of vibrationally active atoms to the side of the
void. For comparison in Fig. 4.5 we present one of the low-energy (64.4 cm™") modes
for “small void” model that has relatively low IPR and, according to the picture, is
rather uniformly distributed in space.

Now comparing the results for the first two models, discussed in the previous

paragraph, with the results received for the “large void” model (Fig. 4.6) we can see
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Figure 4.2: VDOS and IPR for DTW216 model calculated with “Fireball-96”.
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Figure 4.3: VDOS and IPR for “small void” model (211 Si atoms, 12 H atoms) for

a-Si:H with void (high energy modes are not shown) calculated with “Fireball-

96”.
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Figure 4.4: Localized low-energy vibrational mode for ‘“small void” model.
Phonon frequency is 32.0 cm~!. Here atom pictured in red accounts for more
than 10% of total supercell excitation. Atoms, represented by green, light gray
and white, account for more than 1 and up to 10%, more than 0.1 and up to

1% and less than or equal to 0.1 % of total supercell excitation accordingly.
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Figure 4.5: Low-energy vibrational mode for “small void” model which is de-

1

localized. Phonon frequency is 64.4 ¢m™'. Color conventions the same as for

Fig. 4.4.
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Figure 4.6: VDOS and IPR for “large void” model (193 Si atoms, 36 H atoms) for

a-Si:H with void (high energy modes are not shown) calculated with “Fireball-

96”.
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that now we have three new low energy states, but only one of them, at 21.8 em™!
has high IPR (more than two times larger than for the similar mode in “small void”
model) or is localized. Examining the colormap for this mode, presented in Fig. 4.7 we
also notice that spatial localization of the mode is quite similar to “small void” model
mode with the exception that the former decays much faster and its localization on
a cluster of Si atoms to the side of the void is much sharper.

Our hydrogenated models also produce highly localized states at 600-630 cm~!
(hydrogen bend) and 2000-2200 cm~' (hydrogen stretch). Other hydrogen related
1

states, corresponding to mixing of the first two, fill out the region of 700-1000 cm ™.

A colormap for one of these modes is shown in Fig. 4.8.

4.1.3 Some conclusions

Studying the models for a-Si:H with voids we have found localized low-energy
modes in their vibrational spectrum, which is in general agreement with the results
of Chehaidar et al.[104]. The nature of these modes is quite complicated but evi-
dently connected with the existence of voids — for both localized low-energy modes
considered a number of silicon atoms located close to the surface of the void exhibits
high vibrational activity.

The principal shortcoming of the calculations presented here is of course the very
small size of the models, which leads to artificial interaction between a void and its
“ghost” images in the neighbor supercells. For the “small void” model, this problem is

apparently less serious, since the void-induced low-energy state is well localized. The



86

© o

Figure 4.7: Localized low-energy vibrational mode for “large void” model.

Phonon frequency is 21.8 cm~!. Color conventions the same as for Fig. 4.4.
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Figure 4.8: An example of localized high-energy hydrogen mode for “small void”

model. Color conventions the same as for Fig. 4.4.
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main point of this work is that voids lead to low-frequency modes, and contribute
(along with extended low-frequency modes) to the vibrational spectrum. Because
they are localized, they would not be relevant to thermal conduction, and might have
a long lifetime.

Finally, making a connection between our results and the peculiar properties of
the new hot wire form of a-Si:H developed by X. Liu et al.[105], our work suggests
that indeed the small density of voids in their material should lead to a reduction in

low-energy vibrational excitations.

4.2 Empirical MD studies of vibrational proper-

ties of voids in a-Si

As we have pointed out earlier an obvious disadvantage of our previous calcula-
tion[106] is a very small size of the supercell containing a void. In order to gain better
understanding of the nature of the void-related vibrational modes we need to perform
similar calculations with larger and consequently more realistic models for a-Si. Of
course as the size of a model increases we have to “downgrade” our computational
techniques to empirical potentials, thus losing all the merits of rigorous ab initio
approach.

We use the empirical potential of Bazant and Kaxiras (EDIP)[43] in our MD
simulations and for construction of the dynamical matrices for our large models. Due

to the fact that this potential is (i) relatively new and (ii) has been fitted to simulate
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only the bulk properties of amorphous silicon (and not surfaces — like we get when
making a void in the network) it is also interesting to test its accuracy for calculations
of vibrational properties of models for a-Si with and without voids, especially small
ones — to verify that EDIP can reproduce (at least, qualitatively) the features we
have obtained with more advanced ab initio method. As atoms of only one type —
silicon — can be used in calculations with EDIP at this stage we are unable to use

hydrogen atoms to terminate dangling bonds on void surface in our models.

4.2.1 Test of empirical potential

In this section we present some testing results for the DTW216 model for a-Si and
211 atom model with a void constructed from it by removing a single atom from the
network together with its four nearest neighbors and then quenching the resulting
structure to its equilibrium geometry with EDIP (as we have mentioned earlier, no
H atoms are used here to terminate the dangling silicon bonds). The results of our
VDOS and IPR calculations with EDIP are shown in Fig. 4.9. It’s easy to notice
that the model with void has a localized state in the low-energy gap which is general
agreement with our previous results shown in Fig. 4.3. Of course, in this comparison
we neglect all of the hydrogen motion in our “small void” a-Si:H model which is
reasonable because hydrogen atoms do not “participate” in vibrational excitations of
such low energy. It is clear that despite the fact that EDIP, comparing to the ab initio
calculation, gives us different shape of the VDOS curve in the low-energy region, it is

capable of reproducing the localized low-energy excitations. A “vibrational activity”
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colormap for the localized low-energy mode we see in 211 atom model with void is
shown in Fig. 4.10 has localization pattern quite similar to our previous result for

“small void” model treated with ab initio technique (see Fig. 4.4).

4.2.2 Model construction and computational procedures

We employ the large Djordjevic, Thorpe and Wooten 4096 atom model[52] for a-Si
as a base for building a family of models with voids. At first we optimize the geometry
of the basic model by performing an MD quench with EDIP, which results only in
minor network rearrangements. Due to less computationally demanding method for
force calculations compared to the ab initio technique employed in the previous section
we can use a more stringent force tolerance threshold for simulated quenching regime
in our MD program: in all of its applications mentioned here we consider the models
well relaxed when forces on all atoms are smaller than 0.01 eV /A. The relaxed variant
of DTW4096 is then used to produce all of the models with voids. To cut out a void
we pick an arbitrary atom in the network and remove it as well as the consecutive
spherical shells of its neighbors. We find that our results do not depend much on
which atom we select for this procedure.

By applying this technique we have constructed three models with voids of dif-
ferent diameter: a 4091 atom model with a “small void” (only one atom and four
of its nearest neighbors removed) — a void of approximately 5 A in diameter, 4069

atom “medium void” model with 10 A void and 4008 atom “large void” model with
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Figure 4.10: Localized low-energy vibrational mode for 211 atom model with a

void derived from DTW216 model. Color conventions the same as for Fig. 4.4.
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15 A void. We refrain from building models with even larger voids to prevent possi-
ble interaction of a void with its own “ghost” images in the neighboring periodically
translated supercells.

Every model with void is then quenched again to minimize the forces acting on
atoms in the new configuration. After that we calculate the dynamical matrix for
the model in exactly the same way as in the previous section with only difference
that the interatomic forces for the dynamical matrix calculation are computed with
EDIP and not the ab initio method. Of course, for a system of thousands atoms
the dynamical matrix is very large, and this often causes problems in storing it on
disk or in computer memory. Fortunately the dynamical matrix is also very sparse,
because in most cases the displacement of a single atom generates significant forces
only on its closest neighbors but not in the whole supercell. We extensively exploit
this property of dynamical matrices in our calculations, discarding terms smaller than
10_4eVA_2a.u.m._1, which is a good compromise between accuracy and compactness
of the output. Once the sparse dynamical matrix for the system is obtained we
use a separate routine to exactly diagonalize the whole matrix and obtain all of the
eigenvalues and eigenvectors. Again, for the same reasons as already mentioned above,
we do not write out all of the eigenvectors (however, we do keep all their IPRs) but
rather only those that exhibit properties we look for: (i) small energy/eigenvalue
(less than 200 em™') and (ii) relatively high IPR, showing that the vibrational mode
we are dealing with is localized. All this data is then used to produce the VDOS and

IPR graphs for the model and create the spatial localization/delocalization colormaps
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for some of its low-energy vibrational modes.

