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Abstract
PANDEY, ANUP, Ph.D., 2017, Physics and Astronomy

(129 pp.)

Director of Dissertation: David A. Drabold

The general and practical inversion of diffraction data – producing a computer model

correctly representing the material explored – is an important unsolved problem for

disordered materials. Such modeling should proceed by using our full knowledge base,

both from experiment and theory. In this dissertation, we introduce a robust method,

Force-Enhanced Atomic Refinement (FEAR), which jointly exploits the power of ab initio

atomistic simulation along with the information carried by diffraction data. As a

preliminary trial, the method has been implemented using empirical potentials for

amorphous silicon (a-Si) and silica ( SiO2). The models obtained are comparable to the

ones prepared by the conventional approaches as well as the experiments. Using ab initio

interactions, the method is applied to two very different systems: amorphous silicon (a-Si)

and two compositions of a solid electrolyte memory material silver-doped GeSe3. It is

shown that the method works well for both the materials. Besides that, the technique is

easy to implement, is faster and yields results much improved over conventional

simulation methods for the materials explored. It offers a means to add a priori

information in first principles modeling of materials, and represents a significant step

toward the computational design of non-crystalline materials using accurate interatomic

interactions and experimental information. Moreover, the method has also been used to

create a computer model of a-Si, using highly precise X-ray diffraction data. The model

predicts properties that are close to the continuous random network models but with no a

priori assumptions.

In addition, using the ab initio molecular dynamics simulations (AIMD) we explored

the doping and transport in hydrogenated amorphous silicon a-Si:H with the most popular
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impurities: boron and phosphorous. We investigated doping for these impurities and the

role of H in the doping process. We revealed the network motion and H hopping induced

by the thermal fluctuations significantly impacts conduction in this material. In the last

section of the dissertation, we employed AIMD to model the structure of amorphous zinc

oxide (a-ZnO) and trivalent elements (Al, Ga and In) doped a-ZnO. We studied the

structure and electronic structure of these models as well as the effect of trivalent dopants

in both the structure and electronic structure of a-ZnO.
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1 Introduction

1.1 Background

The study of materials through computer modeling has a pivotal role in modern day

materials research. Like experimental devices, high-performance computers are

considered as a complementary tool to the experiments in the study of material properties.

In a study of complex materials, such as amorphous solids that have no long-range

crystalline order, it is difficult to probe the structure by experiments alone. In such a case,

computer models have proven to be a major contributor to revealing the local structure of

amorphous materials.

The discovery of Bragg diffraction in the early 1900’s has solved most of the

problems pertaining to the crystal structure [1]. By exposing crystalline solids to X-rays

and analyzing the diffraction peaks, the exact structure of crystals could be ascertained.

The method is commonly known as ’X-ray Crystallography’ and has been one of the

profound success stories of science, even revealing the structure of proteins [2]. The

situation is different for the non-crystalline materials. The absence of sharp peaks and the

smooth structure factors of these materials are due to the presence of local ordering at

varying length scales and no long range order. This one-dimensional structure factor is by

itself, insufficient to dictate the correct three-dimensional structure of amorphous

materials. Consequently, the development of new tools is essential in solving the structure

of these materials.

A successful theoretical representation of amorphous materials is the continuous

random network (CRN) proposed by Zachariasen in 1932 [3]. Each atom in the CRN is

perfectly coordinated without any defects or voids, and the long range order is completely

absent (no periodicity). Initial models of CRN were hand-made from metals and

glasses [4, 5]. Although the first computer model of CRN was introduced by Guttman in
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1980 [6], it had a scaling problem with a model size limited to only 60 atoms. In 1985, a

simple bond-switching Monte Carlo algorithm was introduced by Wooten, Winer and

Weaire that could model the CRN for an amorphous column IV semiconductor and is

commonly known as ’WWW method’ [7].

High quality tetrahedral networks of amorphous silicon and germanium were

produced by the WWW method. The method was later applied to binary glasses by

Mousseau and Barkema [8]. The original version of WWW method consisted a diamond

starting configuration (crystal) which is then subjected to specified Monte Carlo moves

related to bond switching. For any two bonded atoms P and Q, two neighbors X and Y of

P and Q are chosen, respectively (X is not a neighbor of Q and Y is not a neighbor of P).

Then the bonds P-X and Q-Y are broken (removed from the bond list of P and Q) and

switched such that Y bonds to P and X bonds to Q, thereby exchanging the neighbors

(added to the bond list of P and Q). This process maintains the four-fold coordination

while introducing five- and seven-fold rings in a network, a characteristic feature of CRN.

The Monte Carlo moves are accepted or rejected under the Metropolis scheme using a

Keating potential (simple harmonic springs), which very crudely describes the interatomic

interactions. The method has been modified for non crystalline starting configurations [9].

The WWW models are still considered to be the best models with lowest strain and bond

distortions for a-Si.

The success of the WWW method is mainly due to two reasons. Firstly, it is a highly

constrained method with the system being forced to remain four-fold coordinated and the

bond-angle pushed towards θT=109.47◦. Secondly, the bond-switching moves compliment

these constraints. The method is ad hoc, in a sense that it uses constraints based on a

priori experimental information and a Keating potential. This makes it limited only to a

handful of systems.
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Beginning in the mid-eighties, molecular dynamics (MD) simulations using

empirical potentials [10] and ab initio interactions [11] were carried out in generating

disordered structures by quenching a melted crystal structure. This method is commonly

known as ’melt-quench’ or ’cook and quench’. Although the ’melt-quench’ method was

successful in generating some glassy structures, it proved to be inadequate for amorphous

materials with no or weak glass forming ability.

Contemporary with these computations, an alternative approach to invert

experimental diffraction data, called reverse Monte Carlo (RMC), was introduced by

McGreevy and Pusztai [12]. It was quickly discovered that RMC without any a priori

information is inadequate to generate chemically realistic structures. The search continues

for a robust method that could address the deficiencies associated with the modeling of

amorphous materials.

Besides DFT simulation of amorphous materials, such as hydrogenated a-Si and

amorphous zinc oxide, the focus of this thesis is a newly developed technique called

force-enhanced atomic refinement (FEAR) that mutually exploits the power of ab initio

atomistic simulation along with the information carried by diffraction data. The method is

discussed in Chapter 3 and 4. As mentioned above, it is important to realize that the

simulation-based approaches failed to reproduce the real process of material formation

and have a serious size limitation. The data-driven approaches alone are unable to address

the correct chemistry and incorporating constraints make the method ad hoc. Most of

these deficiencies are tackled by FEAR. The ab initio interactions in FEAR dictate the

correct local chemistry and the inversion of diffraction data help to explore the region of

configuration space consistent with the data. Also, the partial use of relaxation and data

inversion steps make the method computationally efficient. The efficacy of this new

approach is illustrated by applying it to both poor and excellent glass forming materials.

The method has been successful in generating amorphous structures which are close to the
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CRN without using any a priori information in the modeling process. This opens up an

avenue in the modeling of amorphous materials and provides a completely different

rationale for CRN models.

