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Chapter 1

Introduction

Urbach tail[1], the exponential band tail observed in impure crystals and

disordered materials, was first identified by F. Urbach in 1953. Although theories

have been presented to explain the Urbach tail, no correlation to the topology of the

network has ever been made. The origin of this universal phenomenon still remains

unknown. The nature of three-dimensional space-filling disordered networks is salient

to a variety of topics in scientific research. The exact topology of the band tail states

directly related to the Urbach tail, for instance, is important for modeling electronic

transport in amorphous materials, since the electronic hopping takes place between

these localized states.

The main target of my study presented in this dissertation is to determine

the topological origin of the Urbach tail and develop a basic understanding of the

problem. My study is carried out via the investigation of high quality amorphous

silicon models for topological details and via ab intio calculations for electronic prop-

erties. Alongside the study of the Urbach tail, a semi-quantitative scattering theory

is presented to explain basic electronic quantities of amorphous solid. I also study

electron transport in solids. Kubo-Greenwood[2, 3] formula is implemented into ab

inito code for calculating AC and DC conductivity of solids. Furthermore, Boron

doping of a-Si:H is studied, addressing the low doping efficiency problem.



15

1.1 Amorphous solid

1.1.1 Structure of amorphous materials

The atomic ordering is usually categorized into three length scales: short

range order (SRO), medium range order (MRO) and long range order (LRO). The key

difference between amorphous solid (AS) crystalline solid (CS) is the absence of long

range order[4]. The short range chemical order in amorphous solid (AS), is usually

similar to their crystalline counterpart. A clear difference between amorphous solid

(AS) and crystalline solid (CS) can usually be seen in radial distribution functions

(RDF) (closely related to the pair correlation function). The first peak (first neighbor

distance) of the RDF of amorphous solid is usually well defined while further peaks

are increasingly smoothed out, indicating an absence of LRO.

1.1.2 Defects

A defect is a consequence of extreme topological and/or chemical disorder

present in an amorphous solid. In an elemental solid, defect can be categorized into

two types: coordination defect and strain defect. Term coordination defect is used

for those atoms that have a coordination number (number of neighbors) different

than “8-N” rule[5]. In a-Si, it includes three bonded site: the dangling bond, and

five bonded site: the “floating” bond. Electronically, coordination defects create

mid-optical-gap states and these states are highly localized in space. Term strain

defect designates badly strained sites. In a-Si, these sites usually maintain fourfold
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bonding but the bond angles and bond lengths (strongly) deviate from the crystalline

structure. Topological distortions from ideal bonding are commonly recognized as

the origin of the band tail states: the main object of our study for this dissertation.

1.1.3 Electronic density of states (EDOS)

The electronic density of states (EDOS) of amorphous solid (AS) is visibly

altered from that of the crystalline solid (CS) with broadened peaks (smoothed van

Hove singularities) and most importantly the band tails decaying into the optical gap

where the EDOS for CS vanishes. It was a surprise that scientists discovered the

existence of the optical gap in AS with a gap comparable to crystal. The persistence

of the optical gap has been roughly understood as the result of the existence of short

range order (SRO) in AS[6].

1.1.4 Localized state

The localized state is one of most important concepts of solid state physics.

P. W. Anderson advanced this concept 50 years ago[8]. Depending on the electronic

structure of the materials, there exist insulator-metal transition (the Mott transition,

only in highly correlated systems) and disorder-induced localization (the Anderson

transition). Our focus involves material a-Si and a-Si:H, where typical Anderson

transition takes place. All localization phenomena in this dissertation are therefore

disorder-induced localizations. For further background of this topic, please refer to

[4].
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With recent development of the ab initio calculation, electronic structure of

amorphous solid can now be obtained by first principles. The picture of localized

states have been much better visualized. J. Dong and D. A. Drabold demonstrated

the qualitative nature of the Anderson transition via study of a 4096 Si model[10].

For very localized states, which arise from defects, most of the electron charge is

localized in a spatially compact single-island region. Moving into the band, the

localization level (IPR) decreases and electronic multi-islands start to appear in space

and form the “quasiextended” states. Further into the band, states are completely

extended. J. Dong and D. A. Drabold introduced the important resonant cluster

proliferation concept to qualitatively explain how the transition took place and the

energy dependence of the localized states. Later J. J. Ludlam et al[11] showed the

universality of the picture via a 10,000-atom Si model and varied interactions and

disorder.

1.1.5 The Urbach tail

The character of the tail states in disordered semiconductors is a problem of

importance with a history dating back to the fifties. It has been understood that band

tail states in amorphous semiconductors arise from strains in the network sufficient to

push states past the band edges into the gap. Such tails decay exponentially (not as

a Gaussian) into the gap: this feature, nearly universal to disordered semiconductors,

is called Urbach tailing[1], which was first identified by F. Urbach at the edges of op-
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tical interband and excitonic transitions in impure crystals[1]. Clever photoemission

experiments allow the separate observation of the valence and conduction tails and

even the temperature dependence of the tailing[12].

Exponential band edges have since been observed in a wide variety of materi-

als, mostly via optical absorption. This feature is surprisingly universal as it has been

observed in every amorphous solids and imperfect crystalline solids. The universality

of the Urbach tail suggests the possibility of a common underlying cause. Theoretical

attempts to explain the phenomenon were however limited, with the most recent at-

tempt by M. H. Cohen and coworkers [13, 14] nearly twenty years ago. At the time,

those theories could not connect the electronic structure to any specific topological

units. For this dissertation, my main goal is to, via powerful first principle calculation

tools, examine the internal structure of models of amorphous Si and locate the struc-

tural origin of the Urbach tails. By connecting underlying topology to the electronic

structure of the Urbach tail, I look forward to a basic understanding of this universal

phenomenon.

1.1.6 Electron transport

Carrier transport in a-Si can be described via hopping through localized

states. The transitions are induced by phonon vibrations. For this type of trans-

port mechanism, the best estimation of the conductivity is via the Kubo-Greenwood

formula[2, 3] (Eq. 1.1).
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σ(ω) =
2πe2~
V m2

∑
ni

∣∣∣〈ψn ∣∣∣P̂ ∣∣∣ψi〉∣∣∣2 fF (εi)− fF (εn)

~ω
δ(εn − εi − ω) (1.1)

where fF is the Fermi function (distribution), e and m are the electronic charge and

mass, V is the cell volume, P̂ the momentum operator, ψi and εi are the eigenstates

and eigenvalues. A detailed description is presented in Appendix A. In his paper[27],

T. A. Abtew et al for the first time implemented Kubo-Greenwood formula into ab

intio code SIESTA. Our current effort presented in this dissertation can be regarded a

continuation of T. A. Abtew’s work. We again implement a thermally averaged Kubo-

Greenwood formula into the newly introduced code SIESTA 2.0[15] and added the AC

conductivity calculation utility in addition to the DC conductivity calculation. Since

much of the basic theory has been presented elsewhere, this work has been relegated

to appendices, which will nevertheless be useful to future researchers in this field.

1.2 Modeling

For ab initio or empirical computational study of amorphous materials, ex-

perimentally realistic models are essential. Modeling methods have been introduced

and improved over the past twenty years. For Si, usual modeling methods include:

Molecular Dynamics method, Activation relaxation technique, Monte Carlo tech-

niques, Reverse Monte Carlo techniques and WWW algorithm[28]. All these methods

are involved in the models we study.
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The Molecular Dynamics (MD) method is used to generate amorphous struc-

ture through a melt-quenching simulation. MD method only requires a valid potential

energy function, and in principle might yield the dynamic processed that occur in the

real material. There are clear drawbacks of this method. The output structure from

this method always contains a large fraction of coordination defects which are not

present in a real amorphous material. Therefore the radial distribution function (also

called pair correlation function) has a shoulder before the second peak indicating high

strains in the structure. EDOS is also incorrect with many defect-induced gap states.

Activation relaxation technique ART[29] is a method designed to avoid being

stuck in a local energy minimum of the energy landscape. ART does not attempt to

reproduce the dynamics of the atoms. Instead, it seeks events involving crossing over

an energy barrier. This approach directly yields rare diffusive events. ART is designed

for systems with many local minima. The drawback of the method, however, is that

ART is computationally expensive and difficult to use with an ab initio interaction

potential.

The Reverse Monte Carlo (RMC) method is a technique for generating struc-

tural configuration based on experimental data (constraints). RMC starts with a

randomly generated system. For every set of experimental data, there is a constraint

(cost) function. RMC then randomly displaces a (or a group) of atom(s) and esti-

mates the cost functions. The probability that new state will be accepted depends
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on the satisfaction of the cost functions. RMC is a fast method and is still under

development.

The WWW algorithm[28] was designed by Wooten, Weaire and Winer for

the purpose of generating high quality amorphous structure (CRN). In the WWW

approach, a CRN consists of the positions of N atoms and an explicit list of the

2N bonds between them. The structural evolution of the network is produced by a

sequence of Monte Carlo moves called bond transpositions. The generation of a CRN

starts with a crystalline or randomized system. The network is then relaxed through

a sequence of bond transpositions. The WWW algorithm has been proven to be the

“gold standard” for making realistic models. A decade later B. R. Djordjevic, M. F.

Thorpe and F. Wooten[32] used the same approach with more computing power to

generate a set of a-Si models including two 4096-atom models. These models exhibit

even better quality in terms of low defects and low strains.

In this dissertation, the majority of the models studied are WWW/DTW

models. One ART model and two RMC models are used. In addition, a-Si:H and B

doped a-Si:H models include MD process, based on WWW/DTW starting structures.

In terms of defects these models are comparable and all in high quality (small bond-

angle distributions). Structural quantities and EDOS are all close to experiment

data.
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1.3 Methods employed

Density functional theory (DFT) and associated methods are the most widely

used approximate first principle approach in computational materials science. Density

functional theory[7] (DFT) is built on the assertion (proved by Hohenberg, Kohn

and Mermin) that the electron density of any system determines all ground-state

properties of the system, that is, E=E[n0], where n0 is the ground-state electron

density of the system. Many-body electronic wavefunction can thus be replaced with

the electronic density as the basic variable to describe the ground state. Whereas

the many-body wavefunction is dependent on 3N variables with complex symmetry

properties, the density is only a function of three variables and is a simpler quantity

to deal with both conceptually and practically. The calculation of electronic structure

in many-body systems like solids and molecules has been made practical since the

introduction of density functional theory.

The issues associated with density functional theory are that first, the exact

form of the universal energy density functional is unknown. Second, extension to

excited states is not obvious. It is the Kohn-Sham ansatz that made possible the

approach to replace the original many-body problem by a practical single particle

problem. This can lead to independent-particle equations of non-interacting system

with the most difficult many-body terms from the original Hamiltonian incorporated

into an exchange-correlation functional Exc of the density. The ground state density



23

and energy of the original interacting system can be found with the accuracy limited

only by the approximations in the exchange-correlation functional.