Finally we need to make an important comment on the calculation of vibrational
properties with EDIP. For all of our large models including the voidless DTW4096
we found that model’s dynamical matrix has a few negative eigenvalues. The models
with voids tend to have more negative eigenvalues than the model without voids, and
the larger is the diameter of the void the more negative eigenvalues are found for the
model’s dynamical matrix. Regarding the voidless model, we believe that the negative
eigenvalues found in its dynamical matrix are due to the fact that model’s equilibrium
structure (produced with the WWW method) creates an energy landscape which may
be far from a real minimum for EDIP. In such situation computer discretization errors
and the fact that dynamical matrix is calculated by finite differencing and not by
taking analytical derivatives may lead to the emergence of negative eigenvalues in the
matrix’ spectrum. In models with voids, in addition to all these points, the restoring
force on atoms located on void’s boundary can become anharmonic which makes it
close to zero in dynamical matrix calculation (harmonic approximation) which might
also lead to negative matrix eigenvalues. It is important to remember that even the
most advanced simulation methods like ab initio MD are approzimate and in certain
cases they may not produce realistic results. Of course, in an absolutely precise
ideal calculation of vibrational spectrum of a system, states that have imaginary
frequencies (negative eigenvalues) in the approzimate dynamical matrix calculation

mentioned above should all have very close to zero positive frequencies.
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4.2.3 Vibrational properties and localization

The results of our calculations of the low-energy regions for VDOS and IPR for all
the four models introduced above are shown in Fig. 4.11. We can see that the large
models for a-Si (both, with and without voids) exhibit quite a complicated vibrational
behavior, much more complex than that of smaller 216 atom based families of models,
we have studied before[106, 107]. The most important difference here is that a-Si
model without voids has two localized low-energy modes that are associated with
strained regions of the network: we have checked bond lengths and bond angles for
the atoms in these regions and found that these modes are localized on atoms with
bond angles deviating from the perfect tetrahedral angle by more than 30 degrees.
The vibrational activity colormaps for both modes are shown in Figures 4.12 and
4.13.

Consequently, now we have two types of phonon traps in our models with voids —
the voids themselves and the strained regions of the network. Keeping this in mind
we can attempt to introduce a rough classification of the localized low-energy modes
according to the type of phonon trap they fall into. First, we can see a significant
number of vibrational modes in our models with voids that generally show the same
kind of localization properties that we have encountered in our previous calculation:
they are exponentially localized with the center of localization positioned to the side
of the void. We classify these excitations as void type modes. The colormaps with

some examples of void type vibrational modes in all three of our models with voids



96

24 U U 1 Zar A
c c
S =}
£ 8 1
G &
o 4 G2 .
) )
o o
o | o | |
Al Al
0 T I I I I 0 T I I I
. model without voids _ [ "small void" model ’
w30 - 4 @30 .
c c
= ] L 4
g g
520 - - ®2r .
& 10 - - g0 .
: | |
0 10 20 30 40 50 0 10 20 30 40 50
E(cm™) E (cm™)
WVU | U
24 - 1 Zar 8
= 2
S =}
2 2 ]
S &
My 4 ot .
) )
o o
a | ] o | |
S S A M
0 \ \ \ 0 . \ \ \
"medium void" model [ "large void" model i
230 - 4 230+ .
c o
= ] L 4
o o
820 4 & 20 =
) M 1
& 10 4 E10f ]
0 | H
0 10 20 30 40 50 0 10 20 30 40 50
E (cm™) E (cm™)

Figure 4.11: Low-energy VDOS and IPR regions for 4096 atom DTW model
without voids (upper left set of panels), 4091 atom “small void” model (upper
right), 4069 atom “medium void” model (lower left) and 4008 atom “large void”

model (lower right). E is phonon frequency.
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Figure 4.12: Localized low-energy vibrational mode for DTW4096 model without

voids. Phonon frequency is 12 c¢m™!

. IPR is 23.3. Atoms pictured in yellow
account for more than 1 and up to 5% of total supercell excitation. Atoms,
represented by green, blue and gray account for more than 0.5 and up to 1%,
more than 0.1 and up to 0.5% and more than 0.05 and up to 0.1% of total
supercell excitation accordingly. Atoms responsible for less than or equal to

0.05% of total supercell excitation are not shown except around the voids (atoms

pictured in white).
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Figure 4.13: Another localized low-energy vibrational mode for DTW4096 model

1

without voids. Phonon frequency is 18 ¢cm™ . IPR is 18.8. Color conventions

the same as for Fig. 4.12.
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are shown in Fig. 4.14, 4.15, 4.16 and 4.17. Secondly, the modes we might attribute to
the strained network region phonon trap type in models with voids exhibit a different
kind of behavior in comparison to the voidless model. These modes do not localize
ezactly on the strained regions in the supercell; instead they form a string extended
between one of these strained regions and the void. The possible explanation of this
behavior is that these modes can be regarded as a superposition of void type modes
and the localized excitations in the model without voids. In our classification we call
them mixed type modes. The examples of such modes in all three of our models
with voids are presented in Fig. 4.18, 4.19, 4.20 and 4.21. We have to stress once
again that the classification we propose is only approximate and is based mostly on
the colormaps (i. e. pictures) we get for our models not on rigorous mathematical
arguments. We must also add that all the low-energy modes, that appear localized
in our finite models, will be pseudolocalized in an infinite sample[109].

We must admit that in our current investigation we were not able to find any
simple connection between the size of the void and the energy and type of resulting
localized modes. Our data shows that for different models with voids modes of dif-
ferent types dominate in the low-energy region. In the “small void” model a mode
with the highest IPR at 10.58 cm ™! is of void type (see Fig. 4.14), but the succeeding
three modes with high IPR, at 14.43 (Fig. 4.18), 18.25 and 20.97 cm ™! are of strongly
pronounced mixed type. In the “medium void” model, to the contrary, all three low-
energy localized modes at 5.89 (Fig. 4.19), 6.12 and 8.13 cm ™! are of mixed type. The

mode with strong void type behavior is also present but it is shifted to 17.97 em™" (see
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Figure 4.14: Void-type mode for “small void” 4091 atom model. Phonon fre-

quency is 10.58 cm~!. IPR is 34.8. Color conventions the same as for Fig. 4.12.
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Figure 4.15: Void-type

mode for “medium void” 4069 atom model. Phonon fre-

quency is 17.97 cm~!. IPR is 15.9. Color conventions the same as for Fig. 4.12.
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Figure 4.16: Void-type mode for “large void” 4008 atom model. Phonon fre-

quency is 2.34 cm~!. IPR is 22.9. Color conventions the same as for Fig. 4.12.
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Figure 4.17: Another void-type mode for “large void” 4008 atom model. Phonon

frequency is 6.1 cm~!. IPR is 15.4. Color conventions the same as for Fig. 4.12.
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Figure 4.18: Mixed-type mode for “small void” 4091 atom model. Phonon fre-

quency is 14.43 cm~!. IPR is 30. Color conventions the same as for Fig. 4.12.
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Figure 4.19: Mixed-type mode for “medium void” 4069 atom model. Phonon

frequency is 5.89 cm~!. IPR is 22.3. Color conventions the same as for Fig. 4.12.
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Figure 4.20: Mixed-type mode for “large void” 4008 atom model. Phonon fre-

quency is 15.8 cm~!. IPR is 18.2. Color conventions the same as for Fig. 4.12.
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Fig. 4.15). Finally in the “large void” model modes at 2.34 (Fig. 4.16) and 6.10 cm ™!
(Fig. 4.17) are of void type and all the others, including a strongly localized mode at
10.28 em ™!, exhibit mixed type behavior. We speculate that the network strain and
geometrical peculiarities of any given model play a more important role in shaping
the energy and type distribution of its localized vibrational modes than the actual
size of the void — at least for the models with voids of comparable sizes, as we have

here.

4.2.4 Specific heat

It is relatively easy to obtain specific heat C(T") dependence for the model if the
VDOS information for it is available[110]:

Emaz E 2 eE/kBT
o = BR/O (kBT) (e/ksT — 1) sENIE,

where F is phonon frequency and VDOS g¢(FE) is normalized to unity. Neverthe-
less one thing should be treated with caution: the model VDOS one usually has is
relevant for a system of finite size (i.e. our supercell). Vibrational excitations with
wavelengths longer than the size of the supercell cannot be excited in this model and
are consequently missing in its VDOS data. In order to receive the precise values for
C(T) one should correct VDOS for the finite size of the system. In our case it is done
in the following fashion: all the delocalized (acoustic) vibrational modes of energy

1

less than 20 em ™! are cut out and substituted by a weak parabolic tail oE? in the

routine to compute the VDOS. Parameter « can be obtained from a calculation of
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the elastic constants of the model[111] but in this investigation we use a more simple
approach, fitting « to provide a smooth transition between the low-energy parabolic
tail and the rest of VDOS.

The overall temperature dependence for specific heat for all of our models is in
good agreement with Dulong and Petit’s law at high temperatures and Debye’s law
at low temperatures; our calculation also produces approximately the correct Debye
temperature for a-Si. For the room temperature (300K) we receive practically the
same value for specific heat for all of our models: 19.7 JK 'mol~!.