1.2 Interatomic Interactions

The chemical interactions between the elements constituting the material is vital for

obtaining a realistic model. These interactions can be broadly divided into the following

groups.

1.2.1 Empirical or Classical Interactions

The classical or empirical interactions are phenomenological representations of

energetics. These interactions may involve bond stretching, bond-bending, dihedral angle

forces etc. and may include non-bonding terms: the electrostatic interactions, van der

Waals interactions etc.

These potentials have a transferability problem but may be reliable in the study of the

properties of those structures which were used to fit the potential. For disordered

materials, it is difficult to predict the correct empirical potential because of the complex

local structure in varying length scale. The method based on empirical potentials are

computationally cheap and can be used in modelling larger systems.

1.2.2 Quantum Mechanical Interactions

The quantum interactions in a many body systems consist of the kinetic energy of

each electron and nucleus, the interaction energy between each electron and the collection

of atomic nuclei and the interaction energy between different electrons and the interactions

between different nuclei. This determines the many-body Schrdinger equation.

After decoupling the nuclear degrees of freedom, the Schrodinger equation with

many-electron wavefunctions (which is the function of 3N electronic coordinates for N
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electrons system) is prohibitively complex. This problem was simplified by Kohn,

Hohenberg and Sham [13, 14] by considering the electronic ground state energy of a

many-electron systems as a functional of electron density n(r). The approach is

commonly known as the density functional theory (DFT). The detail of DFT can be found

elsewhere [15].

The following two DFT packages are used to calculate the total energies, forces and

electronic structures in the current work.

1.2.2.1 Spanish Initiative for Electronic Simulations with Thousands of Atoms

(SIESTA)

SIESTA is a package used to carry out ab initio molecular dynamics simulations and

electronic structure calculations of molecules and solids [16]. It uses the self-consistent

Kohn-Sham (KS) [14] density functional method within the local density approximation

(LDA) and generalised gradient approximation (GGA). The basis sets used are

pseudo-atomic orbitals. The core electrons are addressed using norm-conserving

pseudopotentials.

1.2.2.2 Vienna Ab Initio Simulation Package (VASP)

VASP is an another package to carry out ab initio quantum mechanical molecular

dynamics simulations [17]. It solves the self-consistent KS equation using a plane wave

basis. The electron-nuclei interactions are described by ultra-soft pseudopotentials [18] or

by projector-augmented wave (PAW) [19] method. It can be implemented under

LDA [20], GGA [21] and hybrid approaches [142].

1.3 Modelling Methods for Amorphous Materials

The computational methods can be broadly classified into following three groups.
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1.3.1 Simulation Paradigm

The term was first coined by Drabold [23] and comprise traditional molecular

dynamics (MD) or Monte Carlo (MC) techniques using some kind of interactions. The

interactions can be both empirical (e.g. classical MD) or quantum mechanical (e.g.

DFT-MD). The well known technique ’melt-quench’ to model glassy and amorphous

materials, where the system is melted at high temperature and then quenched to the

desired temperature, falls under this category.

1.3.2 Information Paradigm

The term was again coined by Drabold [23] and consists of those methods that invert

the experimental data (for example, produces a structural model)from the structure factor

or pair correlation function, without any interactions. The structural model obtained by

this method agrees well with the input a priori experimental information. The reverse

Monte Carlo (RMC) [12] is an archetypal example of information paradigm.

1.3.3 Hybrid Scheme

The methods that fall under this group use both experimental data inversion and

interactions. The interactions could be empirical or quantum mechanical. The techniques

such as hybrid reverse Monte Carlo (HRMC) [24] is an example of the hybrid scheme

using the empirical potential whereas the experimentally constrained molecular relaxation

(ECMR) [25] is an example using the ab initio interactions. This is discussed in detail in

Chapter 3 and 4.

1.4 Interpretation of Model Properties

The methods to analyse electronic and structural properties are presented briefly in

this section.
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1.4.1 Electronic Properties

The electronic properties or electronic structure of a model is analyzed by calculating

the electronic density of states (EDOS). It is the number of single-particle states in a given

energy range and can be written as [15]:

ρEDOS (E) =
1

Nf

N f
∑

i=1

δ(E − εi), (1.1)

where Nf is the total number of occupied electronic states and εi is the energy eigenvalue

of the electronic Hamiltonian. The information about an electronic gap and gap states are

provided by the EDOS, which is an essential feature in understanding electron conduction

in a material.

Structural disorder and defects lead to spatially localized electronic states near the

band tail and band gap. The electronic localizations are measured by calculating the

inverse participation ration (IPR), denoted by I, and is given by:

I(ψ j) =

N
∑

i=1
a

j4
i

(
N
∑

i=1
a

j2
i )2

, (1.2)

where N is the number of atoms in a given system, and a j

i are the components of the

jth eigenvector ψ j projected onto atomic s,p and d states. For highly localized states, I ∼ 1

and for extended states, I ∼ 1/N.

1.4.2 Structural Properties

The structure of amorphous materials dictates its properties. It is essential to obtain a

representative model of the material to study other properties, such as electronic structure,

vibrational properties, etc. Experimentally, the structures are probed by the neutrons or

X-ray diffraction experiments in the form of a smooth function in reciprocal space known

as the structure factor S(q). Fourier transform of a structure factor gives another function
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known as the radial distribution function (RDF) in real space and is denoted by g(r). A

brief description of these functions and their connection to the neutron or X-ray scattering

function is presented below.

The number of atoms of type β in the spherical shell of radius r and thickness dr

from the center atom α is given as [26, 27]:

dnαβ = 4πr2ρβgαβdr, (1.3)

where ρβ = Nβ/V is the number of atoms of type β per unit volume. The gαβ is known as

the partial radial distribution function or partial pair distribution function. It has a limiting

behavior of gαβ(r → 0) = 0 and gαβ(r → ∞) = 1. The overall PDF is defined as [26, 27]:

G(r) =
∑

α,β

cαcβbαbβ(gαβ(r) − 1), (1.4)

where cα = Nα/N is the number concentration and bα is the scattering factor of atom type

α. G(r) and the scattering function is given by:

i(q) = ρ

∞
∫

0

4πr2G(r)
sinqr

qr
dr = F(q), (1.5)

and

G(r) =
1

2πρ

∞
∫

0

4πq2i(q)
sinqr

qr
dq (1.6)

Then, the structure factor can be written as:

S (q) = i(q) +















∑

α

cαcβ















2

(1.7)

which can be normalized to get:

S norm(q) = 1 +
i(q)

(

∑

α
cαcβ

)2 (1.8)
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Finally, in terms of the total radial distribution function the structure factor can be written

in simplified form as:

S norm(q) = 1 +

∞
∫

0

drr2 sinqr

qr
(g(r) − 1), (1.9)

where g(r) is given by:

g(r) =

∑

α,β
cαcβbαbβgαβ(r)

(

∑

α
cαcβ

)2 . (1.10)

The RDF provides much information about the structure. The first peak position gives the

nearest neighbor distance and the area under the first peak gives the average coordination

number of the atom.