Authoritative treatments of DFT and full details of its implementation are

available in R. Martin’s book[7].

1.4 SIESTA 2.0 package[15]

SIESTA 2.0[15] is an improved ab initio calculation package over successful

SIESTA. SIESTA 2.0 is the main tool for all the first principle calculations presented

in this dissertation. SIESTA 2.0 is DFT[7] based: the exchange-correlation potential

is inserted by LDA or GGA approximation and can be chosen by user. SIESTA 2.0

applies full selfconsistency for solving the Kohn-Sham equation. Harris functional is

available for faster and cruder calculation. SIESTA 2.0 applies linear combination of

atomic orbital (LCAO) basis set. As a contrast, plane wave basis set is an alterna-

tive approach. LCAO basis set means fewer basis functions and faster computation

compared to the plane wave basis set especially for localized wavefunctions. SIESTA

2.0 uses standard non-local, norm-conserving psedopotentials for the estimation of

inter-atomic interactions. SIESTA 2.0 offers a variety of simulations including molec-

ular dynamics, relaxations, vibrational properties (phonons) and more. SIESTA 2.0

generates the Kohn-Sham eigenvalues, wavefunction, forces, stress, atomic position

and velocities for the given system. For the materials we study, i.e. a-Si, a-Si:H,
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boron doped a-Si:H and Al etc., SIESTA 2.0’s results have been consistently reliable

and comparable to available experiment data.

1.5 Outline of the dissertation

Our Urbach tail study begins from Chapter 2 as we attempt to understand

the problem by the simplest model. We try to connect band tail energy with indi-

vidual distortion units such as bond-angle or bond-length. The simple model, how-

ever, is tested and confirmed to be flawed: local individual distortion units directly

connected to the Urbach tail can not be found. However, hints of certain form of

topology-electron correlation is revealed during the process. We continue the Urbach

study in Chapter 3. We firstly discover the topological correlation (the topological

filaments) underlying the random networks. We then reveal general features in the

structure of the band tail electron states, especially the existence of 1D filamentary

structure associated with chains of long and short bonds. Both bond-length distor-

tions and bond-angle distortions have been found to be correlated to the band tail

states, in a collective fashion: rather than individual distorted units, the 1D filaments

(both electronic and topological) are viewed as the units that are connected to the

eigenstates. We then point out the direct relation between the topological filaments

and the formation of the Urbach exponential decay; we argue that the topological fil-

aments are the root of the Urbach tailing. We then provide computational evidences

to support the hypothesis. In Chapter 4, we attempt to explain several basic, yet
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important quantities of a-Si by semi-quantitative scattering approaches. Study of the

low efficiency of B doping is presented in Chapter 5. The conductivity calculations

are included in Appendix A.

The content and results presented in chapter 3 have been published in two

papers: Y. Pan, M. Zhang and D. A. Drabold, J. Non. Cryst. Sol. 354 3480 (2008)

[18]; and Y. Pan, F. Inam, M. Zhang and D. A. Drabold, Phys. Rev. Lett. 100

206403 (2008) [19]. While the majority of the content written in this dissertation is

extracted from my own work, F. Inam is an important collaborator in the study. His

main contribution includes creation of point-like defects in c-Si and the removal of

topological correlations. These supply key evidences for establishing relation between

topological filaments and the Urbach tails. Meanwhile, M. Zhang provided important

theoretical supports for organizing concepts and explaining quantities. The content

and results presented in Chapter 4 are submitted: Mingliang Zhang, Yue Pan, F.

Inam and D. A. Drabold, Phys. Rev. Lett. (5/2008). [54]. The main content of

the chapter is extracted from M. Zhang’s work. My study of the Urbach tails and

corresponding findings provides the basis for the theory to be created upon. Also I

supply calculation of the IPRs and the extraction of the Urbach energies which are

presented in the chapter.
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Chapter 2

A preliminary study of the origin

of the Urbach tail in amorphous Si

2.1 Overview

“There is an extensive literature calculating the position of the mobility edge

with various simple models, but it has not yet proved possible to do this for a “con-

tinuous random network” such as that postulated for SiO2, As2Se3, amorphous Si or

any amorphous material where the coordination number remains the same as in the

crystal. This problem is going to be quite a challenge for the theoreticians - but up till

now we depend on experiments for the answer, particularly those in which electrons

are injected into a non-crystalline material...” [From Mott’s Nobel Lecture[16], 1977]

The nature of three-dimensional space-filling disordered networks is salient

to a variety of topics in scientific research. Despite work in recent decades, a number

of puzzles remain both about the structure and connectivity of such networks. Also,

important quantities derived from such structures (such as electronic or vibrational

states) are quite incompletely understood, though their characteristics are ultimately

derived from the underlying structure.
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With the development of computational modeling, realistic computations of

the materials has become possible. Dong and Drabold[34] have attempted to correlate

the local distortions to Urbach tailing in an earlier study, based on the fact that the

topological (i.e. bond-angle and bond-length) distortions are found to be normally

distributed. An isomorphic one-to-one correspondence between a local distortion and

the energy of a localized state was assumed. We now temporarily call this conjecture

by the short name the “one-to-one” picture. In this picture, each single topological

distortion (a bond-angle or a bond-length) is the root of a certain localized state, and

the sum of all these states naturally leads to a Urbach exponential decay, involving

that fact that the local distortion is Gaussian distributed.

At the time a detailed inspection of the topology was not available and

the conjecture stayed more at a hypothetical than a confirmed stage. To further

investigate the theory, we now examine our a-Si networks in more detail. We currently

have an array of realistic a-Si models available from 64 to 100,000 atoms in size.

These models provides a wealth of topological information. Meanwhile and most

importantly, we are now able to calculate the Mulliken charge of the eigenstates and

the “one-to-one” conjecture can be tested.

2.2 A simple conjecture

It is a property of realistic WWW models that Gaussian distribution of bond-

length and cosine of bond-angle is exhibited in a-Si (see Fig. 3.1). Using ζ = cos θ,
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normal distribution is in the form,

P (ζ) =
1

σ
√

2π
e−

(ζ−ζ0)2

2σ2 (2.1)

where ζ0 is the average cosine of the bond-angle. In a-Si, ζ0 ≈ cos(109.5o); σ is

the broadening factor. The one-to-one conjecture can be described in short form.

If we have (1) Gaussian distribution as in eq (2.1), and (2) energy associated with

the distortion has parabolic form ε = A(ζ − ζ0)2 + εo, then we have an Urbach tail

(exponential decay of density of states) in the form of f(ε) ∝ e−(ε−εo)/c. Here εo can

be regarded as the mobility edge. For a valence tail, we assume ε − εo ≥ 0; for a

conduction tail, we assume ε− εo ≤ 0.

The one-to-one conjecture is mathematically simple. Let us use ε = (ε− εo)

and ξ = (ζ − ζ0), then we have Aξ2 = ε, or ξ = ±
√

ε
A

. Also

2Aξdξ = dε (2.2)

We can write the distribution in term of ε.

P (ξ)dξ = f(ε)

∣∣∣∣dεdξ
∣∣∣∣ dξ (2.3)

[
1

σ
√

2π
e−

ξ2

2σ2 ]dξ = f(ε) |2Aξ| dξ (2.4)

1

σ
√

2π
e−

ε
2Aσ2 = f(ε)2

√
Aε (2.5)
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f(ε) =
1

2
√
Aε

1

σ
√

2π
e−

ε
2Aσ2 (2.6)

Or

f(ε) =
1

σ
√

8πA

1√
(ε− εo)

e−
(ε−εo)
2Aσ2 (2.7)

There is a subdominant term 1√
(ε−εo)

in the prefactor. However, the strong

exponential decay term should dominate the behavior and this is still considered an

exponential form of energy ε.

2.3 The Distortions

Now we already have the Gaussian distributions as a starting point, we then

only need to prove that the relation between local distortion and its correspondent

energy is ε = A(ζ − ζ0)2 + εo. As you can see the ideal network to show our picture

should be defect-free model. “Defect” here means the coordination defect: three-

coordinated “dangling bond” or five-coordinated “floating bond” would introduce in-

gap state, and in our understanding, generally does not contribute to the exponential

form of the tails. Worse, in-gap states might contaminate the exponential tailing and

induce other effects. For these reasons, coordination defects are avoided.

We use a 512 DTW (as discussed in Chapter 1) defect-free a-Si model and

a 4096 DTW defect-rare (0.3%) a-Si model. We look for the local distortion in the

following way. For each very localized state, i.e, a state deep in the exponential tail,
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we pick the atom that contains the most charge. Then we start looking for geometrical

distortion around that particular atom. We soon run into trouble. The fact is that

there are four bonds and six bond-angles starting from an atom. So what is the local

distortion associated with that site? We also realized that the localized charge, for

each state, does not always involve a highly distorted unit. i.e. a badly distorted

bond-length or bond-angle, even for some highly localized states. Thus there must

be something more subtle at work.

A rule still has to be set for linking the corresponding individual distortion

to the state. And we reach a compromise: starting from the atom which contains the

most charge, we pick the neighboring atom that contains the most charge among the

four neighbors. This provides us with a single bond, which involves the largest amount

of charge, for a localized state. We plot this bond-length in Figure 2.1 and Figure

2.2 against the energy for model DTW512 and DTW4096. Similarly, we pick the

two neighboring atoms that have the most charge among the four neighbors, and this

provides us with a bond-angle with arguably the most charge from the localized state.

We also plot this bond-angle in Figure 2.1 and Figure 2.2. For model DTW4096, only

a small portion of data near the Fermi level (0.0eV) is shown.
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Figure 2.1: Model DTW512. Single distorted bond-length and bond-angle, plotted against
eigen-energy. Fermi level lies at 0.0 eV. Refer to the text for detailed description.

2.4 Results

2.4.1 The negatives

Our one-to-one conjecture assumes every individual distortion (bond-length

or bond-angle distortion) is the unique, underlying cause of a localized state. The

summation of these distortions forms the Urbach tail. As we see in Figure 2.1 and

Figure 2.2, firstly the signal is very noisy. Secondly they do not seem to be parabolic

against energy, at least from the noisy appearance. One possible explanation for these

issues is that we haven’t found the “correct” single distortions for each state. To test
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Figure 2.2: Model DTW4096. Single distorted bond-length and bond-angle plotted against
eigen-energy. Fermi level lies at 0.0 eV. Only a small portion of data near the Fermi level
is shown. Refer to the text for detailed description.

that, we have used several other algorithms to obtain the local distortions. None of

them works significantly better, so far as “single-distortion” is concerned.