In the left panel of Fig. 4.22 the C(T)/T® low-temperature dependence for our
models is presented. The most striking feature in this graph is the presence of sharp
peaks at T' < 3K in the curves for the models containing voids. The model without
voids does not have this peak, although it does demonstrate the presence of the well
known excess specific heat bulge or “boson peak”, the position and height of which are
in qualitative agreement with experiment[112] as well as with recent computational
results of Feldman, Allen and Bickham[109]. All of our models with voids also have
these excess specific heat bulges. We were not able to find any experimental data
for specific heat measurements in a-Si at temperatures below 2K, but in order to
make some general comparison to experiment for these new low-temperature features
we obtain (which should be generic for any disordered system containing voids), we
provide the experimental curve for vitreous silica[13] in our graph.

Unlike the previous void size vs. energy situation, we can find a clear connection

between the presence of low-energy localized modes in vibrational spectrum of the
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model and the height (or even absence) of the low-temperature peak in its C(T)/T?
graph. For the “small void” model we have a localized mode at 1.19 cm™" (here and
below, see Fig. 4.11) — the lowest energy at which we can see localized excitations
in all our models — and the highest peak in C(T)/T® dependence. The “large void”
model has its lowest energy localized excitation at 2.34 em~! and the peak of smaller
height comparing to the previous model. The “medium void” model has two localized
states but only at approximately 6 em ™! and peak that is even less pronounced than
in case of the first two models. Finally the model without voids has no localized
states with energy lower than 11 em™! and no low-temperature peak whatsoever.

In order to investigate this connection in more detail we have performed a simple
numerical experiment, which results are shown in the right panel of Fig. 4.22. We have
clipped the eigenvalue at 1.19¢cm~! from the eigenvalue set for the “small void” model
and recalculated its VDOS and C(T') receiving no low-temperature peak in C(T)/T?
graph, much like in the situation with the model without voids. In our opinion
these results provide enough evidence to attribute the existence of low-temperature
(T < 3K) peak in C(T')/T? dependence for the model to the presence of localized low-
energy (E ~ 1 — 6 cm™!') vibrational excitations — in our case produced by voids —
in its spectrum.

We must note that the localized vibrational excitations we see, although hav-
ing rather low energies, are not tunneling states, that are nonharmonic by nature
and can not be obtained in harmonic approximation calculation. We do not claim

that the whole tunneling states theory is incorrect, we rather propose an alternative
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mechanism that explains the same experimental data. It seems that any mecha-
nism that creates additional density of vibrational states (be this tunneling states or
low-energy localized “void” vibrations in porous materials) at very low energies will
produce the same effect on low-temperature specific heat behavior. In order to find
out which mechanism of the two mentioned above actually works in real material, an
experimental investigation of low-temperature thermal properties and simultaneously
geometrical quality (i.e. presence of defects, voids, strained regions) of this material
should be carried out. The works of X. Liu ef al.[105] or Coeck and Laermans[113]

for amorphous silicon can be regarded as the closest examples here.

4.2.5 Conclusions

We have studied vibrational and thermodynamical properties of 4096 atom DTW
model for amorphous silicon and the family of models with voids based on it, employ-
ing Bazant-Kaxiras environment-dependent interatomic potential and empirical MD
technique. We have found that the models with voids possess a complex spectrum of
localized low-energy excitations that can be roughly divided into two groups — void
and mixed type modes — according to their localization patterns. Our calculations
show that there is no simple connection between the size of the void and the energy
and type of its localized modes. It is most probable that not only the size of the
void but also its local geometrical environment as well as strain distribution in the
neighboring regions of the network play a paramount role in shaping the low-energy

vibrational spectrum of the system. We have constructed specific heat C(T') plots
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for our models, that appear to be in good agreement with experiment. We have also
plotted out our models’ C(T)/T? dependencies for the low-temperature region, which
seem to be in adequate agreement with experimental and other computational results
for T > 3K (the excess specific heat bulge) and predict new interesting features, un-
doubtedly connected with vibrational properties of voids present in the system, at
lower temperatures. We must stress that our results are correct for model materials
with a uniform distribution of voids of one and the same size, which is of course im-
possible to produce in real material. Nevertheless, employing our model data we can
predict that in real material the localized low-energy vibrational states, connected to
voids of different sizes, will fill out a band which will alter the parabolic VDOS tail

properties at small energies and consequently manifest itself by changing the specific

heat C(T)/T? dependence.
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Chapter 5

Realistic models of paracrystalline
silicon

Work presented in this chapter has been done in collaboration with P. M. Voyles,
N. Mousseau and G. T. Barkema. Dr. Barkema has provided us the initial code
for construction of CRN models of a-Si with the modified WWW method and the
code for crystalline cluster analysis. The former code has been then modified by us
to allow construction of paracrystalline silicon models. The experimental electron
microscopy data as well as all the simulated normalized variance curves discussed in
subsection 5.2.3 have been kindly provided by Dr. Voyles.

Recent fluctuation electron microscopy (FEM) experiments have shown signa-
tures of medium range order (MRO) in as-deposited amorphous semiconductor thin
films [10, 114]. These results have been interpreted as indicating the presence in
the amorphous films of small (< 30 A) topologically crystalline grains, which are

distorted by strain and embedded in a disordered matrix. Such material is called
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paracrystalline [114]. It has the structure factor of amorphous material, but nonethe-
less has significant MRO. It is difficult to verify this interpretation with other exper-
imental techniques, so computer modeling has been used to study the structure of
these complex systems and the traces of MRO in them. In this chapter we present
the first large scale atomistic models of paracrystalline Si which are electronically
realistic[115]. Simulated FEM on these models reproduces the experimental mea-
surements more accurately than any other model tested.

Only a model that agrees with a whole set of experiments, including structural,
optical, and vibrational characterizations, can reliably describe a real material. One
of the most common methods for constructing CRN models of a-Si, the molecular
dynamics (MD) “quench from the melt” procedure, does not meet this criterion,
as it produces models with relatively poor electronic properties (see Chapter 2 for
detailed discussion). The best large (1000 atoms and more) models created with
this technique[44] tend to have at a least 3-4% concentration of coordination defects,
as well as significant residual network strain which manifests itself as an increased
width of the bond-angle distribution Af compared to the experimental value[3]. The
electronic states associated with these structural defects fill out the optical gap of
the model material[66, 67], practically turning the model from a semiconductor into
a poor metal [116]. This is clearly unphysical. However, these models can have a
reasonable phonon spectrum and pair-correlation function, which can be misleading,
since the results of simulations for these models involving their electronic properties

can not be fully trusted.
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The only family of models of paracrystalline Si previously available was a set of
models developed by Keblinski et al. [114, 117] using empirical MD with the Stillinger-
Weber potential [40] and a “quench from the melt” procedure in which ¢-Si grains
are introduced into the melt and not allowed to dissolve [118]. Recently, we have
extensively studied the properties of these models [117] and found that, like CRN
models produced in a similar way, these paracrystalline models have an unphysically
high density of defect electron states in the bandgap region — see Fig. 5.1. They
do, however, better reproduce the degree of MRO present in experimentally grown
a-Si films [114] than a variety of CRN models. Now our challenge is therefore to
create a model that would comply with all the experiments simultaneously. In order
to do that we have employed the bond-switching algorithm of Wooten, Winer and
Weaire [51], modified by Barkema and Mousseau [55], which produces the best current
CRN models. The original WWW method has been used by Nomura et al.[119]
to study electronic properties of nanocrystallites in a-Si but for unknown reasons

produced poor results.

5.1 Model preparation

We generally follow the procedure of Barkema and Mousseau outlined in sec-
tion 3.1 to create paracrystalline models, but before randomly seeding the supercell

with atoms, we position inside it one or more crystalline grains, randomly oriented
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Figure 5.1: The EDOS for paracrystalline and CRN models of Keblinski et al.
Upper panel: 512 atom paracrystalline Si model PC-K1. Solid line: initial
configuration, dashed line: after quench with FIREBALL, bold line: after anneal
and quench with EDIP. Middle panel: 700 atom paracrystalline Si model PC-
K1.5. Solid line: initial configuration, bold line: after anneal and quench with
EDIP. Lower panel: 1000 atom paracrystalline Si model PC-K2 (solid line) and

512 atom CRN model CRN-K1 (long-dashed line).
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with respect to one another. The grains are created by starting with a spherical sec-
tion of crystalline Si and keeping only those atoms that have two and more nearest
neighbors which also belong to the grain. For reasons described below we also require
the grain to contain an even number of atoms that have three nearest neighbors.

When the grain is positioned inside the box, a nearest neighbor list is created
for it and the 2- and 3-fold coordinated atoms on the surface are identified. After
the grains are set in place the remaining volume is randomly seeded with “matrix”
atoms, which are then connected into a perfectly 4-fold network. The grains are at
this point disconnected from the disordered matrix and need to be incorporated into
it in such a way that all the atoms have exactly four nearest neighbors. This is done
in two steps. First, for any 2-fold grain atom the closest bonded pair of matrix atoms
is found, the bond between the matrix atoms is broken, and two new bonds between
each of the matrix atoms and the grain atom are formed. Second, for each 3-fold
grain atom the closest additional 3-fold grain atom is found, then the bonded pair of
matrix atoms closest to both 3-fold grain atoms is found, and the bond between these
atoms is broken and two new 3-fold grain atom/matrix atom bonds are formed. This
requires an even number of 3-fold grain atoms. This algorithm creates a number of
unphysically long bonds, but these high-energy bonds are sure to be broken during
the bond-switching transpositions.