The structural properties are investigated using an open source analysis program

I.S.A.A.C.S. [26].

1.5 Amorphous Silicon (a-Si): The Major Material Under Study

The technological importance and complexity of a-Si make it a superior example in a

study of amorphous materials. The use of a-Si in microelectronics, thin-film transistors

and photo-voltaic (PV) applications [28] has led to many studies in recent

decades [29–34]. In a similar context, the effects of n-type and p-type dopants: boron and

phosphorous in hydrogenated a-Si was studied using ab initio MD simulations. We

explored the significant role played by dopants in the electrical activity of hydrogenated

a-Si.

In addition, the over-constrained network makes the structure of a-Si difficult to

model [7, 35]. The only method that produces really satisfactory models for a-Si is the

Wooten-Weaire-Winer (WWW) [7] scheme, which is limited by unrealistic interactions

and is also not a general technique. Also, there has been numerous attempts in modelling

a-Si by MD ’melt-quench’ techniques using both empirical and ab initio
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interactions [10, 11]. However, these models have higher defect concentrations and are

unable to address many experimentally observed features of a-Si. The direct inversion of

experimental data also fails to produce the correct network structure. This has made a-Si

persistently vexing problem in modelling. We have been successful in generating a

realistic model of a-Si using our method FEAR, which has very few defects and can be

considered very close to the CRN.

1.6 Dissertation Outline

By the aid of computer generated models, we have studied the properties of various

amorphous materials. The density functional theory (DFT) simulations are used in the

study of doping effects in hydrogenated amorphous silicon and preparing amorphous zinc

oxide models. A novel modeling technique FEAR is introduced and its application to

various amorphous materials are reported.

In Chapter 2, we present a detailed static and dynamical study of n- and p-type

dopants such as Boron and Phosphorous in hydrogenated amorphous silicon a-Si:H by

using the EDOS and electronic eigenstates fluctuations. We also investigated the role of

hydrogen in a doped model.

In Chapter 3, we introduce a new method of modeling amorphous materials using the

empirical potentials called force-enhanced atomic refinement (FEAR). As a preliminary

implementation, the method is used to model two archetypal glass forming and non-glass

forming materials, a-SiO2 and a-Si respectively.

In Chapter 4, we report an upgrade in the FEAR method. The method is successfully

implemented with ab initio or quantum mechanical interactions, which makes it general

and flexible. The method is applied to model a-Si and complex ternary chalcogenide

glasses, silver-doped germanium selenide (GeSe3), with 5% and 7.7% silver

concentrations. The structure of a-Si is improved significantly by the use of quantum



26

mechanical interactions and the WWW model pair-correlation function as an experimental

data. The Ag-doped GeSe3 models capture all the significant features of experimental

structure factor, as well as successfully predicts other properties that are not incorporated

in the modeling process. This opens up a new avenue in the modeling of disorder

materials. The implementation of FEAR algorithm with ab initio interactions can be

found in the Appendix.

In Chapter 5, as a slightly different application of FEAR, we investigated the realistic

structure of amorphous silicon using high precision X-ray diffraction data and ab initio

interactions. The FEAR model compares well with most of the experimentally observed

features. It is, so far, the best a-Si model obtained by using the realistic interactions and

compares well with the experimental structure factor.

In Chapter 6, amorphous zinc oxide (a-ZnO) and a-ZnO doped with trivalent

elements (Al, Ga and In) models are prepared using the DFT simulations and by the

’Melt-quench’ method. The network topology is investigated in detail for all the models

and the electronic density of states are calculated. The effect of dopants in electronic

structure are also reported.
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2 Electrical Activity of Boron and Phosphorous in

Hydrogenated Amorphous Silicon

The work presented in this chapter is published in Pandey, A., Cai, B., Podraza, N.,

and Drabold, D. A. (2014). Electrical Activity of Boron and Phosphorus in

Hydrogenated Amorphous Silicon. Physical Review Applied, 2(5), 054005..

2.1 Introduction

Doping of semiconducting materials is the basis of all electronic or optoelectronic

applications (such as microbolometers for IR imaging[36], thin film transistors for display

control[28] and photovoltaic applications[28]). The experimental discovery that

amorphous silicon hydride (a-Si:H) could be doped with Boron (p-type) and Phosphorous

(n-type) was due to Spear and Lecomber in 1975[37], and opened the door to the

applications listed above. A great deal of experimental work has been carried out on

doped a-Si:H, including NMR experiments[43] that gave valuable clues about the doping

process.

The topological and chemical disorder of the a-Si:H structure creates a myriad of

possible configurations, with highly variable electronic signatures. The angular strains,

bond length strains, H nearby in one of various doping sites etc. make the doping

phenomenon complicated. Also the thermally-induced variation in the coordinates of the

atoms in the a-Si matrix has many consequences. The picture of small oscillations and

phonons needs to be carefully considered for topologically disordered systems[39]. It

turns out that the electronic response from these fluctuations is very strong, most

particularly around the optical gap, where electron states are localized[41]. From the

Kubo formula, it is evident that these are also the states that play a critical role in

transport. H also plays an essential role. No material of electronic utility is without H. H
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is highly mobile at temperatures above room temperature[42], and as it hops its electrical

activity can change, and thus it can also impact doping.

To summarize our work, we report a wide range of accessible configurations using

accurate molecular dynamics calculations. We detail the strain effects that arise from

placing P and B in realistic models of a-Si:H. We show that B is intrinsically highly

strained, and P is far more ”substitutional”. We prove with current techniques that the old

conjecture of Boyce and Ready[43] that H passivation is indeed a key reason for low

doping efficiency, also discussed earlier by Fedders and Drabold[44] and by Cai and

Drabold[45]. We show that the results are reproducible, similar results accrue for

impurities substituted into similar sites. By starting with the Kubo-Greenwood formula,

we show that the dynamics of the lattice and the H play an essential role, at least at higher

temperatures (say 300K and above). We show that the under certain circumstances,

conductivity is strongly enhanced by transient doping conformations.

The present work offers a partial treatment of the role of dynamics, primarily serving

notice that the motion of the lattice as well as H hopping is important to understanding

doping. We show that H is attracted to B sites, in response to strained bonds that occur

there. Clearly this increases the probability for H occupying the neighborhood of B atoms,

though we have not quantified this effect. Since we show that H passivates doping, this

provides a qualitative explanation for the low doping efficiency of B in Si.

2.2 Methodology and Models

In our simulations, we have employed the Vienna ab initio Simulation Package

(VASP), a quantum mechanical molecular dynamics package using a plane wave basis set

and the local density approximation (LDA)[17]. The electron-ion interactions were

described using the projector augmented-wave (PAW) method[19]. A 64-atom amorphous

silicon cubic cell of side 10.854Å, generated by Barkema and Mousseau[51], then
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annealed and relaxed by us, was used as a starting model for the calculations. Boron (B)

and Phosphorous (P) atoms were introduced on a various tetrahedral Si sites in the

network and then relaxed at constant volume using conjugate gradient method. Models

were fabricated with concentrations 1.6%, 3.1%, 7.8% and 12.5% of B and P for a static

study of doping. Hydrogen passivation in B- and P-doped systems was studied by

introducing H atoms at various sites in the 1.6% B- and P-doped a-Si models. One

calculation is carried out on a 216-atom model made by the same group[51].