The reason, in our opinion, is that: “single distortion” or the “one-to-one”

picture is too simple. The fact is that we observe that most localized states involve

charge spreading over more than one distortion unit. It is true that in the extremely

localized states, charge can be limited to only one or several atoms. But even in this

case the distortions, as we observe among various cases, can be unclear: there can be

no single highly-distorted bond or angle sitting near these charge centers. In addition,
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the “extremely localized” region is only a tiny fraction of the spectrum (only about 1

state in our DTW512 model, and 7 states in DTW4096 model). Urbach tail spreads a

range larger than the region. In many moderately localized states on the Urbach tail,

the charge spreads over a number of atoms. It is natural in these atoms, there is no

single distortion that stands out as the “representative” of the eigenstate. Therefore

to reach the root of Urbach tail problem, groups of distortions rather than ”single

distortions” have to come into the picture. A collective behavior of the distortions

needs to be explored for understand the Urbach tailing.

2.4.2 The positives

What we do learn from this simple one-to-one picture is nevertheless reward-

ing. (1)This is our first detailed observation of the topological distortions in the a-Si

networks. (2)It confirms our basic assumption: the distortion is indeed connected to

the eigen-energy. Stronger distortion, in general, is more likely to be found in the

localized states than a non-localized states. (3)Although noisy, there is a visible and

interesting trend for the distortions: the valence tail is more correlated with short

bond-length and small bond-angle distortions; the conduction tail is more correlated

with long bond-length and large bond-angle. (4)There is a hint of filament-like paths

for the electronic charge.

Fedders, Drabold, Nakhmanson’s study [25] observed that valence tail states

preferentially involved short bond lengths, whereas conduction tail states tended to
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be involved with longer bond lengths. Our noisy plots are consistent with the obser-

vations. We greatly enhance the study based on the observation (3) and (4) during

the proceeding chapters.

2.5 Summary

We start our study for Urbach tail from assuming every individual geomet-

rical distortion unit creates a band tail state. With the tool SIESTA and other

computational methods, we obtain the Kohn-Sham eigenvalue and eigenvectors. In-

spection of the local topology is made and we try to connect the eigenvectors to the

local distortions. We report the approach to be flawed for Urbach tailing analysis

as far as “one-to-one” conjecture is concerned. The information extracted from the

attempt, however, still provides us hints of the nature of the problem and leads our

study to the next chapter.
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Chapter 3

Topological filament, electronic

filament and the Urbach tail

The content and results presented in this chapter are published: Y. Pan, M. Zhang and D.

A. Drabold, J. Non. Cryst. Sol. 354 3480 (2008) [18]; and Y. Pan, F. Inam, M. Zhang and D. A.

Drabold, Phys. Rev. Lett. 100 206403 (2008) [19].

3.1 Introduction

Earlier exploration into Model DTW512 and Model DTW4096 (presented in

Chapter 2) for topological distortions leaves us hints of possible interesting correlation

to the electronic states. In this chapter, we extended our study to nine of our models,

among which seven of them are closely inspected. We obtain the electronic states

and calculate the eigenvectors and Mulliken charge populations for each eigenstate.

Our main target is finding the topological origin associated with the band tail states

and furthermore the Urbach tail.

The main body of this chapter consists of three sections. In section 3.2,

consideration of several models reveals certain persistent geometrical features, notably

strong self-correlations between configurations involving short bonds and analogous
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correlations involving long bonds. We dub this feature the topological filament (TF).

These correlations exist in various structural models and survive ab initio thermal

molecular dynamics (MD) simulations.

In section 3.3 we relate electronic charge of the band tail states in a-Si with

general topological features. Fedders, Drabold, Nakhmanson’s study [25] observed

that valence tail states preferentially involved short bond lengths, whereas conduction

tail states tended to be involved with longer bond lengths. Angle distortion was

also mentioned but no specific relation to the band tails was detected. In addition,

related work was undertaken in Ref. [26]. Here, we extend this analysis to our

collection of models. In agreement with these earlier reports [25, 26], we confirm a

robust tendency for valence (conduction) tail states to be associated with short (long)

bonds. On the other hand, we for the first time detect analogous features for the

bond angle distribution, where we see that smaller (larger) bond angles are correlated

with valence (conduction) tails. In addition, we confirm the existence of electronic

filaments (EF) for highly localized states, the hints of which were encountered earlier

(mentioned in Chapter 2).

In section 3.4, the overlap between the topological filament and the electronic

filament is investigated. We are not providing a full explanation for the exact mecha-

nism of the overlap. Instead, we bring up a qualitative conjecture that the topological

correlation (topological filaments) stand at the heart of the Urbach tails.
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# Author NOA Type ∆θ/∆ cos θ ∆b De%
M1 DTW [32] 512 WWW 20.1◦/0.33 0.08 0.0
M2 DTW [32] 4096 WWW 19.1◦/0.31 0.19 0.2
M3 Feldman [33] 1000 WWW 18.4◦/0.30 0.08 4.0
M4 Mousseau [29] 4000 ART[29] 17.8◦/0.30 0.11 4.0
M5 Nakhmanson [30] 1000 PC N/A N/A 0.0
M6 Biswas [31] 216 RMC[31] 22.3◦/0.37 0.30 12.5
M7 Biswas [31] 500 RMC[31] 22.5◦/0.37 0.24 12
M8 Mousseau 64 WWW 20.7◦/0.34 0.11 0.0
M9 DTW [32] 216 WWW 24.5◦/0.40 0.30 0.0

Table 3.1: Models and basic information. NOA stands for “Number of atoms”; De% stands
for “defects percentage”; ∆θ/∆ cos θ stands for the width of bond-angle θ/cos θ distribution;
∆b stands for the width of bond-length distribution; WWW stands for Wooten-Weaire-
Winer modeling scheme [28]; ART stands for activation-relaxation technique [29]; PC stands
for “paracrystalline”; RMC stands for Reverse Monte-Carlo modeling scheme [31].

3.2 Topological correlation - the topological filament

3.2.1 Model characteristics and nomenclature

Even in good quality unhydrogenated material, mid-gap defects are fairly

rare, at most a few sites per thousand [5]. At a practical level this means that ideal

models of tractable size (up to several thousand atoms) can contain zero to a few

defects producing mid-gap states. The Wooten-Weaire-Winer (WWW) [28] method

is the “gold standard” for forming such realistic models, and several of the models we

discuss depend upon WWW at least as a starting point. For completeness, and in

particular to ascertain the extent to which our observations might tend to be WWW

artifacts, we have repeated the calculations for other models as well. We summarize

some salient features of the models in Table 3.1.
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M1, M2, M3, M8 and M9 all derived originally from WWW[28] modeling

scheme. M1, M2 and M9 were developed by B. R. Djordjevic, M. F. Thorpe, F.

Wooten [32]; M3 was developed by Feldman and M8 by N. Mousseau. M4 was made

via activation-relaxation technique [29]. M5 and M6 are Reverse-Monte-Carlo [31]

models. Model M1 to M4 and M6 to M9 are continuous random network (CRN)

models. Beside CRN models, we include model M5, a paracrystalline model (CRN

with crystalline inclusion). In particular for M5, 211 crystalline silicon atoms are

embedded.

Excepting M5, all the models that we have studied here have normally dis-

tributed bond lengths and cosines of bond angles. For the large WWW models the

similarity to the normal distribution is quite striking[34]. Here we report the bond

length and bond angle distributions for these models in Fig. 3.1. Model M1 and

M4 show nearly perfect Gaussian fits, while model M7, (a 500-atom model), is fairly

Gaussian, with statistical noise. The other models exhibit similar traits. Dong and

Drabold[34] have attempted to correlate these normally-distributed quantities to Ur-

bach tailing.

Model M1, M5, M8 and M9 are defect free. In the other models, there are

coordination defects, ranging from 0.2% to 12.5%, including both dangling bonds

and five-fold “floating” bonds. The pair correlation functions of these models are all

similar, accurately reflecting the experimental function. As usual with a-Si, this is a
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Figure 3.1: Bond length distributions and bond angle (cosθ) distributions.

reminder that the information in the pair-correlation function alone is very insufficient

to specify coordinates.

3.2.2 Local inter-bond correlations

Our inspection of the topology of the models reveals that there is a tendency

for short bonds to be linked to other short bonds and long bonds to be linked to other

long bonds. In particular, this leads to 1) a tendency to spatial separation of the

shortest and the longest bonds in the system; 2) a tendency to build up filament and

ring like structures among extreme bonds. Selected fractions of shortest and longest

bonds of model M1 are extracted from the models and displayed in Fig. 3.2. The
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correlation is clearly visible, especially in Fig. 3.2c-f. Interpenetrating filamentary

structures appear to percolate through space for a sufficiently large cutoff in the

fractions of bonds displayed. For comparison, the 4% shortest and 4% longest bonds

of model M2 - M7 are shown in Fig. 3.3. To some extent, the self-correlations of

short and long bonds are visible in every model shown, suggesting that such bond

correlations are not an artifact of a particular model or modeling scheme.

Figure 3.2: Shortest bond (dark) and longest bonds (light) in model DTW512 (M1).

To explore our observation more quantitatively, we computed bond-bond

correlation functions for the shortest and longest bonds:

β(r) =
V

4πr2N1N2

N1∑
n1=1

N2∑
n2 6=n1

δ(rn1n2 − r) (3.1)
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Figure 3.3: 4% shortest (dark) bonds and longest (light) bonds of 6 models.

where N1, N2 are the number of short or long bonds as needed; n1 and n2 count over

these particular bonds; rn1n2 is the distance between the bond centers of bond n1 and

bond n2; V is the volume of the unit cell. The 4% shortest and 4% longest bonds

are taken for model M1 and the corresponding bond-bond correlation functions for

(1) N1 = 4% shortest, N2 = 4% longest; (2)N1 = 4% shortest, N2 = 4% shortest;

(3) N1 = 4% longest, N2 = 4% longest are plotted in Fig. 3.4. The first peaks of

the correlations of the same-type bonds (grey and dotted lines) appear to be much

stronger than the correlation between the different-type bonds (solid black line). The

second and even the third peaks maintain this feature, and after 6.0 Å, this correlation

wanes. This confirms that there is a correlation among the same-type-bonds, with a

correlation radius around 6.0Å for model M1. The very similar correlation functions
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between the 4% shortest and the 4% longest bonds of model M2 - M7 are plotted in

Fig.3.5. A substantial correlation between same-type bonds is revealed for all models,

with minor variations from model to model. Model M1, M3, M5 and M6 show slightly

stronger effects than the rest. Model M3 and M5 show stronger correlations between

the short bonds compared to those between the long bonds, while model M6 and M7

have relatively stronger correlations between the long bonds than those between the

short bonds.

Figure 3.4: Pair correlation between bond centers of model DTW512 (M1).
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Figure 3.5: Pair correlations between bond centers for 6 models.