After the perfectly 4-fold network containing both the crystalline grains and the
matrix is constructed, it is subjected to bond-switching moves in order to minimize

the system’s energy. Unlike in the WWW method, we constrain the bond switching in
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order to preserve the crystalline topology of the grains during energy minimization.
Bonds between grain atoms are not allowed to break; only bonds between a grain
atom and a matrix atom or between two matrix atoms can be broken. An additional
constraint is imposed on the positions of the grain atoms: during the initial phase
of the relaxation, while strain in the system is relatively high, the coordinates of the
grain atoms are fixed. When the energy of the system with fixed grain atoms reaches

its minimum, the grain atoms are allowed to move and the energy is minimized again.

5.2 Discussion of results

5.2.1 Structure and vibrational properties

Using the procedure described in the previous section we have constructed three
models of paracrystalline silicon. The first 400-atom model, called px400, has one
grain consisting of 44 atoms, positioned in the center of a 20 A cubic box. This model
has been created mostly for testing purposes. The second model, px1000, has 1000
atoms, of which 86 belong to a single grain placed in the center of a cubic box with a
side of approximately 28 A. The third 4000 atom model, px4000_4, has 4 crystalline
grains of roughly the same size (100 atoms), randomly oriented with respect to one
another and positioned at the vertices of a tetrahedron the center of which lies at
the center of the 43 A cubic supercell. The two smaller models are 100% 4-fold
coordinated while the largest one has eight 5-fold and two 6-fold coordinated atoms.

All the models have Af < 10.6°, which is in excellent agreement with experiment.
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Our 1000 atom paracrystalline model, px1000, is shown in Fig. 5.2 to provide a visual
example of the topological structure of such models.

The radial-distribution function g(R) for our largest model px40004 is presented
in Fig. 5.3. The curve computed for a 4096 atom CRN model of Barkema and
Mousseau [55], BM4096, and the experimental curve[3] are shown for comparison.
The curves for the models look almost exactly the same and both seem to be in very
good agreement with the experimental data.

The bond-angle # and the dihedral-angle ¢ distributions for px4000_4 and BM4096
are presented in Fig. 5.4. The bond-angle distributions for both models look identical
while the dihedral-angle distribution for the paracrystalline model has a pronounced
peak at 60 degrees which is not present in the distribution for the CRN model. This
feature is explained by the fact that the paracrystalline model has a larger share
of atoms (mostly the ones belonging to the grains) whose local environment is very
close to crystalline thus favoring ¢ = 60°. We should point out that except for the
FEM simulations (see below), the calculation of dihedral-angle distribution (or any
other triplet or higher correlation function) provides the only non-topological way to
distinguish between CRN and paracrystalline structures.

The vibrational density of states (VDOS) curves for px4000_4 and a 1000 atom
CRN model for a-Si of Barkema and Mousseau, BM1000, are shown in Fig. 5.5.
The results for two smaller paracrystalline models are not presented because their
VDOS curves are practically identical to the one of the largest model. The curves

for both models shown in the figure look very similar as well. The VDOS for all the
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Figure 5.2: The 1000 atom paracrystalline Si model, px1000, after simulated MD
quench with the MSW potential. Atoms belonging to the grain are shown in

blue, the disordered matrix atoms — in red.
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Figure 5.3: Radial-distribution function g(R) for 4000 atom paracrystalline model
and 4096 atom CRN model. The experimental curve is taken from Ref. [3].
Note how the curve for px4000_4 model correctly reproduces the small peak at

approx. 4.5A present in the experimental data.
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Figure 5.5: The VDOS for 4000 atom paracrystalline and 1000 atom CRN models.

models has been calculated by a direct diagonalization of their dynamical matrices
computed with the modified Stillinger-Weber potential[48]. Prior to the dynamical
matrix calculation the models were relaxed with the simulated MD quench employing

the same potential.

5.2.2 Electronic properties

In the upper panel of Fig. 5.6, we present the bandgap region of the electronic
density of states (EDOS) of px400, px1000, and BM1000. The total EDOS is shown

in the inset; at this scale it is indistinguishable for all three models. The EDOS
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Figure 5.6: The bandgap region of the EDOS calculated with local-basis ab initio
method for 400 and 1000 atom models (upper panel) and with empirical tight-
binding Hamiltonian for 1000 and 4000 atom models (lower panel). The total

EDOS is shown on the panel inserts.
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for all these models has been calculated with the FIREBALL [23] local-basis ab initio
code. In the lower panel of Fig. 5.6, the bandgap region for the EDOS of px4000_4
computed with empirical tight-binding Hamiltonian of Kwon et al. [33] is shown.
The total EDOS for px4000_4 is presented in the inset to the lower panel. The EDOS
bandgap region curve for px1000 calculated with the same method is also shown for
reference — note how the empirical tight-binding calculation tends to underestimate
the bandgap comparing to the more advanced ab initio method. We must point
out that, of course, both methods produce bandgap widths that are quantitatively
unrealistic (too narrow).

We have also studied the nature of the valence bandtail and bandgap states in
our largest model, px4000_4. The IPR for all the states in the model is shown in
Fig. 5.7. Focusing our attention on the bandtail and bandgap region of the graph
(the energy interval between 0 and 1 eV) we can see that all of the states in this
region are strongly localized compared to the states in the valence and conduction
bands. In Fig. 5.8 we have plotted out the total charges (obtained as sums of squared
components of an eigenvector for a given electronic state “belonging” to atoms of
a particular group) for the matrix, grain and for so called “interface” atom groups.
The interface atoms are identified as those having nearest neighbors of both — matrix
and grain — groups. The matrix and grain groups of atoms used to create the figure
have been contracted compared to our initial atomic groups: now an atom belonging
to the matrix group can have nearest neighbors only from the matrix or interface

groups, and a grain group atom — only from the grain or interface groups. As we can
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see from Fig. 5.8, as we go across the bandgap from the valence to the conduction
bandtail region, for some states the amount of charge localized on the interface atoms
goes up — and consequently the amount of charge distributed among the matrix
atoms goes down because the total charge for every state is 1 (all the eigenvectors
are normalized to 1) — while for other states the amount of charge belonging to the
matrix atoms becomes almost equal to the total charge of the supercell. Using our
colormap technique we have examined spatial localization patterns for some states
of both types (states marked with long-dashed black lines in Fig. 5.8) and found out
that the states for which the matrix charge dominates localize on strained regions
of the network in the disordered matrix, (such localization patters have also been
observed in large CRN Si models[68]) while the states for which the interface charge
dominates are localized on the grain boundaries, which obviously also contain some
highly strained bonds. This leads us to believe that in paracrystalline Si the grain
boundaries are electrically active, and that the electronic states localized on them
govern the valence bandtail behavior of the material. Some examples of valence
bandtail states localized on grain boundaries and in the disordered matrix are shown
in Figs. 5.9,5.10 and 5.11. The figures also show the topologically crystalline nature

of the grains, retained by construction during the model preparation.

5.2.3 Medium range order

P. Voyles have computed the simulated fluctuation microscopy signals V' (k) for

our paracrystalline models (for brief introduction to fluctuation electron microscopy
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Figure 5.9: Electronic bandgap state localized on the grain boundary. Each atom
pictured in red, yellow, green and blue accounts for more than 20 %, between
10 and 20%, between 1 and 10 % and between 0.1 and 1 % of the total system
charge respectively. The atoms pictured in white are all of the other atoms

belonging to the grain.
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Figure 5.10: Another bandgap state in 4000 atom paracrystalline Si model local-

ized on a different grain. Color conventions are the same as for Fig. 5.9.
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Figure 5.11: An example of a bandgap state in 4000 atom paracrystalline Si mo-
del localized in the disordered matrix. Color conventions are the same as for

Fig. 5.9.
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see Appendix B). The simulation results are shown in Fig. 5.12 together with exper-
imental data from a sputtered ¢-Si thin film [120]. V (k) is the normalized variance
of mesoscopic-resolution hollow-cone dark field (HCDF) transmission electron micro-
graphs as a function of the dark-field scattering vector magnitude £ [10]. A large V (k)
with significant structure in £ indicates the sample has significant MRO; a small V' (k)
with little structure indicates the sample has little or no MRO [11]. Quantitatively,
V (k) depends on the three- and four-body atom distribution functions of the sample
[121].

V (k) for the models is found by computing the variance of a series of simu-
lated HCDF images of the model. The images were computed in the phase-grating
approximation[122], which is adequate for disordered models of this size since dynam-
ical scattering and electron channeling are suppressed in the absence of a crystalline
lattice. In an effort to better approach an ensemble average of structures, we compute
images for each model in a large number of orientations. This is equivalent to assum-
ing that the grain orientations are uncorrelated, which is also assumed in the model
preparation. Images were computed at a resolution of 15 A to match the resolution
used in the experiment.