Dynamical simulation was carried out on 3.2% B and P doped a-Si models and H

atoms were introduced in bond centers (BC) at varying distances from the impurities. The

data presented here is for 80 ps time evolution with a time step of 2 fs. For selected cases,

we doubled this time to verify our results. These times are adequate to reveal important

thermal processes, though not to offer a full sampling of the phase space.
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Figure 2.1: Electronic density of states (EDOS) with Fermi level at 0 eV. Green represents
the EDOS for 64-atom a-Si and blue is the EDOS for 70-atom a-Si:H.
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Figure 2.2: Boron doped a-Si with various impurity concentrations. Models (1), (2),
(4) and (7) are 1.6%, 3.1%, 7.8% and 12.5% B doped a-Si respectively with each B
having configuration B(4Si) [four Si neighbors to B]. In models (3) and (5), B dimers are
formed with configuration B(3Si,1B). Model (6) consists of B4 cluster with configuration
B(1Si,3B). Details of these models are provided in Table I. The Fermi energy is at 0 eV for
each curve in the figure.

2.3 Impurities on a Static Lattice

The purpose of this section is to determine doping and non-doping configurations in

B and P doped a-Si and also to understand the effect of hydrogen in doping. The

electronic density of states (EDOS) is calculated for models doped with varying

concentrations of B, P and hydrogen. Initially the EDOS of 64-atom a-Si (WWW

model)[7] and 8.5% H doped a-Si, 70 atoms a-Si:H model is studied as shown in Figure

2.1. For both the models, there is a clear gap and the Fermi level is in the gap and we

therefore interpret these models as representing a non-doped conformation.
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Figure 2.3: Phosphorous doped a-Si with different impurity concentrations. Models (1),
(2), (5) and (8) are 1.6%, 3.1%, 7.8% and 12.5% B doped a-Si respectively with each P
having configuration P(4Si) . In models (3) and (7) P dimers are formed with configuration
P(3Si,1P) and model (6) consists of P4 cluster denoted by P(1Si,3P). P is three-fold in
configuration (4) with configuration P(3Si). Details of these models are provided in Table
II. The Fermi energy is at 0 eV for all the EDOS in the figure.

Figure 2.4: H passivation in B doped a-Si.(a) H bonds with B forming metastable
B(4Si,1H) structure, (b) Relaxation breaks a Si-B bond forming B(3Si,1H) and a Si DB,
(c) Another H passivates the Si DB.(Dark Blue=Si; Light Blue=B; White=H).
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Further analysis was carried out with different concentrations of B and P doped on

the 64-atom a-Si. Doping was studied initially by substituting impurities on highly

tetrahedral Si sites. For the 1.6% doped system we investigated the H-passivation.

2.3.1 Boron and Phosphorous Doped a-Si

When impurities such as boron and phosphorous are introduced into a network of

a-Si, the Fermi level may shift toward a band edge. We have studied seven different

models of B-doped a-Si as shown in Fig.2.2. We calculated the electronic density of states

(EDOS) for all the models with Fermi level shifted to zero in each case. The models are

described in Table I.

In Fig.2.2, there are 4 panels that report the EDOS for seven different models as

stated in the index of the panels. In models (1), (2), (4) and (7) of Fig.2.2 all B atoms are

’separate’ in the sense that each boron is 4-fold coordinated with Si atoms which are

denoted by B(4Si) and there is no B-B bond. All of these models represent a doped

configuration with the gap cluttered with states for model (7). As the B concentration

increases, more valence tail states are formed and the states move into the gap as can be

seen in model (7).

In each case, there are three shorter bonds and one longer bond with the bonds highly

strained. The average over the configurations for the four B-Si bonds are respectively 2.02

Å, 2.04 Å, 2.07 Å and 2.16 Å respectively. These bond lengths are highly strained

compared to the mean bond length of Si-Si which is 2.34 Å[44], and in the spirit of our

work on Urbach tails, can be thought of as inducing a strain field associated with the

valence edge[48]. These strains create long bonds in the next nearest neighbor of B, with

second nearest neighbor bond lengths near 2.5 Å. This effect is also observed in a large

model of 215 Si atoms doped with a B atom at a perfectly tetrahedral Si site. It has been

observed that the average bond length for the first nearest neighbor atom shell of B is 2.05
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Å and the second nearest neighbor shell is 2.45 Å. From the third nearest neighbor shell

there is no significant departure from the mean bond length of the a-Si network.

In model (3), the B is clustered, so that each B atom is bonded to another B atom and

three other Si atoms and denoted by B(3Si,1B) forming B dimer. These conformations

induce doping so long as B atoms are four-fold. However, when B clusters are formed,

additional defect states appear near the conduction band tail, and they clutter the gap as

can be seen for model (5) and model (6). The configuration for model (5) is comprised of

B2 clusters (B dimer), in which B atoms are bonded with another B atom and three Si

atoms and are denoted by B(3Si,1B). There are two such dimers in model (5). In model

(6), B4 clusters are formed, which is one B bonding with three B atoms and one Si atom

and is denoted by B(1Si,3B). These mid-gap states arise from defects which are mainly

the under- and over-coordinated Si atoms. These configurations are shown in Table I.

As a summary of the static study of B-doped amorphous Si, the tetrahedral B dopes

the a-Si network and shifts the Fermi level towards the valence band tail as expected from

elementary considerations. Increasing the concentration of B introduces defect states in

the gap which are mainly due to Si dangling bonds (DB) and floating bonds (FB),

probably arising from the strained (short bonds) between B and Si.
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Table 2.1: Static Boron Configurations.

Fig.2 Models

n(B),n(Si)

B Clustering Config. Electrical

Activity

1. 1B,63Si Separate B(4Si) p doped

2. 2B,62Si Separate B(4Si) p doped

3. 2B,62Si B dimer B(3Si,1B) p doped

4. 5B,59Si Separate B(4Si) p doped

5. 5B,59Si B2 Cluster B(3Si,1B) p doped with

defects

6. 5B,59Si B4 Cluster B(1Si,3B) p doped with

defects

7. 8B,56Si Separate B(4Si) Many defect

states

In the study of P doped a-Si, we have calculated the EDOS of eight different models

in four panels as shown in Fig.2.3 with the Fermi energy shifted to zero. The EDOS of

models (1), (2), (5) and (8) are for 1.6%, 3.1%, 7.8% and 12.5% P doped a-Si respectively.

In these models, P atoms are substituted in perfectly tetrahedral Si atom sites, deep doner

states are formed and the Fermi level shifts towards the conduction band tail and the

systems are n-type doped.