3.2.3 Persistence of correlation effects with ab initio relaxation

The correlations are found quite consistently in the several models we ex-

amined, suggesting that the effects are not modeling artifacts. We also undertook

a simple comparison to see how a conjugate gradient (CG) relaxation process by

SIESTA affects the models. A relaxation was done on model M1 and M9. While

there were slight modifications in structure due to the CG process, we didn’t ob-

served any significant changes in these correlations.
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3.2.4 Persistence of correlation at finite temperature

To further explore the likelihood that the long and short inter bond correla-

tions were artifacts, we also undertook thermal MD simulations at 300K on two small

models (M8 and M9) with the code SIESTA. Nosé dynamics were used. With some

thermally-induced fluctuations, the short-short bond correlation and long-long bond

correlation persist at all times, as seen in Fig. 3.6 for model M9, where the heights of

the first peaks of the pair correlation functions from Eq (3.1) are plotted throughout

time steps. 4% shortest bonds and 4% longest bonds of the system at all time were

involved for the calculations. The correlations between the same types of bonds are

fluctuating but generally higher than that between the different types. The detailed

temperature dependence in this correlation, however, requires further study.

3.2.5 Section summary

We have discovered a significant and reasonably model-independent feature

of a-Si network namely the topological correlation. This correlation leads to short

bond centers, long bond centers and filamentary linking paths in between. We call

this topological correlation the topological filament (TF).
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Figure 3.6: Bond-bond correlation under molecular dynamics. Model DTW216 (M9) is used
for 3000 fs.

3.3 Electron-topology correlation - the electronic filament

3.3.1 Density of states and Localization

The electronic and optical properties of the models are determined by the

coordinates of the atoms. Electronic eigenstates and wavefunctions of the models are

obtained for static lattices. For the larger model M2 and M4 a tight binding model

[35, 36] is applied. For other models, the ab initio code SIESTA [15] is used. Results

are very similar for the empirical and ab initio calculations.

Densities of states near Ef of the seven models are given in Fig.3.7. Spatial

localization is reported using the Inverse Participation Ratio (IPR) in Fig. 3.8. Model
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Figure 3.7: Density of states of the 7 models.

M1 and M5 are defect free, with no states in their optical gaps. Model M2 has 0.2%

defects and one gap state. Model M3 and M4 both have 4% defects, and a small

peak of states in the gap. M6 has 12.5% defects and M7 has 12% defects and both

have many states spread through the gap. Only M1, M2 and M5 conform closely to

ordinary expectations for an a-Si DOS. M3, M4, M6 and M7 exhibit too many defects

for good a-Si materials and are studied here mainly for comparison purpose.

3.3.2 Bond length-electron correlations and bond angle-electron correla-

tions near Ef

Fedders, Drabold, Nakhmanson’s study [25] observed that valence tail states

preferentially involved short bond lengths, whereas conduction tail states tended to
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Figure 3.8: Inverse Participation Ratio of the 7 Models.

be involved with longer bond lengths. Angle distortion was also mentioned but no

specific relation to the band tails was detected. Related work was undertaken in

Ref. [26]. Here, we extend this analysis to our collection of models. Where the

bond lengths are concerned, the present work is consistent with these findings. In

addition we also clearly detect a correlation between valence tail and small bond

angle, and a correlation between conduction tail and large bond angle, which has not

been explicitly observed before.

An electron(Mulliken charge)-weighted mean bond length for each state was

calculated in Ref. [25], and it revealed an interesting and general trend in bond

lengths. Here we computed the mean bond length in a similar fashion, and explored
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into seven of our models for this mean value. We then extended the calculations into

the mean bond angles, using the very same Mulliken charge.

For a certain eigenstate E, the Mulliken charge q(n,E) is the electron prob-

ability on an atom n. Using it as a weighting factor, we define the corresponding

symmetrized mean bond length as B(E).

B(E) =

∑
n,m b(n,m)q(n,E)q(m,E)∑

n,m q(n,E)q(m,E)

(3.2)

where n,m summations only go over all the possible bonds in a unit cell (of N atoms),

with n,m as the bond end atoms. q(n,E), as defined, is the electron probability on

the atom n. B(E) (near the Fermi level) for each model is plotted in Fig. 3.9. B(E)

shows an asymmetrical split around the gap (Fermi level) for all models. Smaller

average bond lengths are correlated to the valence tails and large average bond lengths

correlated to the conduction tails. There are clear difference among the seven models,

especially on the mid-gap states from the models with high defect concentration. For

models with fewer defect states in the gap, the bond-electron correlations are very

clear. Models with many mid-gap states show mixed behavior, though the asymmetric

splitting is always detectable.

In analogy with the discussion for bond lengths, we define the electron-

weighted mean of bond angles as:

A(E) =

∑
n,m,l θ(n,m,l)q(n,E)q(m,E)q(l,E)∑

n,m,l q(n,E)q(m,E)q(l,E)

(3.3)
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Figure 3.9: Charge-weighted averaged bond length of the 7 models.

where n,m, l are the atoms of the unit cell of N atoms; summations of n, m, l only

count over all the possible bond angles, with m as the vertex of each angle. q(n,E), as

defined, is the electron probability on the atom n. A(E) is plotted in Fig. 3.10. It also

shows a clear asymmetrical splitting around the gap for all plots. Smaller average

bond angles clearly appear to be correlated to the valence tails and larger average bond

angles correlated to the conduction tails. There are also differences among the models

but the asymmetric feature remains. Interestingly, these angle-electron correlations

show strong resemblance to the bond-electron correlations discussed above.
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Figure 3.10: Charge-weighted averaged bond angle of the 7 models.

One feature to note is that here only the energies near the Fermi level are

shown. In our models, A(E) and B(E) also have extrema in other spectral gaps,

whenever the states are fairly localized.

3.3.3 Filamentary structure

During our initial inspections into the localized states, we found that the

electron charge tended to spread over certain paths. The initial impression emerged

that they were 1-D filament-like. We have now confirmed that the highly-localized

states of model M1 displays a 1-D filamentary connectivity. We extract 9 eigenstates

for the band-tail states, 4 valence states and 5 conduction states, and display them
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in the Figure 3.11. Interestingly, these localized states all happen to form 1-D-like

filamentary charge paths, with occasional ring formations.

Figure 3.11: 4 valence states and 5 conduction states of model M1.

In the figure, “H” symbols “HOMO” state; “H1” is short for the first state

lower than the “HOMO”, and so on; “L” symbols “LUMO” state and “L1” the first

state higher than the “LUMO”, and so on. To help understand the figure accurately,

we point out here that for each state, only the atoms possessing the most (a dominant

percentage) charge are shown in the figure. The percentage of the charge varies

approximately from 70 to 95%, but never reaches 100%. If 100% charge indeed was

shown, then all atoms would have been included and it would not be as revealing.
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Also this is contrary to a perfect crystalline network, in which all atoms approximately

carry the very same amount of charge. No particular subgroup can then be extracted.

State #1024(-0.34eV, a valence state) and state #1025(0.34eV, a conduction

state) of model M1 are shown again in Fig. 3.12 along with the filaments from the

other 6 models. For model M2-M7 only one most localized state is shown. Again, a

dominant amount of charge is included for each state, and the amount varies slightly

between the models to manifest the filaments. For all these models, more than one

localized states also form filament-like structures in general. The strength of the effect

varies slightly among the models.

It is natural to connect these filaments to the topological-electronic correla-

tion previously discussed. For model M1, which is a typical example, when examined

closely, the electronic filament from state #1024 (a valence tail state) has both short

bonds and small bond angles along the chain, while #1025 (a conduction tail state)

has both long bonds and large bond angles along the chain. In a way, the elec-

tronic filaments appear to be sitting at the very center of the topological-electronic

correlation.

3.3.4 Overlap between filaments

We know that the electronic structure is directly derived from the topology of

the network, and thus the topological filaments might be the centers for the electronic

filaments to appear. Indeed we observe large correlation between the electronic fila-
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Figure 3.12: The filamentary charge path of 7 models. For Model M1, two states are shown.
For M2-M7 only one most localized state is shown.

ments and the topological filaments. Figure. 3.13 is an illustration of this connection

between the short-bond clusters and the most localized state ((H)OMO state) for the

M1 model. Cyan atoms denote the 1% shortest bonds and their direct neighboring

atoms. Yellow and gold atoms denotes the 95% charge of the state #1024 (H). Gold

atoms denotes the overlapping atoms with the shortest bonds atoms and their di-

rect neighboring atoms. (This is not exactly the topological filaments since we have

included the nearest neighbors too. But this is a demonstration that the electronic

filaments locate inside the vicinity of the topological filaments.) The overlap is vis-

ibly large. The picture is similar for state H1, H2 and next a few states, although,
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the general trend is, the less localized the state, the less overlap we have with the

topological filaments.

Figure 3.13: Topology-Electron correlations. The overlapping (gold) between short bonds
(gold and cyan) and large charge (gold and yellow) of state #1024 of M1 is shown.

A closer inspection, however, reveals the overlapping is not as ideal as we

expected. In the figure we see there is non-overlap part. This also happens for state

H1, H2 and so on, and the other side of the gap, the conduction states as well (overlap

to the long bond filaments). The exact mechanism of how these two types of filaments

overlap is still a puzzle.
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3.3.5 Discussion

Here we offer a heuristic explanation of our observation that valence tail

states are preferentially localized on short bonds and conduction tail states localized

on long bonds. Short bond length has two consequences: (1) it will increase the

transition integral; the energy of valence band states are lowered while the energy of

conduction states is lifted relative to a hypothetical reference crystal (diamond for

a-Si); (2) Small bond lengths increase the charge at the center of the bonds (states

near valence edge). Thus if we make the significant assumption that the valence and

conduction tails should be associated with either short or long bonds, it is clear that

the electronic (band-energy) is optimized if the valence tails are associated with short

bonds, and the long bonds would “do the least damage” if put above the Fermi-level,

or linked with the conduction tail. This completely neglects other contributions to

the total energy, though the observation of the effect in density functional calculations

suggests that the band energy is the key term.

3.3.6 Section summary

We have discovered a model-independent feature of the electronic structure

of a-Si, namely the electron-topology correlation. This correlation is especially strong

for band tail states, where valence tail states are correlated to short bond (small bond-

angle) in space and conduction tail states correlated to long bond (large bond-angle).
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Filamentary electronic paths (electronic filaments) characterize this electron-topology

correlation for very localized states.

3.4 Topology-Urbach correlation

3.4.1 The conjecture

From our observations, the topological correlation (filament) stands as the

origin of the electron-topology correlation characterizing the band tail states in amor-

phous silicon. We now bring up our conjecture that the topological correlation (fila-

ment) sits at the very root of the Urbach tail.

Firstly we show that any relaxation process leads to topological correlation

(topological filaments). We have examined 9 of our well relaxed a-Si models and have

always found topological filaments (TF). Further, we intentionally removed atoms

from a perfect crystalline Si network (to be mentioned in more details) and the re-

laxation of these point-like defects leads to clear 1-D filament-like local topologies.