Despite the use of the phase-grating approximation, there are residual effects in
V (k) from the different number of unique atoms in the models. These have been cor-
rected using a variation on the empirical thickness correction technique developed for
¢-Si thin film experimental measurements [123]. The thickness correction expression

contains a parameter that allows for the formation of a surface oxide on the thin foil;
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Figure 5.12: Simulated fluctuation microscopy signal V(k) for the models, and

experimental measurements for a sputtered ¢-Si thin film, all at 15 A resolution.

All the data for this graph has been provided by P. M. Voyles and is reproduced

by kind permission.
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that parameter has been set to zero for these calculations since the models have no
oxide.

The raw simulated V' (k) is larger than the measured variance by approximately
an order of magnitude. This is due to several effects, the first of which is the small
size of the models (at most 43 A) compared to the thickness of the experimental
samples, which is ~200 A. The empirical thickness correction cannot fully correct
for this because the experimentally-determined fitting parameters employed are not
sufficiently accurate, making the procedure unreliable for large thickness corrections.
It has been employed in the experiments to correct for small thickness perturbations;
it is used here in the same spirit to make the models comparable to one another.
The experimental images are also bandpass filtered to remove experimental artifacts
associated with sample non-uniformities, but the simulated images are too small for
this treatment. The simulations also do not account for several sources of small an-
gle scattering, including inelastic scattering, multiple scattering, and thermal diffuse
scattering, which are present to some degree in the experimental measurement, and
will tend to reduce the image variance. All of these effects (thickness, filtering, and
small-angle scattering) are k independent, so in Fig. 5.12 we have simply scaled all
the data by a multiplicative factor to get the best match to the experimental data
for the best model, which is px4000_4 (see below). We then interpret the simulations
only in terms of the positions and relative magnitudes of features in V (k).

V (k) for BM1000 shows the nearly featureless V' (k) that is typical of CRN models

[114, 117]. px1000 shows the prominent peak at k = 0.3 A~! that is observed in
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the experiment and is a measurable signature of paracrystallinity. It does not fully
reproduce the second peak at £ = 0.55 A~! seen in the data, likely because it has only
one grain and a very small degree of MRO. The simulated V (k) curve for our largest
model, px4000_4, presents the best match currently available to the experiment: the
simulated V' (k) closely follows the shape of the experimental curve and correctly
reproduces the ratio of the first to the second peak heights and positions of the both
peaks.

It is unlikely that the combination of grain size, density, shape, spatial distribution,
and orientation distribution in px4000.4 is unique in producing a V(k) with this
level of agreement with experiment. Further simulations are required to explore the
effects of all these parameters on the shape and magnitude of V' (k). Improved V (k)
simulations should also bring the simulated magnitude closer to the experimental

value.

5.3 Crystallization of the paracrystalline and CRN

models of Si

Another interesting question we can investigate using our paracrystalline models
is what happens when we anneal the model material at constant temperature for
a relatively long time. Will the crystalline grains grow or will they be completely
absorbed by the disordered phase?

We have employed our empirical MD code based on the MSW potential to perform
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all the simulations. The principle of least constraint! invented by Gauss[124] has been
used to keep temperature constant throughout the simulation. The models have been
first quenched to zero forces, then annealed at constant temperature for 1 ns and
finally quenched to zero forces again.

We have used a program provided by G. Barkema to study the structure of the
models before and after the simulated annealing. The program searches for traces of
crystallinity in the system identifying the two degenerate ordered states in Si: the
diamond-type (tetrahedral) state and the ice-type (hexagonal) state. The criterion
used to identify a nanocrystal of the diamond structure, is that for six atoms in a
native ring ABCDEF atoms A, C, and E have neighbors NA, NC, and NE, such
that those three have a common neighbor X. The structure of these ten atoms is
the smallest three-dimensional structure that is part of the diamond crystal. The
criterion used to identify a nanocrystal of the hexagonal structure, is that there are
two such six-fold rings, that are bonded in three places at alternating locations along
the rings.

We start presenting our results with px400 model. In Fig. 5.13 we show the
number of diamond-type and hexagonal crystalline clusters found in the model after
1 ns anneal at different temperatures. The 0 K points are for the initial configuration
that has not been annealed (just quenched to zero forces). From the figure we can

see that for px400 there exists a strong maximum in the number of diamond-type

LA fundamental dynamical principle allowing the nonholonomic (velocity-dependent) constraints
to be used to maintain a steady nonequilibrium state of many-body system.
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in px400 model.
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clusters at approximately 1800 K2. At temperatures higher than 2000 K the system
starts to melt.

The colormaps for the initial configuration and for configuration after 1 ns anneal
at 1800 K and subsequent quench are shown in Figs. 5.14 and 5.15 respectively. The
former figure shows that there is a substantial amount of crystalline clusters in the
initial (unannealed) configuration for the model and these clusters are concentrated
in the area on the crystalline grain and around it. The latter figure shows that after
annealing the system is almost completely crystallized — we believe that we have
not been able to completely crystallize the model because it contains the number of
atoms that can not form a perfect crystal with periodic boundary conditions applied
(i.e. the number of atoms in the model is not n® like 6° = 216 or 10° = 1000).

In the next set of figures we present the analogous information for px1000 model.
The diamond-type and hexagonal cluster concentration for different anneal tempera-
tures is shown in Fig. 5.16. Just like for the previous model the number of diamond-
type clusters grows very rapidly as we get into the temperature region of 1800-2100
K. For px1000 the best crystallization temperature (2100 K) is somewhat higher than
for px400 which may be connected with the difference in size of the models: for a
smaller system less thermal energy is required for atomic rearrangements.

The initial (unannealed) configuration colormap for px1000 model is shown in

2We must point out that the temperatures at which crystallization takes place in our models are
higher than the experimental melting temperature for Si. This is because in computer simulations the
system’s temperature is derived from the interatomic potential which may not be fitted to reproduce
the real melting temperature of the material and due to the finite size of the model system and the
fact that it superheats before melting.
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Figure 5.14: Crystalline clusters in px400 model (unannealed configuration).
Atoms pictured in red and blue are the members of diamond-type and hexag-
onal clusters respectively. Atoms pictured in pink are the members of both
types of clusters simultaneously. Atoms pictured in white do not belong to any

type of crystalline clusters.
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Figure 5.15: Crystalline clusters in px400 model after anneal at 1800 K. Color

conventions are the same as for Fig. 5.14.
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Fig. 5.17, it looks very similar to the analogous colormap for the smaller model px400.
The colormap for the model after 1 ns anneal at 2100 K and subsequent quench is
presented in Fig. 5.18 — with an exception of a few defects a perfect diamond-type
crystal.

As we have a good CRN model for a-Si (BM1000) with the same number of atoms
as in px1000 we have performed the 1 ns anneal for it as well. The simulation was made
at the same temperature at which full crystallization of px1000 had been observed,
i.e. 2100 K. The initial (unannealed) configuration and a configuration after anneal
and quench for BM1000 CRN model are shown in Figs. 5.19 and 5.20. The former
figure shows that the CRN model indeed does have some network regions in it that
look crystalline. Our opinion here is that possibly the energy minimization technique
employed to create this model (see section 3.1) is so efficient that on final stages of the
modeling process it eventually starts to crystallize the model even though the initial
structure used to create the model is completely random. The latter figure for an
annealed configuration shows that the CRN model has almost completely crystallized
after 1 ns but not in a form of a perfect diamond-type crystal, like px1000, but
rather as a random mixture of diamond- and ice-type crystalline phases. We would
attribute this difference to the fact that obviously our paracrystalline model has a
strong crystallization center in it — the grain, which sets the preferred crystallization
phase and direction. As we can see from Fig. 5.19 there are some small crystallization
centers in the CRN model as well but they are randomly scattered across the supercell,

which probably triggers the “mixed phase” crystallization.
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Figure 5.17: Crystalline clusters in px1000 model (unannealed configuration).

Color conventions are the same as for Fig. 5.14.
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Figure 5.18: Crystalline clusters in px1000 model after anneal at 2100 K. Color

conventions are the same as for Fig. 5.14.
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Figure 5.19: Crystalline clusters in BM1000 model (unannealed configuration).

Color conventions are the same as for Fig. 5.14.
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Figure 5.20: Crystalline clusters in bm1000 model after anneal at 2100 K. Color

conventions are the same as for Fig. 5.14.
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Finally we present the results for our largest 4000 atom paracrystalline model
px4000_ 4. Due to heavy computational load we have performed only three 1 ns
constant temperature anneal simulations for the model — at temperatures of 1800,
2000 and 2200 K. The colormap for the initial (unannealed) configuration for px4000_4
is shown in Fig. 5.21. The areas occupied by four crystalline grains can be clearly
seen in the corners of the box as well as a number of smaller string-like crystalline
clusters randomly positioned in the supercell. The latter ones most probably have
the same nature as the clusters we have encountered in the CRN model BM1000 (see
Fig. 5.19). The colormap for the model after 1 ns anneal at 2200 K and subsequent
quench is presented in Fig. 5.22.