The average bond length of P atoms formed with Si atoms (in tetrahedral sites) are

2.32 Å, 2.31 Å, 2.28 Å and 2.24 Å respectively. These are close to the average Si-Si bond

length. There are eight different models presented in Fig.2.3. In models (1), (2), (5) and

(8), P atoms are ’separate’, which means each P atom is bonded to 4 Si atoms and there is

no P-P bond. The configuration is denoted by P(4Si). In model (3), P2 dimer is formed in
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which each P is bonded with another P atom and three Si atoms which is denoted by

P(3Si,1P). In model (4), P is three fold which means each P is bonded to three Si atoms

and is denoted by P(3Si). Model (4) consists of P4 cluster where each P forms bond with

three other P atoms and a Si atom. The P4 cluster is denoted by P(1Si,3P). Model (7)

comprises mixture of P2 dimer and P3 cluster. The configuration for the P2 dimer is

denoted by P(3Si,P) and for P3 cluster it is P(2Si,2P). Our configurations are summarized

in Table II.

Table 2.2: Static Phosphorous Configurations.

Fig.3. Models n(P),

n(Si)

P clustering Config. Electrical

Activity

1. 1P,63Si Separate P(4Si) n doped

2. 2P,62Si Separate P(4Si) n doped

3. 2P,62Si P dimer P(3Si,1P) n doped

4. 2P,62Si Threefold P P(3Si) Undoped

with defects

5. 5P,59Si Separate P(4Si) n-doped

6. 5P,59Si P4 cluster P(1Si,3P) n doped

7. 5P,59Si P2/P3 cluster P(3Si,1P),

P(2Si,2P)

n doped

8. 8P,56Si Separate P(4Si) Gap filled

with tail

states

It can be seen that as the concentration of P increases more defects states are formed

near the conduction band edge (see model(8)) that eventually closes the gap. As long as
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the P is tetrahedral, P dimers dope the system as can be seen in model (3) and model (7)

with defect tail states. The configuration is undoped for three fold P shown in model (4).

In model (6) and model (7), P clusters also dope the system if P is tetrahedral.

As a summary for the static study of P doped amorphous Si, tetrahedral sites dope the

system by shifting the Fermi level towards the conduction band tail while three-fold P

leads to non-doping configuration. Increasing the concentration of P produces more defect

states in the gap as the network rearranges to produce more three-fold and five-fold Si

atoms.

The most notable contrast between B and P doping is a large local strain around B,

and a more substitutional character for P. This strain seems to be relevant to the work of

Schiff concerning broad valence tails[46].

2.3.2 H Passivation in Hydrogenated B- and P-Doped a-Si

The efficiency of doping is highly influenced by the presence of hydrogen in a

network. H passivates the dangling bonds present in the network and increase the doping

efficiency whereas bond centre H near impurites poisons the doping and reduce doping

efficiency. To study these properties H atoms are introduced in B and P doped a-Si and

their effect in doping is studied in terms of the shift in Fermi energy level in EDOS.

To study the role of hydrogen in B and P doped a-Si, H atoms are introduced at

various sites of the network thereby forming initial metastable structures. These structures

are then relaxed to find a stable configuration. The effect on doping is studied by

calculating the EDOS to observe the shift in Fermi level. We discuss first, H passivation in

B-doped a-Si and then on P-doped system.

In Fig.2.4(a), H is initially attached to a B atom forming a metastable configuration

B(4Si,1H), B forming bonds with 4 Si atoms and 1 H atom. After relaxation, H breaks a

B-Si bond and forms B(3Si,1H), a B bonded with 3 Si and 1 H atom, structure with a Si
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DB. This configuration is non doping as the Fermi level shifts into the gap with a defect

state due to the creation of a Si DB (Fig.2.5). However, if another H passivates the Si DB,

the Fermi level shows p-type activity. Thus, we can conclude that B(3Si,1H) with Si DB

poisons doping and B(3Si,1H) without Si DB is an effective doping configuration which is

consistent with other work[44, 45].

Next, we placed a hydrogen atom at a Si-Si bond center (BC) near B and studied its

effect on doping. It is found that H is stable in BCs and in this configuration it suppresses

the doping. We studied two different cases of H passivation, the first with H at a BC of a

second nearest neighbor of B and second at third nearest neighbor of B atom (Fig.2.6). In

the top panel of Fig.2.6(a), H is initially bonded to a Si neighbor of B and after relaxation

H breaks the Si-Si bond and stays at the BC forming B-Si-H-Si structure (top panel of

Fig.2.6(b)). The EDOS of this structure shows that the Fermi level shifts into the gap,

thereby suppressing the doping (Fig.2.7(left)). A similar study was carried out for H

initially bonded to the second nearest neighbor Si of B atom, and after relaxation it moves

to the BC forming B-Si-Si-H-Si structure as shown in lower panel of Fig.2.6(a) and

Fig.2.6(b). The EDOS of this structure shows that the Fermi level is shifted towards the

gap suppressing doping (Fig.2.7 (right)). These results indicate that the BC H, sufficiently

close to B atoms poisons the doping.

In all the above cases, B remains in a tetrahedral conformation after relaxation and

there is no Si DB left in the network and no defect states in the gap. In reference[25], it is

suggested that at low B concentration holes could be trapped at strained Si-Si bond

centers[52]. The charge due to these trapped holes may be compensated by H atom

trapped in the bond centers. In a-Si:H, B(4Si,1H) forms a stable configuration but when

an electron is removed from the system, the Si-Si bond breaks and H occupies the BC

position.



38

-1.5 -1 -0.5 0 0.5 1 1.5 2
Energy (eV)

0

10

20

30

40

E
D

O
S

 (
st

at
es

/e
V

)

B-doped a-Si

B(3Si,1H) with Si DB
B(3Si,1H) without Si DB

Figure 2.5: Comparison of EDOS for different configurations in H passivation for B-doped
a-Si. Green denotes the EDOS of B bonded with 3Si and 1H without Si dangling bond
which is doped configuration. Red is the EDOS of B bonded with 3Si and 1H with Si
dangling bond and is undoped configuration with a defect state in gap. The Fermi level is
shifted to 0 eV in all the EDOS.

In P-doped a-Si, H passivation is studied in a similar way as for the B-doped a-Si. H

is initially bonded with P atom forming a P(4Si,1H) metastable structure. After relaxation,

Si-P bond breaks and H sticks to P forming P(3Si,1H) structure with a Si DB. When

another H is added to the system, the Si DB is passivated (Fig.2.8). The EDOS of these

structures are shown in Fig.2.9. For P(3Si,1H) structure, the fermi level shifts in the gap

with a defect state due to a Si DB, thereby poisoning the doping. When Si DB is

passivated by another H, the configuration is doped. Thus, we conclude that P(3Si,1H)

without Si DB is an effective doping configuration for H close to P atom.
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Figure 2.6: Bond center H forming structures B-Si-H-Si (top) and B-Si-Si-H-Si
(bottom).(Dark Blue=Si; Light Blue=B; White=H)
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Figure 2.7: (Blue left) EDOS for B-Si-H-Si BC structure after relaxation which is undoped.
(blue right) EDOS for B-Si-Si-H-Si BC structure after relaxation which is undoped. Green
is the EDOS of B-doped a-Si and is doped configuration. The Fermi level is shifted to 0
eV in all the EDOS.
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Figure 2.8: H passivation in P doped a-Si.(a) H bonds with P forming metastable P(4Si,1H)
structure, (b) Relaxation breaks a Si-P bond forming P(3Si,1H) and a Si DB, (c) Another
H passivates the Si DB.(Dark Blue=Si; Green=P; White=H).
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Figure 2.9: Comparison of EDOS for different configurations in H passivation for P-doped
a-Si. Blue is the EDOS of the final configuration in which P bonds with 3Si and 1H atoms
with Si dangling bond. Red is the EDOS of the final configuration in which P bonds with
3Si and 1H without Si dangling bond. The Fermi energy is shifted to 0 eV in all the EDOS.