In a different relaxed system, amorphous SiO2, we also found bond correlations. It

is more cluster-like than filament-like due to the floppier bonding of SiO2. In our

understanding, unlike SiO2, a-Si’s covalent structure being rigid (especially along the

bond-angles) is the reason the topological correlations appear more in 1-D filament-

like shapes: apparently for such systems strain is preferentially relaxed along filamen-

tary paths.
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Secondly, our relaxed models universally exhibit Urbach tails. In our model

M1 (a DTW 512 a-Si model), exponential decay is evident with an Urbach energy of

107meV (Fig. 3.14). It is interesting that a clear signature of exponential tailing is

seen even with a 512-atom model. We have also used maximum-entropy techniques to

extend such calculations to high-quality 105 atom a-Si models, and such calculations

reveal good quality exponential tails without exceptions.

To further examine our suspicion that topological correlation (filament) is

responsible for the Urbach tails, we did two types of tests. In the first, we begin

with a 512-atom model of Si in the diamond (crystalline) structure, and create two

vacancies. We then relax the network to a local energy minimum with small forces.

Before the relaxation, the model exhibits a sharp band edge like the ideal crystal, with

gap states arising from the vacancies. Relaxation involves many atoms. Analysis

of the post-relaxation pattern in our network shows that the deviation from ideal

crystalline symmetry appears to be largest along 1-D filaments beginning at the site

of the defects, decaying into space. This appears to be the simplest form of our

topological filaments. As we illustrate in Figure 3.14, interestingly, this relaxation

leads to an exponential valence tails in the DOS. It is worthwhile to mention that

recent ion bombardment experiments reported the appearance of an Urbach tail well

before amorphization, with a characteristic Urbach energy varying in the range 280-

370meV for Si ( compared with 350meV for our relaxed vacancy model).
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Figure 3.14: Valence band tails for crystalline Si and Crystal Si with two vacancies.

In the second type of tests, we start out from a good a-Si model (we ap-

plied this procedure on 64, 216 atom a-Si models, which manifest more primitive yet

visible exponential tails), and distort the topological filaments by randomly shorten-

ing or lengthening the bond lengths in the filaments, by small magnitudes. In this

way, we do not create further defects, and the overall structure of the network still

remains somehow close to the original network. The resulting density of states of

this ’distorted’ model has the band tails that extend clearly further into the gap and

deform into non-exponential decays. Figure 3.14 shows the valence tail of the orig-

inal DTW model and the ’distorted’ model. While the relaxed DTW models shows
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a clear exponential tail with Urbach energy of 107meV, the distortion in the bond

lengths has modified the functional form of the tail from exponential to something

more Gaussian. This effect repeats in our tests.

3.4.2 Discussion

With the first kind of tests, we show that even the simplest topological

filaments lead to exponential decay (Urbach tail). In the second kind of tests, we

show that without the topological filament, exponential decays disappear. So far,

we come to infer that the Urbach edges in a-Si come from the topological filaments.

We understand that our study is more experimental than rigorous. There still might

be other unknown factors involved. And the analytical form between the topological

correlation and the Urbach tail is not possible at the moment. Nevertheless, we think

it is a reasonable inference that the topological filaments play an essential role in

Urbach tailing effect in systems like a-Si.

The meaning of topological filaments and electronic filaments emerges as the

follows. We found that these two kind of filaments strongly overlap at the states near

the band edges where electronic filaments appear. Optical and conductivity measure-

ments are determined primarily by the character of the electron states near the Fermi

level, and this is true also for lightly doped materials. Thus, our demonstrated corre-

lation between EF and TF may be interpreted as a link between transport properties

and the TF present in a-Si. We have already shown elsewhere that localized and
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partly-localized deep tail states always have a strong electron-phonon coupling[50];

this inference goes a step further and shows that rather simple 1-D structures are at

the root of this large coupling. If one considers the Kubo formula[2], the conductiv-

ity is expressible as a sum over transitions between occupied and unoccupied states:

transitions between short-bond and long bond filaments, both with energies specially

susceptible to phonons[50]. Hence, one envisions carrier transport as a phonon-driven

process among EF. As the TF (correlated with the EF) exhibit distinct structural

signatures, the very phonon modes that enhance the transport are determined in part

by the TF.

Recent experiments in the area of cuprate superconductivity employing atomic-

resolution tunnelling-asymmetry imaging reveal complex patterns associated with

strong uniaxial “stripe” disorder of the tetragonal basal plane[51], as well as patchy

disorder associated with superconductive and pseudogaps[52]. The latter could cre-

ate filamentary Urbach tail states which could couple to interlayer dopant charges to

form a dopant-based network, as suggested by Phillips[53]. While there are obviously

stark differences between the cuprates and a-Si, the similarity of the topology of the

TF/EF and the STM images is of interest. Finally, we have noted elsewhere that

qualitative features of the states near the gap reveal universality. As eigenenergy is

varied from midgap into a mobility edge, the qualitative evolution of the structure of

the states is identical for Anderson models, realistic structural models as discussed

here, and even lattice vibrations with mass and spring constant disorder[11]. While
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the origin of the pseudogap in the cuprates is quite different from the optical gap in

a-Si, the similarity in the topology of the states seen in Ref. [51] and our work hints

at the possible existence of TF in the cuprates as well.

3.4.3 Section summary

We show that the existence of the topological filaments leads to Urbach tail.

We point out that topological filaments appears in all of our relaxed amorphous

networks, and Urbach tail appears for all these models. We show that even with

the simplest type of topological filament (a chain from a relaxation of point-like

defects in a crystal) Urbach tail shows up. We also show that with small amount

of tampering with the topological filaments, the Urbach decay is severely altered

into non-exponential form. With these evidences we come to the inference that the

topological filaments stand at the heart of the universal Urbach tails.

3.5 Chapter conclusion

We have discovered significant and reasonably model-independent features of

the network and electronic structure of a-Si, namely the topological correlation (TF)

and the electron-topology correlation (EF) as presented in section 3.2 and section 3.3

of this chapter. Significant overlap between the two is revealed for band tail states. In

section 3.4 we subsequently point out that the existence of the topological filaments

leads to Urbach tail. We show that topological filaments and the Urbach tail are
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mutually correlated. In various cases we prove that they always appear or disappear

simultaneously. These arguments are still non-conclusive but we think they are steps

toward the center of Urbach tail problem. Meanwhile filament-like topologies are

reported to be observed in very different systems. With our evidences, we think it is

a reasonable inference that the topological filaments sit at the origin of Urbach tailing

effect in systems like a-Si.
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Chapter 4

A semi-quantitative scattering

theory of amorphous materials

The content and results presented in this chapter are submitted: Mingliang Zhang, Yue

Pan, F. Inam and D. A. Drabold, Phys. Rev. Lett. (5/2008). [54].

4.1 Overview

Electronic localization induced by diagonal disorder or by structural disorder

has been intensively studied over nearly fifty years[55]. However, key properties like

the energy dependence of the Inverse Participation Ratio (IPR), the location of the

mobility edges and Urbach energy are expressed in an obscure way, not directly

accessible to experiment or simulation[8, 9]. Perturbation theory has been applied

to estimate the electron states of amorphous solids (AS) starting with a crystalline

counterpart as zero order solution[56] even before Anderson’s classical work[8, 9]. In

this chapter we suggest that a local formulation of perturbation theory is effective for

the localized states confined to one distorted region. Also for the first time we relate

important physical quantities of the location of the mobility edge, Urbach decay rate

(Urbach energy) and energy dependence of IPR etc. to basic network properties.



64

4.2 Localization criterion

Similar to the theory of elasticity[57], the distorted regions in AS can be

characterized by local strains referring to their local reference crystal (LRC) and

local rotations. By a suitable choice of origin and orientation of LRC, the atomic dis-

placements of a distorted region of AS relative to its LRC are small. Thus the relative

change in potential energy for each distorted region in AS is small. Perturbation the-

ory is justified for each distorted region. The semi-classical approximation (SCA)[58]

can further simplify the calculation of scattering waves caused by a distorted region,

since the de Broglie wavelength for low-lying excitations is of order one bond length

(≈2.35 Å in a-Si[59]), a distance much shorter than the characteristic range in which

the random potential fluctuates[18, 19]. The motion of electronic packet under extra

force of AS relative to LRC can be described by the Ehrenfest theorem[58].

We first formulate an intuitive localization criterion for the states confined

to one distorted region. Then the IPR, the position of mobility edge and Urbach

energy are related to the distortion relative to the LRC, the coordination number

and the inter-cell transition integral. The predictions are consistent with available

experiments. We also performed ab initio local density approximation (LDA)[15] and

tight binding approximation (TBA)[60, 11] computations on a-Si to verify our results.

Consider a distorted region D, with linear size L. Using the primitive cell

of LRC numbering the atoms in D, the x-component of extra force suffered by an
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electron relative to that of LRC is

Fx(r) =
∑
nβ

∂2U(r−Rn)

∂Rnx∂Rnβ

usnβ, β = x, y, z (4.1)

later its characteristic value of is denoted as F . n is lattice index, Rn and usnβ are

the position vector and the βth component of the static displacement of the atom n

respectively. U(r−Rn) is the potential energy felt by an electron at r from the atom

at Rn.

A Bloch wave ψcnk of LRC passes through D, and in SCA[58], the change in

the x component of the wave vector after scattering is

∆kx ∼
(FL)x
∇kxEnk

(4.2)

FL measures the magnitude of random potential in D. The phase shift δnk of state

ψcnk is determined by the change in momentum and the propagation path of the Bloch

wave

δnk ∼
FL2

|∇kEnk|
(4.3)

where Enk is dispersion relation of the nth energy band of the LRC. FL2 is the

strength of a potential well (the product of the depth of potential well and the range

of force) in standard scattering theory[61]. If the first coordination shell around an

atom is spherically symmetric, the dispersion relation in TBA is[61]

Enk ∼ En0 − zIn cos kxa (4.4)

En0 is the middle of the nth band (kxa = π/2), z is the coordination number of a cell,

In is the transition integral for the nth band, a is the lattice constant in LRC. For
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a semi-quantitative discussion, crude dispersion relation (4.4) will not invalidate any

essential points. If the phase shift δnk of the secondary scattering waves relative to the

primary wave is ∼ π, then outside D, scattering waves will interfere destructively with

the primary Bloch state. No probability amplitude appears outside D. A localized

state is therefore formed inside D due to the constructive interference of a Bloch state

ψcnk and its secondary scattering waves.

4.3 Mobility edges

Bloch states of LRC at top of valence and at bottom of the conduction edges

are susceptible to the random potential. The former is a shorter wave, sensitive to

details of atomic displacements of a distorted region. The latter is a long wave, a

small random potential will easily produce a change in momentum comparable to

~k itself. In other words, states with small group velocity are easily localized. The

group velocity of an electron in state ψcnk in TBA is vgnk ∼ zIna
~ sin kxa, states near

to bottom (kxa ∼ 0) and states near to top (kxa ∼ π ) have small vgnk. According to

Eq. (4.3), they are more easily localized than the states in the middle of a band for a

given random potential. For k close to π
a
, with TBA dispersion relation (4.4), group

velocity of state ψvk is vgk = Iz
~ (E0−E

Iz
)1/2, E0 = EV

0 + zIV is the top of the valence

band. By Eq. (4.3), under TBA, for a valence state ψvk with energy Ek, the change in

phase shift with energy is according to dδk
dE

= FL2

a(E0−Ek)3/2(Iz)1/2
. For a given distorted

region, Bloch states close to E0 will suffer larger phase shift. They are more readily
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localized than the states in the middle of the band. Similar conclusion holds for the

Bloch states in the bottom of conduction band. In Fig. 4.1 the IPR is plotted against

electron energy for a-Si512. Large IPR appears at the edges of a band, in agreement

with the above prediction.