We can see that, much like in case of all the smaller models discussed above, the
system has crystallized. It is hard to derive absolutely precise information from the
picture but it looks like the initial crystalline grains started to grow ordering atoms
around them — and these areas crystallized mostly in the diamond-type phase which,
as we have seen before, also happens in small paracrystalline models that contain
only one grain — until their regions of growth start to interpenetrate. Then the
boundary regions between the diamond-type growth areas are formed, and it seems
that these regions have the hexagonal phase as preferred crystallization phase. This
is, of course, a very simplistic view on the problem. However we can speculate that
with a simulation of the type we presented above one can construct a realistic model
of nano- or polycrystalline silicon — materials that unlike paracrystalline Si contain

approximately 90% of crystalline Si in a form of randomly oriented large (hundreds
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Figure 5.21: Crystalline clusters in px4000_4 model (unannealed configuration).
Color conventions are the same as for Fig. 5.14 except for atoms that do not

belong to any crystalline clusters — these atoms are not shown.
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Figure 5.22: Crystalline clusters in px4000_4 model after anneal at 2200 K. Color

conventions are the same as for Fig. 5.21.
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or thousands of angstroms and more) crystalline grains separated only by a couple of
atomic layers of severely strained disordered atoms.

For the sake of comparison in Fig. 5.23 we present the structural properties of
px4000_4 model before and after the constant temperature anneal. The RDF of
the annealed configuration looks much more like the RDF of the diamond crystal
than for amorphous material, while the bond-angle distributions for it are strongly

concentrated around the perfect crystalline angles.

5.4 Conclusions

To summarize, we have created a family of models for paracrystalline Si which
not only have structural MRO in qualitative agreement with experiment, but also
have realistic vibrational, structural and optical properties. The EDOS bandgaps
are comparable in width with the gap for the best CRN models for a-Si. Except for
measurements focused directly on the medium-range order, it is essentially impossible
to distinguish between the amorphous and the paracrystalline models.

The evidence presented here shows that our models can serve as a reasonable
description for tetravalent, paracrystalline, semiconducting material and as testing
grounds for measurements of medium-range order in disordered semiconductors.

We should also point out that our method of constructing paracrystalline Si models

can be also used to build perfectly connected crystalline-to-amorphous interfaces in

Si or SiOs.
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Chapter 6

Concluding remarks and

speculations for future work

6.1 Summary

In this work we have constructed and studied various properties of atomistic mod-
els of amorphous silicon with voids and paracrystalline silicon (containing small crys-
talline grains embedded into disordered matrix). In both cases we have shown that
incorporation of physically relevant defects, like voids or crystalline grains, into the
structure of the models of disordered tetrahedral semiconductors provides better uni-
form agreement with known experimental data than for commonly used models for
a-Si that contain no defects at all or only atomic coordination defects. We believe that
only a model which properties uniformly comply with experimental results can serve
as a credible representation of a real material for numerical simulations. Evidence

presented in this dissertation as well as recent experimental data suggest that in order
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to achieve a higher quality level of uniform compliance with experiment the next gen-
eration of large models for tetrahedral amorphous semiconductors should incorporate
structural defects encountered in real materials which is particularly important for
complex simulations of properties of nanoscale electronic devices which will undoubt-
edly be possible in the very nearest future. We hope that our investigation will help
to change the standards in the field, favoring CRN-type models with no defects or
even QFM models, and show that more advanced models are required to gain better
understanding of internal structure and properties of disordered tetrahedral materi-
als and, what is most important, methods and techniques needed to make some first

steps to build and study these new models are readily available.

6.2 Possible future projects

o A straightforward extension of our modeling techniques described in chapters 4
and 5 of this dissertation will be to construct a family of large atomistic mod-
els for amorphous silicon containing various concentrations of both voids and
crystalline grains embedded into the disordered matrix and study models’ prop-
erties, especially the influence of the defect concentrations on the experimentally

measurable quantities.

e Another computational project that can be easily implemented using our mod-
eling method presented in chapter 5 of this dissertation is to build a family of

models for paracrystalline silicon of the same relatively large size (thousands
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of atoms) but with different ratios of crystalline-to-disordered phase concentra-
tions. We believe that this investigation can shed some light on the exact nature
of peaks of the fluctuation microscopy signal V (k) (which is still unclear) and

also determine possible concentrations of crystalline grains in real material.

The ability of our modeling technique to produce realistic interfaces between
disordered and crystalline phases of silicon and silicon oxide can be exploited by
creating atomistic models of nanoscale semiconductor devices containing such
interfaces (like a-Si based TFTs, for example) and studying their current-voltage
characteristics with an ab initio technique recently introduced by Demkov,

Zhang and Drabold[125]

Finally, further studies of crystallization in paracrystalline silicon presented
in section 5.3 of this dissertation may result in useful technique for modeling
granular materials like polycrystalline or nanocrystalline silicon and/or grain
boundary regions in them. Currently new semiconductor devices based on
polycrystalline silicon are being introduced to electronics industry but to our

knowledge no atomistic models of this material have been created.
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Appendix A

Structure of electron states in a-Si

and a-Se. Finite temperature

There is abundant experimental evidence that lattice vibrations play an impor-
tant role in the dynamics of electrons in amorphous materials[126]. Among other
examples, Cohen and coworkers [127] observed a pronounced temperature depen-
dence of the Urbach tails in a-Si:H (the conduction tails showing a very strong linear
variation in exponential decay parameter with temperature). Of course electrical con-
ductivity is well known to be very temperature dependent, and usually has multiple
distinct regimes according to different conduction mechanisms [128]. From this point
of view it is unsurprising that the electron energies and states can be very time and
temperature dependent. This point has been independently recognized by Arkhipov
and Adriaennsens [129] in their studies of carrier transport. In this appendix we
build a microscopic picture of these effects, beginning with a conventional discussion

of electron-phonon coupling and the first explicit computation of this quantity[130].
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We then work beyond the harmonic approximation and study the development of
electronic states as a consequence of a thermal MD simulation. We show that the
electronic eigenvalues and eigenvectors can be profoundly sensitive to lattice vibra-
tions. Our calculations have the advantage of being rather realistic, but the problem

that they are restricted to very short (picosecond) time scales.

A.1 Electron-phonon coupling: ab initio deforma-

tion potential

Earlier work of Drabold et al. has shown that it is useful to link the thermal fluc-
tuation of the LDA energy eigenvalues near the band tails to the extent (localization)
of the band tails in amorphous Si[131] (as separately measured in total yield photoe-
mission experiments[127]). It is now routine in ab initio simulations to compute both
the electronic and vibrational eigenvalues and eigenvectors. We show here that it is
entirely straightforward to compute the electron-phonon coupling, a sort of “ab initio
deformation potential”[132].

Consider a particular electronic eigenvalue, ),, say in one of the band tails
in a-Si. To estimate the sensitivity of A, to a coordinate distortion (supposedly
thermally induced), we can use the Hellmann-Feynman theorem[29], which gives
O\ /OR, = (¥n|0H/OR,|¥,) (for this to be valid, we must assume that the basis is

fixed (not moving with the atoms) and that the |i,) are exact eigenvectors of H; see
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Ref. [23] for a more general case). Then clearly for small distortions 0R,,, we have

OAn & Y (tn|OH/OR,[1h)0Ra. (A1)

o4

Here, R is the 3N vector of displacements for all of the atomic coordinates from
equilibrium. If the displacements R, (¢) arise from classical vibrations, then one can

also write:

R, (t) = Z A(T,w) cosjwt + ¢, Xo(w), (A.2)

where w indexes the normal mode frequencies, A(T,w) is the temperature dependent
amplitude of the mode with frequency w, ¢, is an arbitrary phase, and x,(w) is
a normal mode with frequency w and vibrational displacement index «. Using a
temperature dependent squared amplitude A?(T,w) = kpT/2Mw?, it is easy to see

that the trajectory (long time) average of the expression for A2 is:

(A7) ~ (kpT/4M) Y (E(w)/w)?, (A-3)

w

where the electron[n]-lattice[w] coupling =, (w) is given by:

Z0(w) = 3 (UnlOF/ R ) xa (). (4.4)

o4

It would be straightforward for a particular collection of vibrational states to in-
clude the correct Bose terms to obtain a result valid at low temperatures T' < ©p (for

Op a salient Debye temperature). These formulas give a transparent expression for
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the thermally induced electron modulation as driven by the lattice-electron coupling
Zp(w). If we follow Ref. [131] and make the coarse approximation of equating (52 )1/2
to the Urbach decay parameter, then this model would predict a square root depen-
dence of the decay parameter with temperature, perhaps not easily distinguished from
the linear dependence reported in Ref. [127].