We study two cases for H passivation in P doped a-Si. H is initially placed at the

bond center (BC) of P-Si, forming P-H-Si structure and then relaxed. It is observed that

P-H bond breaks, leaving P 3-fold and the H atom bonds with Si as shown in the top panel

of Fig.2.10. In the EDOS of later configuration, the Fermi level shifts into the gap making
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the system undoped (Fig.2.11 (left)). In another case, shown in the bottom panel of

Fig.2.10, H is placed in the BC on first and second nearest neighbor Si atoms of P, at Si-Si

BC and forming P-Si-H-Si structure, and then relaxed. The network reconstructs, P

becomes 3-fold and H sticks to a Si DB. The EDOS displays the suppression of doping

without defects states (Fig.2.11(right)).

In contrast to the H passivation in B doped a-Si, H does not prefer the bond center

position in P doped a-Si. Instead it passivates Si DB. This result is consistent with NMR

experiments which predicts that in P-doped a-Si:H about 40 % H are in the second nearest

neighbor of P [43].

Thus, tetrahedral B and P dope the system but high concentration of B and P

impurities introduce mid-gap states. Clusters of impurities also create defect states in the

gap, leading to compensation effects. The low doping efficiency is partly due to H

passivation. An a-Si network doped with B and P has higher number of under- and

over-coordinated Si and H in such amorphous network passivates the Si DB (3-fold Si),

thereby increasing the doping efficiency. It is found that B(3Si,1H), P(3Si,1H) and

Si(3Si,1H) are effective doping states. The hydrogen atom prefers to stay at nearby bond

center for B doped a-Si while in P doped a-Si it prefers to bond with Si dangling bond

leaving P three fold.
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Figure 2.10: H passivation in P doped a-Si. (left) Top panel forming P-H-Si and bottom
panel forming P-Si-H-Si structure. (right) After relaxation, P forms 3-fold bond nad H
passivates Si DB producing non-doping configuration. (Blue=Si; Green=P; White=H)

2.4 Dynamical Lattice

We have performed thermal molecular dynamcis (MD) simulations of hydrogenated

a-Si doped with B and P at different temperatures (300K, 400K, 600K, 800K and 1000K).

Note that for temperatures above 600K, laboratory samples lose H, with commensurate

changes in structure and conduction. We consider temperatures above this to observe rare

events in the network dynamics, H hopping and electronic structure. We tracked the

trajectories and bonding of all the atoms. We also studied the doping in these systems

which, in certain cases are evolving or fluctuating with time.
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Figure 2.11: EDOS for two H passivation case. (left) Initial P-H-Si structure after
relaxation forms P(3Si) and Si(3Si,1H), (right) Initial P-Si-H-Si structure after relaxation
forms P(3Si) and Si(3Si,1H). The Fermi level is shifted to 0 eV in all the EDOS.

The dynamical variable chosen to probe this was the HOMO-LUMO gap, ξ, and the

reason behind it is based on defining the doping in terms of the conductivity which

depends on this dynamical variable (since the Kubo-Greenwood formula shows that

conduction may be expected if there there are degenerate states at the Fermi level,

following Mott and Davis[53]). We study the doping dynamics based on the concept of

correlating this ξ with other dynamical variables such as fluctuations in structure or

H-hopping. As we indicated in the Introduction, thermal motion and H hopping can have

a significant role in modulating the electronic eigenvalues near the Fermi level. We also

studied the change in coordination number of the hydrogen and its correlation with ξ. Of

course the study of ξ and its time evolution does not completely treat the doping problem.

Conduction is possible only if states are extended in the sense of Anderson[23, 54, 55].

Still, as we argue below from the Kubo-Greenwood formula, the condition for charge

transport in the presence of (extended) occupied and unoccupied states nearly degenerate

with the Fermi level.

This study can be related to the noise power fluctuation experiment by Parmen which

states the fluctuations of resistance in doped a-Si:H is sensitive to a small number of
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Figure 2.12: Plot of highest three valence band and lowest three conduction band energy
levels. (a) For B-doped and hydrogenated B-doped a-Si at 600 K, (b) for P-doped and
hydrogenated a-Si at 600 K.(Green) HOMO level (Blue) LUMO level. Proximity of Green
and Blue levels implies conduction is possible (the HOMO-LUMO gap is small).

fluctuations and change with time. It was was observed that the motion of the bonded

hydrogen was correlated with variations in the resistance[56]. We have presented here the

dynamics of the doped a-Si:H and observe the fluctuation in the conductivity due to the

motion on the hydrogen in the network.
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2.4.1 Energy Gap and Kubo-Greenwood Formula

To develop this picture a bit further, it is worth reminding that the conductivity for

disordered solid can be expressed from microscopic quantities (wave functions,

eigenvalues etc) with the Kubo-Greenwood formula[57, 58]. For a very clear derivation

and elementary applications, see Mott and Davis[53]. As it is usually interpreted, this

result is applied to a static configuration of a lattice.

We have extended this idea elsewhere, by adopting an adiabatic picture, in which we

thermally average the Kubo-Greenwood formula over a long constant temperature MD

simulation to pick up thermal effects on carrier transport (for details see Ref [59]). In

practice, this amount to a computing:

σDC =
2πe2!Ω

m2 |Dε f
|2N2(ε f ). (2.1)

Here, the bar indicates thermal or trajectory average, Dε f
is a matrix element of ∂/∂x

between single-particle (Kohn-Sham) states near the Fermi level, Ω is the cell volume, and

N(ε f ) is the density of states. This expression emphasizes that DC conduction may occur

when (i) the density of states at the Fermi level is non zero, and (ii) the momentum matrix

element is also non-vanishing. It implies that conduction accrues for instantaneous

configurations that support the conditions (i) and (ii).

In Fig.2.12, we reveal the fluctuations in energy eigenvalues for the highest three

valence band and lowest three conduction band states. The upper panel of Fig.2.12(a) is

for B doped a-Si without hydrogen and the lower panel is B doped a-Si with hydrogen. In

B-doped a-Si, the HOMO-LUMO gap is small enough to consider the system to be

conducting. Upon addition of H, there is thermal modulation of both HOMO and LUMO

states which can be seen in the lower panel of Fig.2.12(a). At certain interval in the

thermal simulation, the HOMO-LUMO levels overlap and it is the highly conducting
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configuration according to KGF. The period for which the HOMO-LUMO gap (ξ) opens

up is the non-doping configuration.