The upper mobility edge of the valence band is the deepest energy level

EV
kV∗

that the largest distorted region could localize, i.e. produce a phase shift π for

the corresponding Bloch state. In TBA, this leads to sin kV∗ a = FL2

zIV aπ
. The energy

difference between the top of a band and the mobility edge is EV
me = zV I

V {1 − [1 −

( FL2

zV IV aπ
)2]1/2} ∼ (FL

2

aπ
)2

zV IV
, last ∼ only holds for FL2

zV IV aπ
<< 1. It is obvious that stronger

random potential and narrower band leading to a deeper mobility edge. The lower

mobility edge of the conduction band can be obtained similarly. The energy difference

∆m between the lower mobility edge of the conduction band and the upper edge of

the valence band is

∆m ≈ GC + [
(FL

2

aπ
)2

zV IV
+

(
FCL

2
C

aCπ
)2

zCIC
] (4.5)

where GC is the band gap of LRC. Because van Hove singularity is smeared out in

AS, gap in amorphous solid is ambiguous. ∆m can be defined in a simulation by

identifying two edge states.

In the middle of a band kxa = π
2
, the group velocity reaches its maximum

zIna
~ . By Eq. (4.3), to localize the states in the middle of the nth band, we need

FL
zIn

L
a

& π. States in the middle of a band are most difficult to localize. If those states

are localized, the whole band is localized. A stronger localization condition is ∆k ∼ k.
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In the middle of band kx = π
2

1
a
, by Eq. (4.2) the change in wave vector is FL

zIna
. It leads

to the condition to localize a whole band FL
zIn

& π
2
, is smaller than FL

zIn
∼ 6−34[62]. The

deeper localized states in AS are generated by the deeper Bloch states of LRC, are

spread in several distorted regions. Because current local description only considers

the states localized in one distorted region, we cannot expect a better estimation.

4.4 IPR relation

The IPR Ij of a localized eigen state ψj could be approximated as[55] Ij ∼ a3

ξ3j
,

ξj is the localization length of ψj. If a Bloch wave ψcnk suffers a phase shift π by some

distorted region to produce ψj, it is localized in range ξj : ξj∆k ∼ π. The change in

wave vector is ∆k ∼ FL
∇kEk

,

ξj ∼
π

∆k
=
π∇kEk
FL

∼
πzIna sin ka

FL
(4.6)

∼ is obtained under TBA. According to Eq. (4.1), F ∼ ε, ε is the relative change in

lattice constant. To minimize the free energy, a denser region with shorter bonds and

small angles will gradually decay away toward the mean density rather than exhibit

an abrupt transit to a diluter region and vice versa. Therefore the size L of a denser

distorted region is proportional to ε. Eq. (4.6) indicates ξ ∼ a
ε2

[56]. The advantage

of Eq. (4.6) is that it reveals the role of the coordination number z and the transition

integral I. The dependence on k (wave length and propagation direction of Bloch
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wave) is also displayed in Eq. (4.6): close to band edge of LRC, ka ∼ 0 or π
a
, the

localization length is small and IPR is high (see Fig. 4.1).

Making use of Eqs. (4.6) and (4.4),

ξj(Ekj) =
πzIV a

FL
[1− (

Ekj − bVme + zIV − EV
me

IV z
)2]1/2 (4.7)

bVme is the location of the mobility edge of valence band. When we approach bVme from

the upper side with higher energy, it is easy to find ξj → L from Eq. (4.7), localization

length ξ approach to the size L of whole sample as (Ekj − bVme)α, where 1
2
< α < 1,

it is close the lower bound of previous works[63]. The trend expressed by (4.7) is

consistent with a simulation based upon time-dependent Schrodinger equation[64].

For a localized state derived from Bloch wave ψckj in LRC, the energy depen-

dence of IPR can be found

I(Ekj) ∼
(FL/πzIV )3

[1− (
E
kj
−EV0
zIV

)2]3/2
(4.8)

This is a new prediction of our work. Eqs. (4.7) and (4.8) are not quite satisfied

because Ekj is the corresponding energy level in LRC, not the eigenvalue of the

localized state ψaj . It can be cured by taking into account energy level shift caused

by the disorder in AS relative to LRC. Fig. 4.1 shows IPR vs. eigenvalues in a

512-atom model of a-Si[18]. As expected from Eq. (4.8), IPR decreases from highest

values from band edges towards inside of a band. The functional form (4.8) fits the

simulation rather well.
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Figure 4.1: IPR of 512-atom model of a-Si, dots from ab initio calculation[15], dashed line
and solid line are from two parameter (FL and zI) least squares fit and eye guide fit with
Eq. (4.8).

According to Eq. (4.8), the least squares fitting parameters in Fig. 4.1 are

(FL)V = 1.256eV, (zI)V = 3.185eV, EV
0 = −7.390eV, (FL)C = 1.437eV, (zI)C =

3.502eV, EC
0 = −1.080eV. The width of valence band of c-Si is about 2.7eV, the width

of conduction band is about 2.3eV[65]. The fit parameters are reasonable-something

like what we expect for Si. Gap for c-Si is 1.12eV[65], using above parameters with

help of Eq. (4.5), the distance between mobility edges is 2.205eV. Result from LRC

model falls in the range 1.58-2.43 eV of the observed optical gap[66, 67, 68].

In a distorted region of a-Si where bonds are shortened, valence states have

more amplitude in the middle of bonds. Random potential Va − Vc (the difference

between the amorphous and crystalline potentials) is important only in the middle
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of bonds rather than close to the core of atoms. Electrons will feel Va − Vc more

than a region where bonds more close normal. Valence tail states are easier localized

in a distorted region with shorter bonds[18, 10]. On the other hand, in a distorted

region with longer bonds, the conduction levels are lowered and the probability of

conduction electrons staying in the middle of nearest neighbor atoms becomes larger

than a region where bonds are closer to the mean. Conduction tail states are more

readily localized in a distorted region with longer bonds and large angles[18, 10].

4.5 Urbach decay-rate relation

The effect of three- and four- points correlation on the shape of band tail

is subtle, localized states adhere to 1D filaments in AS network[19]. In the spirit of

scattering theory of line shape[69], Urbach energy can be assumed as coming from

the relative shift of energy levels of LRC. Suppose ∆b is the distribution width of

bond length (BL), the blurring δk in wave vector k is ∆b
b
k. The shift of level Ev

k

(Ec
k) for a Bloch state ψvk (ψck) in valence (conduction) band by the disorder in AS is

∆E
v(c)
k =

∫
dτ(Va − Vc)|ψv(c)

k |2. The relative level shift due to this BL distribution is

δk d
dk

∆Ec
k. It is easy to see Va − Vc ∝ ∆a

a
Vc. Then the Urbach energy is

E
V (C)
U ∼

∆b

b
k · 1

k

∆b

b
Vc = (

∆b

b
)2|Vc| =

(∆b
b
|Vc|)2

|Vc|
(4.9)

If we make a correspondence between structural disorder ∆b
b
|Vc| and on-site spread W

of levels, Eq. (4.9) is comparable to EU ∼ 0.5W
2

B
(B is the band width) [70] and EU ∼
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π
4

W 2

3π2 ~2

2mL2

[71], where L and W are correlation length and variance of random potential.

Eq. (4.9) is also consistent with an assumption of Cody et. al. to explain their

absorption edge data in a-Si:H[72]. By notice the width of BL distribution is ∆b
b

≈ 0.1

and |Vc| ∼ 1 − 10eV, the order of magnitude of mobility edge should be (∆b
b

)|Vc|,

several tenth eV to 1eV. Urbach energy is around several tens to several hundred

meV. Both agree with experimental observations[73]. Eq. (4.9) indicates Urbach

energy is proportional to static disorder that is characterized by (∆b
b

)2, in consistent

with the fact that Urbach energy of a-Si:H increased with deposition power[73]. ∆b

and b could also be explained as the width and the average value of BA distribution.

Because local compress is compensated by neighbor local tensile in AS, EV
U ∼

ςV

ςC
EC
U , where ςV (ςC) is an order one dimensionless constant characterizing the peak

(node) of valence (conduction) states. In a-Si and a-Si:H, random potential (Va −

Vc) has larger distortion in the middle of Si-Si bonds, since valence states are more

in the middle of bonds than conduction states[59], they feel the distortion more.

Therefore ςV > ςC . One expect EV
U > EC

U . This agrees with measurements in a-Si:H:

EV
U ∼43-103meV vs. EC

U ∼27-37 meV, linear relation among EV
U and EC

U has also

been observed[73].

To test correctness of Eq. (4.9), we finished a TBA calculation for DOS of

six a-Si models with 20,000 atoms[60, 11, 74]. Urbach energies, the width σcos θ of

BA distributions and the width ∆b of BL distribution are extracted. Fig. 4.2 clearly

shows good linear relation between EV
U (EC

U ) and σ2
cos θ, curves pass origin (Urbach
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Figure 4.2: EVU and ECU vs. σ2
cosθ: 6 squares are extracted from TBA calculation, dotted

line and solid line are least square fits with and without (0,0) points.

energy is zero for crystal) as displayed in Eq. (4.9). It can be further tested in ion

implanted samples, where a continuous increase disorder from crystal to amorphous

are realized by increasing the dose[75]. The EV
U (EC

U ) vs. (∆b)2 curve does not pass

origin (not showing here), this is an indication that BA disorder is a little more

decisive in determine the shape of a band tail than BL disorder for a well relaxed

structure[18, 10].

The electron-phonon interaction is strong in AS[50]. At finite temperature,

the displacement of an atom in AS deviate from the position in the LRC at zero

temperature is a vector sum of the static displacement us and thermal vibration
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displacement uT (t) from the zero temperature configuration of AS, t is the time

moment. In ordinary absorption experiment, time interval T is much longer than

the period of the slowest mode, therefore EC
U = 1

T

∫ T
0
dtςC(us+uT (t)

a
)2|Vc|. Atoms

vibrate around their equilibrium points in AS, the time average of the cross term

us·uT (t) is zero. Thus Urbach energy from static disorder and from thermal disorder is

additive[72] EC
U = EC

Us+E
C
UT , E

C
Us = ςC(us

a
)2|Vc|. Thermal part EC

UT = ςC
u2
T

a2 |Vc|, u2
T =

1
T

∫ T
0
dt[uT (t)]2 is the long time average of the square of amplitude of vibration. An

ultra-fast probe of absorption edge may find oscillating in EC
U . Since u2

T ∝ kBT
BC

a2[61],

BC is binding energy in the diluter regions where conduction tail states are localized,

EC
UT = ςCkBT

|Vc|
BC

. EC
U linearly increases with temperature. Similarly result holds for

EV
U . The is consistent with the fact that above 350K absorption edge linearly increase

with kBT in a-Si:H[76, 12]. Because BV > BC , EC
U is more susceptible to thermal

disorder than EV
U [77], as observed in ref. [12].