It is easy to see why there is a correlation between an eigenstate’s localiza-
tion (as measured for example by inverse participation ratio) and its thermal rms
fluctuation[133]. Note that =,(w) will in general consist of a sum of many terms
(for different «); the individual terms have no preferred sign, so that adding a large
number of terms of comparable magnitude will lead to cancellation and a small sum.
On the other hand, if only a very small number of terms are nonzero (as for the case
when the electron state |i,) is well localized), then there will be less cancellation and
a larger contribution to the sum (and therefore to the fluctuation of the eigenvalue).
This model is limited in many ways: it is classical, it is obviously strictly harmonic,
and we are assuming no electronic level crossings or other departures from adiabatic
(Born-Oppenheimer) dynamics[126]). Nevertheless, this simple model captures some
of the right temperature dependent electronic effects observed and provides a useful
new link to ab initio simulation methods.

The thermal effects on the electron states are more difficult to calculate with this
approach, mostly because of problems with degeneracy if one tries to use perturbation
theory. Still, the underlying “physics” is quite simple, just the effects of resonant mix-

ing for close approach (in energy) of eigenvalues originating in cluster states[68] with
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some overlap in space. In the language of the model Hamiltonian above, this means
that there can be large mixing of cluster basis states when the energy denominator
becomes small; here the thermal fluctuations can induce small energy denominators
(and therefore mixing). Of course a mixed state involves more cluster states than a
pure cluster state, so that it is more spatially extended.

We have explicitly computed =,(w) for 216 atom models of a-Si[52] (DTW216)
and a-Se[134]. We used the method of Sankey and coworkers for the interatomic
potential[23] to compute the dynamical matrix[63, 135] and estimated 0\, /0R,, from
finite differencing A, for each of the 3N (small) displacements 0R,, needed for com-
puting the dynamical matrix. 5, (w) is then easily obtained from Equation A.4. Our
results are summarized for a-Si in Fig. A.1 and for a-Se in Fig. A.2.

For the case of DT'W216 a-Si model there are no coordination defects, though there
are a small number of strained structures which lead to a reasonable distribution of
localized tail and gap states. Note that (1) the electron-phonon coupling is larger
for conduction tail states than valence tail states (the conduction tails are also more
localized), 2) the acoustic phonons are evidently more important to the tail states than
optical phonons. This is also borne out by a dominant low frequency (eg acoustic)
modulation of the tail electronic energies in the next section. 3) The electron-phonon
coupling falls off rapidly for electron energies away from band edges.

The case of a-Se is largely similar except for one very interesting difference: the
high energy “optical” phonons induce a large second “hump” in the surface plot (for

phonon energies exceeding 200 cm~!. In this model there is one valence alternation
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Figure A.l: Electron-phonon coupling surface plot for 216 atom DTW model
of amorphous Si. Phonon energy w, electron energy F and absolute value of
electron-phonon coupling E (Equation A.4). The optical gap extends from -3.45

to -2.11 eV. Note the dominance of acoustic phonons to the coupling.
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Figure A.2: Electron-phonon coupling surface plot for 216 atom model of amor-
phous Se. Phonon energy w, electron energy F and absolute value of electron-
phonon coupling E (Equation A.4). The optical gap extends from -3.63 to -2.50
eV. In contrast to a-Si, optical phonons play an important role in the electron-

phonon coupling in Se.
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pair (threefold and onefold coordinated Se sites). It is possible that the spectacular
photo-sensitivity of a-Se can be attributed in this framework to the simultaneous
presence of localized electronic and vibrational modes in the same region of space,
eg near the same defect. Note also that for a-Se, the conduction tail states (which
derive mostly from positively charged threefold sites) are much better localized and
exhibit a much larger electron-phonon coupling than the valence tail states. This
large coupling is a primary reason for the photo-sensitivity of a-Se.

To directly estimate the fluctuations of the energy eigenvalues, we have evaluated
Equation A.3 for the cases of both a-Si and a-Se using the =,(w) as presented in
Figures A.1 and A.2 (see Fig. A.3). The floppy nature of the Se network, and the
strong emphasis of Equation A.3 on the low frequency phonons causes the rms vari-
ation of the localized energy eigenvalues to be very large (of order 3.0 eV for room
temperature); this is obviously too large, and a consequence of the large number of
floppy modes and expected anharmonic character of a-Se. The results for a-Si are
very reasonable, and in semiquantitative agreement with the discussion of the next

section.

A.2 Thermal MD simulation

An alternative approach which avoids the harmonic approximation is to study the
thermal modulation of the eigenvalues and eigenvectors by tracking their (adiabatic)

time development over the course of a few picosecond MD simulation. As illustrated
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Figure A.3: Crude estimates for RMS thermally-induced fluctuations in energy
eigenvalues in the harmonic approximation from Equation A.3 (open circles).
Left is for a-Se model, right a-Si; note the difference in scales of the vertical
axes. The relevant states are near the optical gap (near -2.5¢V for Se, near
-3.0 for Si). Note the large fluctuations in the conduction tail states for a-Se,
which probably arise from anharmonic vibrations in the floppy a-Se network.

The electronic density of states for each system is depicted with the solid line.
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in Fig. A.4, there is strong time dependence of the LDA eigenvalues in the vicinity of
the optical gap. The Fermi level is near the middle of the gap and several states near
the Fermi level are appropriately described as bandtail states. These are much like
the states which would be responsible for conduction in doped a-Si:H. As in earlier
work of Drabold et al.[131] there is a roughly linear relation between rms temporal
fluctuation and temperature. As expected, the higher temperature simulation leads
to larger excursions in the positions of the energy eigenvalues. Note for 300K that the
Lowest Unoccupied Molecular Orbital (LUMO) fluctuates in time by about ~0.3eV,
much larger than thermal energies (~10 meV). States deeper into either the valence
or conduction bands show progressively less thermal modulation because they are
less localized (Cobb and Drabold have noted[133] a very strong correlation between
the rms fluctuation in the energy eigenvalues due to thermal disorder and the inverse
participation ratio, a simple measure of localization in the T=0 model). The localiza-
tion “amplifies” the electron-phonon coupling. Also, the conduction states fluctuate
more than the valence states (suggesting that the conduction tails are more sensitive
to thermal disorder than the valence tails which originate primarily from structural
disorder), in pleasing agreement with total yield photoemission experiments[127] and
earlier theory work[131]. We note that for a-Si, the harmonic approximation of the
preceding section leads to semi-quantitative agreement with the rms fluctuations com-
puted directly from the thermal simulations of this section. For amorphous Se, it is
clear that the harmonic computation overestimates the electron-phonon coupling, this

is not very surprising for the highly floppy a-Se network.
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Figure A.4: Adiabatic (Born-Oppenheimer) time evolution of LDA eigenvalues in

Top panel 300K, bottom panel 150K. Note the

216 atom DTW model of a-Si.

larger fluctuations in conduction tail states compared to valence edge states.

The Fermi level is near -2.7 eV. Compare to Fig. A.1 and Fig. A.3.
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An additional point is that these thermal simulations lead to low energy (acoustic)
modulation of the localized electron states (especially for the conduction tail) in
agreement with the discussion of the preceding section. The importance of the low
frequency vibrational modes is emphasized by the w=2 factor in Equation A.3, also
consistent with the very large predicted rms fluctuations in near-gap electron energies
a-Se seen in the preceding section.

In Fig. A.5 we present snapshots of charge fluctuations in electron states near the
gap for the system and dynamics described above. There are very substantial changes
in the LUMO state in particular; there is a clear tendency for the LUMO state to
alternately “accumulate” on a strained part of the network, sometimes becoming lo-
calized, but also occasionally developing a substantially more extended “stringlike”
character. These are not the only two recognizable structures, but recur most fre-
quently. The time between “characters” is not predictable, though it is of order tens
to hundreds of fs. We have posted an animation of this state on the world wide
web[136].

As we have pointed out before, structural disorder in a-Si gives rise to localized
states with energies in the band tails[68]. These system eigenstates can involve many
atoms and can have a Byzantine[137] structure. The “simple physics” of this study
is that the strong (compared to mid-band electrons) electron-phonon coupling for
localized band tail states is sufficient to cause strongly time/temperature dependent
quantum mechanical mixing of cluster states when the thermal disorder is “just right”

to make their energies nearly degenerate provided that they have some overlap in real
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(a) A snaphot of the LUMO state:
time=1147.5 fs

)
5
3
)
—

=
74
A
\e;

D
a,/.
7O\

e

A

Val

iy

T
i

1
[y

S
]
T S
0
e

[l

{3

Py
)

(b) A snaphot of the LUMO state:
time= 1032.5 fs

=
\ /
Y/
59

)\
O

XY |}§ ".J‘QQ‘
: '., SE N
‘\'_’/-é\‘)h\ & ‘I\"/?‘s//‘l’

A // ,
L .4\\"“ O b J 2
- e
SSETEIS | et S9N
YO T e

Figure A.5: A representation of the LUMO energy eigenstate and the time de-
pendence of its structure, as modulated by thermal disorder for DTW216 a-Si
model from 300K simulation. Color coding reflects different amount of electron
charge on a site: Red (¢ > 0.1), green (0.05 < ¢ < 0.1), blue (0.05 < g < 0.01),
grey(0.01 < ¢ < 0.005), white (¢ < 0.005). ¢ is the total charge on the site. The
charge summed over all sites is unity in all cases. Figs a and b are “snapshots”
from the 2.5 ps simulation separated by about 100 fs. Fig. a — very localized

compact cluster, Fig. b — much less localized “string”-like state.
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space. Strong mixing of course implies less localization and thus better prospects, at
least while the more extended state survives, for conductivity and optical transitions.
This work shows that transport and optical calculations based only on T=0 results
can be quite misleading. Mott[128] and others have made fundamental contributions
to the theory of transport in a noncrystalline medium; for example,variable range
hopping. In the kind of simulation we present here, we can estimate the conductiv-
ity, including its temperature and frequency dependence directly from the electronic
states through an appropriate thermal average of the Kubo formula[138]. It is also
a complement to the phenomenological models of transport[129, 139]. In the latter
work, transport is modeled as a hopping between localized tail states. Our work can
be viewed as an explanation of the precise nature of the states among which electrons
are hopping (the very complicated states of Ref. [68]). The waiting time between
hops must be related to the time between eigenvalue “close encounters” near the
Fermi level. It also points at an atomistic level to the dynamics of band tail defects
and their kinetics.