In P-doped a-Si, the HOMO level is shifted towards the LUMO level and the

HOMO-LUMO gap is almost zero for most of the simulation time which can be seen in

Fig.2.12(b). There is a small fluctuation in the HOMO level around 20ps to 30ps that

changes the system to non-doping mode which is due to the change in the structure of P

from 4-fold to 3-fold and 2-fold. We can say that 3-fold and 2-fold P are the undoped

configuration. When H is added to the P-doped a-Si, the undoped configuration is

completely removed and the system becomes n-type doped with HOMO and LUMO

levels overlapped. This again demonstrates the n-type behavior of H in the network. The

network rearranges to give the tetrahedral P (Fig.2.12(b)).
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Figure 2.13: Distance between Hydrogen and impurites (a)B-doped hydrogenated a-Si
(b)P-doped hydrogenated a-Si. (Red=300 K; Green=600 K; Blue=800 K)
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2.4.2 Hydrogen Hopping and Coordination Number

We have added the n-type (P) and p-type (B) impurities in the network of a-Si by

substitutional method and then carried out thermal simulation. Hydrogen atoms were

added to determine the effect of H on the dynamics of doping and conduction. The H

atom was placed at various Si-Si bond centers at varying distances from the impurities

atoms in doped n-type (P-doped) and p-type (B-doped) a-Si models.

Figure 2.14: Hydrogen hopping between bond centers and passivating the Si dangling
bonds in hydrogenated B doped a-Si DB at various snapshot for 600 K thermal MD.

The variation of distance of hydrogen from impurities for different temperatures is

shown in Fig.2.13. The main purpose of this calculation is to determine a range (distance

from B) for which the H is attracted. Our calculations show that the hydrogen in a network

are attracted towards the impurity sites, doubtless to reduce strain in the region containing

the dopant. In both B- and P-doped hydrogenated system, hydrogen tends to move

towards the impurities. The motion is significant only at sufficiently high temperature. For

300K, in B-doped hydrogenated a-Si, it is seen that the motion of hydrogen is almost

insignificant on the time scale of our simulation. The prominent movement towards the

impurity is visible for P-doped hydrogenated a-Si (Fig.2.13(b)) where it can be clearly

seen that for 600K and 800K the thermal energy is sufficient for H to move towards the P
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Figure 2.15: (Lower half) Hydrogen coordination fluctuation (Upper half) enery-
gap fluctuation (a)B-doped hydrogenated a-Si (b)P-doped hydrogenated a-Si. Zero
coordination means H is in process of hopping.

atoms. At 1000K, H atom sticks to the B (not shown here) which help us conclude that if

the thermal energy is sufficient, then H atoms eventually move toward the impurity sites.

We performed a microscopic study on the motion of hydrogen in the system and the

change in its coordination number. It is found that H in the network is mobile and its

hopping changes the structure and dynamics of the network. By tracking the motion of the
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hydrogen atoms, it has been observed that the H atom prefers to move towards the B or P

sites by hopping through various bond sites, providing strong evidence that H atoms in

a-Si network are highly mobile and have higher affinity for the impurities. Another

important feature noticed in the study of hydrogen hopping is the significant decrease in

the HOMO-LUMO gap (ξ) in the region where H-atom coordination changes rapidly from

free to singly coordinated and then to two-fold as shown in Fig.2.14. The coordination

cut-off distance for H-Si bond is taken as 1.65 Å for calculations.

In an undoped a-Si network H prefers to stay in the sites of highly distorted bonds

and bond angles. When B and P are introduced in a perfectly tetrahedral sites in an a-Si

network, they introduce strain (especially B). So, the region becomes distorted and H

atoms introduced in such network has tendency to move towards those regions. From a

different perspective, as H bonds more strongly with B than with Si (bond dissociation

energy of B-H is 3.52 eV and Si-H is 3.10 eV)[60], in B doped a-Si, H moves towards B

due to the strain and also prefers to bond with B rather than Si. This is consistent with

NMR experiments which predicts that about 40 % H in p-doped a-Si:H are in the first

nearest neighbor of B[43]. In contrast, H bonds similarly with P and Si (the bond

dissociation energy of P-H is 3.08 eV and Si-H is 3.10 eV)[60] and seems consistent with

the result of NMR that about 40 % H atoms in P-doped a-Si:H are in the second nearest

neighbor shell of P[43].

Doping phenomena are influenced by the motion of hydrogen in the network. In

Fig.2.14 which have shown the hopping of H atom from various bond centers to

passivating the dangling bond at 12.78 ps, 24 ps, 59.146 ps and 79.64 ps snapshots for

B-doped hydrogenated a-Si at 600K. This is consistent with the noise power fluctuations

experiment by Kakalios and his group which suggest that the rearrangement of hydrogen

bonding configurations which involves the collective motion of many hydrogen atoms

changes the electronic properties of a-Si:H[56].
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A goal of this work is to bring forth a new suggestion that the motion of H and its

changing coordination in the network affects the doping significantly. This feature can be

seen clearly in Fig.2.15(a) for B-doped hydrogenated a-Si at 600K between 10 ps to 40 ps

time where the energy gap has decreased significantly. In hydrogenated P-doped a-Si

Fig.2.15(b), although the coordination of H atom fluctuates in the beginning, at later times

it forms a single bond with Si, thereby passivating the DB which is as expected from the

doping point of view because in n-type doping both P and H assist doping and the

energy-gap is small. The B atoms substituted in tetrahedral Si atom sites have consistent

four fold coordination while the coordination of P changes from four to 3-fold and

sometimes even 2-fold. We found that this change in coordination of P atoms has

significant effect in doping process as the study of dynamics with P-atoms not substituted

in the perfectly tetrahedral Si sites will result in an undoped system which is quite

consistent with the experimental results.

2.5 Conclusion

Our calculations suggest that although Mott’s view that non-tetrahedral impurities do

not dope an a-Si network is correct, this is only the part of the story of low doping

efficiency. H passivation and the special attraction of H to impurities is also a key to

understanding low doping efficiency. B substituted into a tetrahedral Si site, creates a

substantial strain in local bonding, which attracts H atoms and induced H passivation and

doping suppression. In P-doped a-Si, bonds are less strained compared to B-doped a-Si

and H passivation follows similarly.

It is shown in the work of Abtew and coworkers[39, 42] that H is highly mobile. This

mobility can lead to fluctuations in HOMO-LUMO gap, (denoted by ξ in this paper) that

also strongly affects the conductivity.
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3 Force-Enhanced Atomic Refinement (FEAR):

StructuralModelingWith Empirical Interactions in a

ReverseMonte Carlo Approach

The work shown in this chapter is published in Pandey, A., Biswas, P., and

Drabold, D. A. (2015). Force-enhanced atomic refinement: Structural modeling with

interatomic forces in a reverse Monte Carlo approach applied to amorphous Si and

SiO2. Physical Review B, 92(15), 155205.