4.6 Summary

For realistic amorphous solid with topological disorder, by viewing an AS

as many distorted regions relative to corresponding LRC, we push forward essential

understanding on localized states confined in one distorted region. The predicted

IPR, mobility edge, the dependence on static disorder and on temperature of Urbach

energy agree with available experiments and simulations. We explained the fact that

valence tail states are more localized in a denser region with smaller BA and shorter
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BL and conduction tail states are more localized in diluter region with longer BL

and larger BA in a-Si[18, 10]. Localized states in several distorted regions and other

problems involving global topology will be addressed in future.
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Chapter 5

Study of Boron Doping

5.1 Overview

It is known that the doping efficiency of B in a-Si:H is very low. It is around

ten percent at low concentrations [78, 49] and falls off to less than one percent as the

concentration increases. This is in strong contrast to the situation for c-Si, where the

doping efficiency is virtually one hundred percent.

Spear and LeComber reported that a-Si:H could be doped either p or n type

by the addition of boron or phosphorus[5]. This first observation of electronic doping

in an amorphous semiconductor set the stage for the subsequent development of a-

Si:H electronic technology. Subsequent experiments confirmed that the conductivity

change was due to a shift of the Fermi level. (For completeness, refer to R. A. Streets’

book [5]). The behavior of B (P) doped a-Si:H very much resembles that of crystalline

except for the low doping efficiency and decreased conductivity at very high B (P)

concentration.

Doping in c-Si has been well explained with the effective mass theory[5, 6],

where B is expected to ideally substitute a Si and is bonded to four Si neighbors. The

observation of effective doping of B (P) in a-Si:H is significant because of the theoret-

ical prediction that substitutional doping of an amorphous semiconductor is impos-
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sible, described as follows. In covalent amorphous solid, the bonding coordination Z

is expected to obey the “8-N” rule[5]: Z = 8−N(forN ≥ 4) and Z = N(forN < 4)

where N is the valence number of the element. In crystalline silicon, the periodic

lattice of atoms constrains the impurity to have the same coordination as the silicon,

in which case the boron or phosphorus atoms become dopant states. This topological

constraint of the crystalline lattice that leads to the substitutional doping might be

absent in amorphous solids.

The observation of effective doping in a-Si:H certainly contradicts this view,

although the doping efficiency in a-Si:H is very low. It had long been believed that

the majority of B present in a-Si:H were threefold (and therefore electrically inactive).

It was J. B. Boyce and S. E. Ready[79]’s classic nuclear-magnetic-double-resonance

experiment in 1988 that for the first time contradicted this belief. J. B. Boyce and

S. E. Ready observed in a sample that 40 percent of the B atoms had a H atom at

about 1.6 Å, very close to typical B-H distances. The exact fraction of the H that

is bonded to B varied with samples but it was confirmed that a significant fraction

of B having a H in the first-neighbor shell. P. A. Fedders and D. A. Drabold carried

out first principle calculation[49] in 1997 and confirmed this result. The calculation

indicated fourfold B was to be preferred and the conventional view was in error.

H passivation was pointed out as the cause of the low B-doping efficiency. It is

interesting to mention here that J. B. Boyce and S. E. Ready also observed that

phosphorus behaved differently than boron in a-Si:H. The H was not directly bonded
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to a measurable fraction of the P. Instead, about 53 percent of the P had an H atom

at an average distance of 2.6 Å.

Another decade has now passed and the computational accuracy has been

greatly improved. We now study boron doping in a-Si:H via much more sophisticated

ab initio calculation code SIESTA 2.0 (solving the self-consistent Kohn-Sham equa-

tions with a double-zeta polarized basis for Si and H and a double-zeta basis for B).

We look forward to answering following questions: (1)What are the preferred coor-

dinations and sites for B occupation? (2)Why the low doping efficiency? (3)What

happens electronically for very large B concentration?

5.2 Tetrahedral B is stable

Our MD simulation shows that tetrahedral/substitutional (fourfold) config-

uration of B is very stable. Various B concentrations have been tested (with or with-

out H’s presence) and the stability repeats even for high B concentration. Our result

agrees with Fedders’ and Drabold’s calculations where fourfold boron was shown to

have lower energy than threefold boron. Our result is further backed up by recent

calculation from I. Santos et al.[80], which shows tetrahedral /substitutional B forma-

tion is preferred with a lower chemical potential. These results put the conventional

view that non-tetrahedral B prevails in a-Si:H in error. Thus, the idea that the 8-N

rule is maintained in a-Si:H appears to be incorrect.



79

5.3 Hydrogen Passivation

P. A. Fedders and D. A. Drabold pointed out[49] that H passivation is the

main cause for low B doping efficiency in a-Si:H. They calculated averaged energies

and show that a configuration of boron bonded with hydrogen has lower energy (an

average energy of 0.22eV) and therefore B has higher affinity for H than Si does (an

average energy of 0.44eV). Our current simulation confirms this argument. This is

manifested in Figure 5.1, which are obtained via our molecular dynamic simulations.

The figures demonstrate how H diffuses to form a bond with a B in the a-Si:H network

at 300K. This result is typical. Our simulation always forms a B(3,1) configuration:

a B bonded to three Si and one H. In our calculation the initial system with the B

bonded to a Si has a free energy of -6744.44 eV. When the B is bonded to the H

(bondlength ≈ 1.49Å), the system has lowered the free energy to -6752.98 eV. Please

note that only energy differences are meaningful. Early experiment of J. B. Boyce

and S. E. Ready[79] showed that 1
2

of the borons had H neighbors about 1.4 Å away,

which suggested prevailing B-H pair formation. Our result is consistent with this

finding.

In Fedders’ and Drabold’s calculation, however, the B(3,1) formation (B

bonded to three Si and one H) is found to be an effective doping configuration. They

stated that B(4) (B bonded to four Si) and B(3,1) configurations both have a fourfold

coordinated boron atom and both dope the material. They argued that the B-H-Si

formation (B bonded to four Si and one H in between) or B-Si-H-Si formation is the
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Figure 5.1: One H (white) is initially bonded with a Si atom, and is 2.83Å away from
the four-coordinated B atom (left panel). After a molecular dynamic process of 0.5 ps at
300K, the H atom moves itself to bond with the B atom with a bond-length around 1.49Å.
One original B-Si bond is broken and the Si shifts to bond with another Si (right panel).
Therefore the B atom is still four-coordinated.

cause for non-doping, where H successfully passivates B. This is where our current

result differs. Our density of state calculation reveals in Figure 5.2 that the B(3,1)

formation does not dope the material. Fermi level is not shifted into the valence band

within case C and D, where in either case the boron is bonded to an H atom and

forms the B(3,1) formation.

While H passivation is recognized in common, our result creates a discrep-

ancy. Does B(3,1) configuration create a dopant state or not? Our current result that

the B(3,1) configuration does not dope the material can be backed up by the fact that

first in Fedders’ and Drabold’s calculation B(3,1) has much favored energetics with

an average energy of a mere 0.22 eV compared to B-H-Si’s 16.27 eV and B-Si-H-Si’s

16.30 eV; secondly our newer simulation forms the B(3,1) formation repeatedly and
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Figure 5.2: Density of states of (A) intrinsic a-Si; (B) a-Si with 1.6% B; (C) a-Si:H with
1.6%, bonded to H; (D) a-Si:H with 1.6% B, bonded to H after the MD evolution, as shown
in the right panel of Fig. 5.1.

never produces the B-H-Si or the B-Si-H-Si formation. It would be hard to imag-

ine there exists a large amount of B-H-Si or B-Si-H-Si formations in the material.

B(3,1) configuration, on the other hand, can easily prevail in the network due to its

favored energetics. The question becomes whether B(3,1) configuration can create a

free carrier to form a dopant state. Although four-bonded, B(3,1) formation deviates

from the sp3 bonding and can possibly be non-doping. The underlying mechanism,

however, is unclear. If non-doping, in our speculation, both the broken symmetry

from the tetrahedral formation and possible localized electron can be the cause.
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5.4 High B concentration

Our calculation also finds that very high B concentration does not produce a

commensurate shift in Fermi level, even without H. This can be seen in Fig. 5.3. Con-

ductivity is not enhanced. This is consistent with earlier experiments from Tsai[81]

and Leidich[82] where higher doping levels cause a large decrease in the conductivity

and a corresponding increase in the activation energy. R. A. Street[5] pointed out

that at these concentrations, the material is more properly described as an alloy.

Therefore the network may change into an electronically and structurally different

material instead of shifting the Fermi level.

5.5 Summary

Our result agrees with P. A. Fedders and D. A. Drabold’s earlier theory that

H passivation of B is one of the major reasons for the low B doping efficiency in a-

Si:H, with the difference being whether the frequently found B(3,1) formation forms

a dopant state. At the same time, our study shows that tetrahedral B formation is

very stable, therefore putting the non-tetrahedral explanation in error. This coincides

with the recent work from I. Santos et al[80]. Also we find that large B concentration

contributes very little to the doping efficiency, whether H is included or not.

The time and amount of data involved in our Boron study was limited. More

data and study are needed. We have yet to explore an potentially important category:
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Figure 5.3: DOS and Fermi level of a-Si with boron concentration of (B)1.6% (E) 3.1% (C)
6.3% (D) 12.5% (E) 15.6%.

the localization influence on the doping efficiency. Si defects possibly induced by B

have been occasionally observed and may prove revelent to many of our findings.

The key list of future work regarding this topic should include: (1)further investigate

B(3,1) formation and its electronic behavior; (2)monitor B-induced Si defects; study

the role of localization in B doped a-Si:H; (4)calculate conductivities.
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Chapter 6

Conclusion

6.1 What we have learned

In our study of Urbach tails, we began by searching for particular local

distortions connected to the energy states in amorphous silicon. It turns out that

both bond-length distortion and bond-angle distortion are correlated to the band-tail

eigenstates, though the effect covers a range of distortion units instead of individual

distortions. We observe that short bond and small bond angle are strongly correlated

to the valence-tail states’ localized charge; long bond and large bond angle are strongly

correlated to the conduction tail states. These effects form an interesting asymmetry

around the optical gap. The bond-length and bond angle distortions are more than

local: for each state, a large set of atoms can be involved with the localized charge. For

the most localized states in our a-Si models, however, these charged atoms form strong

filament-like shapes. They are effectively the smallest element connecting to the

localized states. In one of our papers, we reported this topology-electron correlation

in detail. In addition, we also reported a topological correlation: short bond tends

to stay closely with short bond and long bond tends to stay closely with long bond,

regardless of electron charge. So the topology of networks forms inter-penetrating
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clusters (or filaments) of short bonds or long bonds throughout the network. We call

these topological filaments, resulting from the topological correlation.