The consequences of this work can be stated another way. If |¢) (|f)) are initial
(final) electronic states with energy E; (Ef), then for an electronic transition in a-Si,
a Fermi golden rule argument leads quickly to the conclusion[128] that the transition
rate is proportional to |(i|T|f)[?6(E — E; — hw), where T is a perturbation inducing
the transition (to first approximation a momentum operator) and w is the frequency
of an external probe. Both the energies in the ¢ function and the transition matrix

elements are affected by the instantaneous details of the structural disorder, and as
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such transition probabilities are also strongly dependent on the time and temperature.
The consequences of this to transport are under investigation; the discussion here is
based upon first-order time dependent perturbation theory, which for the very strong

electron-phonon coupling we discuss, could be inadequate.

A.3 Post adiabatic atomic dynamics — specula-

tions for future work

The calculations and discussion of the preceding sections has been based on the
adiabatic approximation (that the electrons are always in their instantaneous ground
state determined by the external potential (eg the atomic nuclei), and that the forces
“felt” by the nuclei arose from the instantaneous electronic structure of the system.

To see that this might be an imperfect assumption, consider a doped system with
a small concentration of dopants for which the Fermi level is pushed into one one
of the band tails. Then the thermal modulation of the atomic coordinates may pro-
duce level crossings or close approaches of the LDA energies. In the doped case,
there would normally be (occupied) levels below the Fermi energy and (unoccupied)
levels above. In the case of a level crossing at the Fermi level, the adiabatic ap-
proximation would immediately transfer charge from one state to another (even if
spatially remote), which would induce changes in the dynamics (since the levels with
changed occupation would typically be at least somewhat localized); and perhaps

could lead to a structural change, even a long lived change if the new structure was
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“self-trapping”. In practical calculations such charge transfer would not have be quite
so large an affect, since one would usually smear the Fermi function slightly from the
T = 0 Heaviside step form. The dynamics are then affected by such level crossings
or close approaches even in the adiabatic approximation. A better theory[140] is due
to Allen, in which interatomic forces are computed from mixed state wave functions
obtained by a direct integration of the time-dependent Schrédinger equation (rather
than the “pure” states computed anew at each new time step for the atomic dynam-
ics in the adiabatic picture). This approach was formulated to model the dynamical
response of a system to light (in which the simplest model of light-solid interactions
would just involve promotions of electrons to low-lying conduction states), but the
formalism is similar (and much simpler) for the case of purely phonon-induced level
crossings as in our problem. It is possible in fact that the adiabatic approximation
may often be satisfactory for this kind of problem, but the question has not yet been
properly investigated because of difficulties with post-adiabatic calculations. One case
for which nonadiabatic dynamics is essential is in the modeling of the thermalization
of excited carriers to tail states. This process has never been realistically modeled de-
spite its manifest importance to a host of problems in crystalline and non-crystalline
semiconductor physics. More sophisticated methods for non-adiabatic dynamics are
discussed in the quantum chemistry literature[141]; while fundamentally sound, these
are currently too difficult to implement for the large model systems we must consider

here.
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Appendix B

Introduction to fluctuation

electron microscopy

We have based this short introduction on the materials presented in the dis-
sertation of P. M. Voyles (see Ref. [142]) which gives an exhaustive description of
fluctuation electron microscopy theory and experimental techniques.

As we already know from subsection 3.2.1 of this dissertation the X-ray diffraction
provides us information about atomic position correlations in a material by measuring
the radial-distribution or pair-correlation function go(r) for it[2, 3]. In a disordered
material like a-Si go(r) gives us useful knowledge of material’s structure only for
r < 8A but at distances beyond that it becomes featureless (see, for example, Fig. 5.3).
If we are interested in studying the traces of ordering in such material that have length
scales lying between the short-range order (6-8A) and long-range disorder (hundreds
of angstroms) — we call this length scale interval medium-range order (MRO) —

we need a different experimental technique able of measuring position-correlation
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functions of higher order, like g3(ri,72) and g4(r1, 72, 73), which could obviously be
a much richer source of information on the structure (and consequently probable
ordering) of the material than go(r).

The technique possessing such capabilities already exists and is called fluctuation
electron microscopy (FEM)[10, 11]. In FEM the information related to gs(ry, ) and
ga(r1,72,73) can be extracted by statistical analysis of low-resolution, hollow-cone
dark-field (HCDF) transmission electron microscopy (TEM) micrographs. A “dark-
field” image is formed only by electrons scattered by the sample through a particular
diffraction vector k. Low-resolution means that the resolution of the microscope
is relatively low compared to both the characteristic interatomic distances in the
material and to the resolution limit of the microscope. In a dark-field technique
volumes of the sample diffracting strongly at vector k will show up as bright areas
in the image, while volumes diffracting weakly will be dim. To make sure that only
the diffracted radiation continues down the microscope’s optic axis to the recording
device in a TEM the electron beam is tilted with respect to the surface of the sample
and the angle of the tilt governs the diffraction condition for vector k. In the hollow-
cone illumination mode the tilted beam is swung in a cone with constant inner angle
which helps to reduce the effect of random long-range atomic correlations. The low
microscope resolution is used in search for MRO with FEM because when looking
for presence of ordered structures in the material at some certain length scales it is
better to match the resolution with the characteristic size of the ordered structure

one is trying to find (10-15A in recent experiments for a-Si).
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The value measured in the FEM experiments is the image intensity I(k, Q) at the

hollow-cone vector magnitude k£ and the microscope resolution 0.61/Q. In the HCDF

microscopy theory this value depends on the incoming illumination, the effects of the
microscope and the sample structure described with function go(r).

A simple statistical measure which is sensitive to MRO and can be computed

using diffraction intensities I(k, Q) is the normalized variance

where { ) indicates averaging over the image. In this formula I%(k, Q) represents a
measure of the fluctuations in the diffracted intensity and depends not only on go(r)
but also on the higher order correlation functions gs(ri,72) and g4(ri,72,73) which
contain information about MRO.

To gain basic understanding how V' (k, @) is sensitive to MRO we can conduct a
simple imaginary experiment. Let’s first consider a sample consisting of a random
assortment of atoms. In such a sample each mesoscopic volume will have a statistically
similar structure and hence a similar diffraction intensity. This will produce an image
with a low normalized variance with little structure in £ or () since there are no
characteristic length scales in the sample. Then let’s consider a sample consisting
of randomly oriented ordered clusters of atoms. Obviously for some of the cluster
orientations the Bragg diffraction condition will be satisfied and these clusters will
diffract very strongly, leading to a bright spot in the image. Some other clusters

will be far away from the Bragg condition and will diffract very weakly (weaker than
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average), which will lead to a very dark spot in the image. Overall, the image will
have high variance with relatively large excursions away from the mean value. The
variance will also show structure in k£ as k passes through various extremums in the
structure factor of the clusters and also structure in () as more and more of each
cluster and the groups of clusters are sampled by a particular resolution.

Of course, the qualitative picture presented above is an oversimplification but
the general rule can be applied for real experimental data: low variance with little
structure in k or () is the sign of little or no MRO while high variance with significant
structure in k£ or ) is the sign of MRO presence.

Finally, it would be useful to make a note about two different “flavors” of the FEM
experimental setup. In the first type of setup, called variable coherence microscopy,
V (k) is estimated at constant resolution @ which gives information on the degree
of MRO in the sample (at a given resolution). In the second setup variant, called
variable resolution microscopy, V(@) is evaluated at fixed diffraction vector k (fixed
beam tilt angle) which provides information about characteristic MRO length scales
in the material. Technically the former variant is much easier to implement because
the beam tilt can be changed electronically while the change of microscope objective

aperture, that can be done mechanically, is a much more challenging engineering task.
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