In our more recent paper[19], we argued that these topological filaments stand

at the heart of the Urbach tails. We show that with even the simplest topological

filamentary structure (one filament form a point-like defect in a crystalline environ-

ment), we still obtain Urbach tails (exponential decaying). Meanwhile we show that

with any artificial tampering of the topological filaments that our a-Si models have,

the Urbach tails are strongly altered into non-exponential forms. These arguments

are still non-conclusive but we think they are steps toward the center of Urbach tail

problem. People observe filament-like topologies in very different systems and this

boosts our confidence in recognizing topological filament as the universal feature that

leads to Urbach decay.

We are only able to provide a brief and heuristic explanation why the bondlength-

electron correlation exists in the way we observed. Also we showed the electronic

filaments to overlap strongly with the topological filaments, and we argue that the

topological filaments are the foundation of the electronic filaments and thus the for-

mation of the eigenstates near the Fermi level. However, we are not able to explain

what exact overlapping mechanism is underlying between these two kinds of fila-

ments. Therefore, we are still far from quantitatively deriving a correlation between

the topological filaments and the Urbach energy.
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We find in our B doping study, that the tetrahedral formation is stable and

can not be the cause for low doping efficiency. We also confirm earlier prediction by

P. A. Fedders and D. A. Drabold[49] that H passivation is responsible for stopping B

doping. The new issue focuses on whether B(3,1) formation creates a dopant state.

Other factors we discover include that high B concentration in a-Si almost does not

increase doping effect at all, a stark contrast to that of c-Si; Si defect possibly induced

by B are found and may be responsible for the effect.

We successfully implemented Kubo-Greenwood formula into code SIESTA

2.0. Thermal averaging is implemented for the conductivity calculation. AC conduc-

tivity and DC conductivity calculation codes are presented. We apply AC conductiv-

ity calculation on several a-Si:H materials and have presented one of the results. We

also apply DC conductivity calculation on a-Si models and crystalline Al models. The

results we obtained are comparable to earlier calculation and experimental values.

6.2 Future study

We observed clear one dimensional string-like structures linking short bonds

to short bonds and long to long in our continuous random network models. We have

solved a few questions from a few months back. But we still haven’t answered “Why

does the localized electron charge tend to form filamentary shape?” and “how do

electron filaments overlap with topological clusters?” . The exact structure of these

filaments also needs closer inspection. The question “is the topological filament the
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element correlated to the universal exponential Urbach tail?” has been answered with

a “yes”. Now the harder question is “how?”.

We need to come up with a method of measuring the strength (length) of an

electronic filaments. This quantity seems simple enough but to date we have not be

able to extract it. The correlation between this length and the energy will be another

interesting relation and can be revealing for the Urbach tail. The length of another

filament, the topological filament, can be even more subtle to measure or extract.

But to understand the overlap between the two, this work will be necessary.

Another question is at room or higher temperature, does the topological cor-

relation decrease or increase? If regarding thermal disorder as the forces opposite to

making a system stay in a metastable state, then we should expect the topological cor-

relation to decrease, since we think of the TF as the consequence of a relaxation pro-

cess. However, the higher the thermal disorder, the wider the bondlength/bondangle

distributions are, and supposedly the Urbach decays extend longer indicating stronger

topological correlation. These two pictures are counteractive. We will need a clear

answer.

Molecular dynamic trajectories need to be inspected, with initial conditions

of local vibrations in “special” parts of the network: long or short bonds. Another

related perspective is the evolution of the existing defects at finite temperature. It

was addressed in recent paper[39]. The question whether the defects fluctuate around

some fixed points or they diffuse randomly in the network, however, still has not been
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fully answered. Both the fluctuations of the defects in numbers and in spaces need

to be monitored more carefully.

Future work should also involve exploring the vibrational (phonon) structure

of a-Si. A correlation between the phonon states (localizations) and the topological

clusters (strings) will be searched for. Phonon localization may possibly be found

correlated to electronic localization too. In our investigation of topology of network

and electron states, it seems only sensible to also explore the vibrational states.

Our understand of the B doping mechanism is only partial. For a more

thorough picture of B doping in a-Si, we first need larger sets of data by ab initio

calculations. H passivation is confirmed with H found to have an obvious higher

affinity for B than Si does. However, the detail of H diffusion in the network is far

less clear. How far can hydrogens travel in a certain time scale is unknown. Whether

B(3,1) configuration create effective dopant state needs to be further investigated.

H induced Si defects needs to be monitored. Furthermore and importantly, we have

never had chance to study the role of localization in the low doping efficiency. The

key list of future work regarding this topic should include: (1)further explore the

high affinity of B for H; track the formation of H-B pairing and its structural side

effects; (2)investigate B(3,1) formation and its electronic behavior; (2)investigate how

localization affects B doping in a-Si:H; (3)explore the role of Si defects; (4)calculate

conductivities.
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Our Kubo-Greenwood formula based conductivity calculation looks promis-

ing. The next step will be more applications. The difficulty for the AC conductivity

(dielectric function) test is that experimental data is lacking. Currently Dr. Mingliang

Zhang of our group is working jointly on the dielectric functions with N. Podraza of

electric engineering group at Penn State University. Dr. Mingliang Zhang of our

group uses VASP and SIESTA AC for the dielectric function calculations. SIESTA

AC results therefore will be further compared with more experimental data on the

way. For the DC conductivity from SIESTA DC, we have compared our result of a-Si

to earlier calculation by Tesfaye Abtew and to experimental results for c-Al. Both

comparisons are very close in value. We have also applied it to B doped a-Si:H. The

results are reasonable but again the lack of reference sets our limit. Both SIESTA

AC and SIESTA DC’s reliability needs to be further tested. Currently first principle

conductivity calculation codes are not widely available. VASP offers one good option,

but SIESTA AC and DC can be good alternatives. Possible future application can be

on a wide variety of materials, such as various amorphous semiconductors, amorphous

material with voids, molecules etc.
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Appendix A

Electrical conductivity calculation

A.1 Overview

T. A. Abtew[27] for the first time implemented Kubo-Greenwood formula

(its dc limit form) into ab initio code SIESTA and dc conductivity calculation be-

came possible. As a continuation of T. A. Abtew’s work, we now implement the

Kubo-Greenwood formula into the newly introduced code SIESTA 2.0. We apply our

calculation on amorphous Si and metal Aluminum for dc conductivities. We compare

our results to former result and relevant experimental data.

A.1.1 a-Si

T. A. Abtew applied his calculation on a-Si (64-atom model) and a-Si:H

(64-atom model) models and obtained DC conductivities. We now repeat the DC

conductivity calculation on a-Si with a 64 model and a 216 model at different tem-

peratures. 1000 molecular dynamic steps are used for each temperature. The results

are then thermally averaged. This averaging process is important for the thermal

vibration to take effect in the conductivities. Lattice vibrations are brought into the

calculation.
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We did the calculation for 64 a-Si model at 300K, 500K, 700K, 1000K, 1500K

and 1800K. Beside the original Fermi level, we artificially shifted the Fermi level to

the left and to the right. The DC conductivities are shown in Figure A.1. From

the figure we see our calculation is generating reasonable results for a-Si at different

temperatures. The similarity to Abtew’s work (Figure 3 in paper[27]) is clearly visible,

while there is some minor difference in the values. This is understandable since the

coding environment has changed and implementation details differed.

Figure A.1: DC conductivity of model a-Si64 at various temperatures and Fermi shifts.

It is necessary to point out one subtle factor that can affect the resulting

values. There is a delta function in the DC Kubo-Greenwood formula. In numerical

computation, due to the discrete nature, a delta function can only be approximated
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Figure A.2: DC conductivity at 700K for model a-Si64 at various smoothing factor Sigmas.

by a continuous function with a broadening (smoothing) factor σ. While a Gaussian

function is easy to implement, the exact value of the broadening factor σ can affect

the peak value of the delta function. To manifest σ dependence of the result, we plot

Figure A.2. The 64-atom model a-Si64 is calculated at various σ (0.035eV, 0.05eV,

0.1eV and 0.14eV compared to the original 0.07eV) for 700K. We see that the results

indeed vary according to σ. But the extent of the variation is small. The smallest

energy interval between the states in our model is around 0.01 eV. For this reason

our initial choice of σ as 0.07 eV is in principle a suitable value for the calculation.
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A.1.2 Aluminum

Aside from a-Si, we applied our calculation on a metal, crystalline aluminum.

We choose Al for our calculation for its simplicity in the psudopotential and band

structure. We did the calculation on a 32 crystalline Al model, a 108 crystalline

Al model and a 864 crystalline Al model. For the Al-108 model we also varied the

temperature, considering 100K, 200K, 300K,400K,500K and 600K. The results are

shown in Figure A.3.

1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 01 0 5

3 x 1 0 5
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Figure A.3: DC conductivity at 100K, 200K, 300K, 400K, 500K and 600K by SIESTA
DC from Aluminum model Al-108 (solid squares); reference [83] data at corresponding
temperate is shown in open squares.
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To measure the conductivity at each temperature, we equilibrate the model

by molecular dynamics in SIESTA 2.0 for a long period (more than 5 ps) and the

temperature stabilizes. The network always keeps crystalline structure and picks up

lattice vibrations at each temperature. We then run the dc conductivity calculation

for another 1 ps. The final result is averaged. The only numerical approximation we

need to make again is the Gaussian broadening factor for the delta function. For each

value point, we use 0.05 eV and 0.1 eV as the broadening factor and then average

the result. For reason for using these specific values comes twofold: the smallest

gap between energies appear to between 0.01 eV and 0.02 eV (about 1/5 of our

chosen broadening value) for all our temperatures; a maximum value of conductivity

is reached when the broadening factor lying between 0.05 eV and 0.1 eV.

We applied our dc conductivity calculation on Aluminum as a testing run,

and we realized that in Aluminum the transport was scattering based. It was a little

surprising for us that not only the results lies in reasonable range as compared to the

reference values, the calculation was semi-quantitative for high temperatures. The

Kubo-Greenwood formula appears to estimate the situation well. The lattice vibra-

tion (phonon) is not explicit in the formula, but the effect is taken into consideration

when thermal averaging is applied. In principle, extensive MD process should sample

a large number of phonon modes to make up a proper phonon spectrum. Temperature

dependence is therefore properly reflected.
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A.1.3 Summary

We modified code SIESTA 2.0 and implemented electrical conductivity cal-

culation based on the Kubo-Greenwood formula. Calculation on a-Si and crystalline

Aluminum have been applied and results shown. The comparisons to the experiments

and former calculations were made and results suggested decent validity of our cal-

culation and an unexpected success for our scheme of “adiabatic averaging”. Further

reliability of the code still needs to be tested and future applications will be needed.
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