3.1 Introduction

Conventional molecular-dynamics (MD) simulations of amorphous materials suffer

from a usual difficulty of the high computational cost associated with simulating large

models using quantum-mechanical methods, such as ab initio molecular dynamics

(AIMD). Further, for amorphous solids with weak or no glassy behavior (e.g. a-Si and

a-Ge), AIMD technique such as ”melt-quench” performs poorly. Similarly, computational

approaches to construct structural models of amorphous solids by inverting experimental

data, along with the local chemical and geometrical ordering of the networks, often fail.

An archetypal example is the Reverse Monte Carlo (RMC) method [61, 62], which

constructs a three-dimensional model of a material by inverting experimental diffraction

data. While RMC is very simple to implement and has been used to model a variety of

disordered solids [63–65] (e.g. glasses, liquids, polymers, etc.) in the past, the very scalar

nature of diffraction data dictates that the method cannot be used to uniquely determine

the structure of amorphous solids using diffraction data only. Thus, development of new

approaches are required to address these materials.

An ideal approach to computational modeling of complex amorphous materials

should incorporate the state-of-the-art total-energy and force methods and the judicious
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application of a priori information–experimental data pertaining to the material. When

these schemes are suitably merged, the resulting structural models should reflect our full

state of knowledge about the material. A number of hybrid approaches has been

developed that successfully couple a total-energy functional (quantum-mechanical or

otherwise) with a priori information some of them are reviewed below.

Compelling ‘uniformity’ as a constraint for the refinement of the atomistic-scale

structures, was adopted by Goodwin and coworkers in their invaraint environment

refinement technique [47]. A liquid-quench procedure, combined with a hybrid Reverse

Monte Carlo (HRMC) approach, which incorporates both experimental and energy-based

constraints has been employed by Opletal and coworkers in their study of amorphous

carbon [24]. A similar approach via HRMC with bonded and non-bonded forces was used

by Gereben and Pusztai to study liquid dimethyl trisulfide [66]. Likewise, by refining the

initial interatomic empirical potential-energy function and fitting the input experimental

structure-factor data, empirical potential structure refinement (EPSR) has been quite

successful in predicting liquid structures [67]. Recently, an electronic a priori information

has also been included in a modeling amorphous materials [68]. An alternative approach,

experimentally constrained molecular relaxations (ECMR), which incorporates

experimental information in first-principles modeling of materials in a ‘self-consistent’

manner was discussed in [25].

In this chapter, we report a structural modeling technique called force-enhanced

atomic refinement (FEAR). Our method uses RMC to fit the input experimental data and

parsimoniously employs interatomic forces obtained from (classical) total-energy

functionals to restrict the search in the energetically-favorable region of the configuration

space in a self-consistent manner. We have studied a-SiO2 and a-Si using this approach.

Unlike other hybrid approaches [24, 66], where the total-energy of the system is

coupled to RMC for accepting and rejecting atomic moves, the movement of the atoms in
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FEAR, due to interatomic forces, is independent of the RMC moves. This enhances the

efficiency of the method by reducing the total computational cost associated with force

calls. The computational efficiency of the technique has been studied by comparing the

number of force calls with other MD approaches.

The rest of this chapter is organized as follows. In section II, we describe the basics

of the FEAR method and its implementation. Section III discusses the results for a-SiO2

and a-Si. In section IV, we present the conclusions of our work.

Figure 3.1: A schematic diagram of the FEAR method. The principal computing loop is
highlighted in grey.

3.2 Methodology: Basics of FEAR and Its Implementation

A review of Reverse Monte Carlo (RMC) [24, 25, 61, 63, 64] and the related methods

suggests that diffraction data alone is insufficient to determine the structure of complex

amorphous solids. This is particularly so for amorphous semiconductors, where the

presence of directional bonding cannot be inferred directly from one-dimensional

diffraction data only. While the inclusion of structural constraints proves to be particularly
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useful in RMC simulations [69], they do introduce additional complexities in the search

space. For multi-component systems, this can be a serious impediment and, in some cases,

may render the problem intractable even with gradient information. The choice of

appropriate constraints itself can be highly nontrivial. Owing to the hierarchical nature of

the geometrical/structural constraints in complex disordered systems, it is generally

beneficial to include lower-order constraints first, which are followed by higher-order

constraints of increasing complexity and information content. However, the presence of

too many constraints can be detrimental to a problem due to the competition between the

constraints. Such competing constraints can adversely affect the efficiency of a search

procedure by introducing complex rugged structure in the multi-dimensional

configuration space, which makes it difficult for the optimizer to evolve and, thus, to

determine the optimal solution space for structural determination. Further, the correct

structural solutions often crucially depend on the strength of the constraints (i.e. weight

factors), which are generally obtained heuristically after several trial runs in optimizations

based on stochastic search algorithms. Thus, the determination of structure of complex

disordered solids from a set of experimental data and structural/geometrical constraints

continues to pose a challenging problem in condensed-matter sciences.

In the present approach, we intend to avoid some of these difficulties by introducing

the following steps: i) optimization of a total-energy and penalty functionals in separate

subspace; ii) inclusion of gradient information to optimize the total-energy functional; iii)

incorporation of special atomic displacements to enhance the convergence of total energy

during subspace optimization by moving a set of atoms associated with strained local

configurations. Step I essentially eliminates the need for weight factors that are necessary

for optimization of an augmented ‘effective energy’ functional. Instead, subspace

optimizations proceed in tandem with each other and, thereby, establish a ‘coupling’

between steps I and II. Unfavorable configurations, which are generated in step I, are
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either corrected or rejected in step II and vice versa. We emphasize that the approach is

highly flexible; the exact implementation of the method can vary and may depend on the

degree of accuracy and the efficiency one needs to achieve in optimizing models with

several hundreds atoms. While a number of sophisticated algorithms can be employed for

subspace optimizations (such as deterministic conjugate-gradient [70] type approaches to

stochastic exchange-replica Monte Carlo [71] and evolutionary search procedures [72]),

for the sake of simplicity and exploring the efficacy of this approach at its basic level, we

confine ourselves to the steepest-descent method and Reverse Monte Carlo approach for

optimizing the total energy and experimental structure-factor data, respectively. We show

that even at this elementary level of implementation, the method is profitable and holds

the promise for further development using the state-of-the-art multi-objective optimization

(MOO) techniques developed in recent years. Thus, in the FEAR approach, the statement

of the problem can be written as:

min
{q}

P({q}), P ≡ χ2 ⊗ Φ, (3.1)

where Φ, χ2, and {q} stand for a total-energy functional, a penalty function involving

experimental structure factor, and 3N-dimensional configurational coordinates,

respectively. Following McGreevy and others [61, 65], we can write,

χ2 =
∑

i

[

FE(ki) − FC(ki)
σ(ki)

]2

, (3.2)

where FE/C(ki) is the experimental/computational structure factor, and σ(ki) is the error

associated with the experimental data for wave vector ki.

To illustrate our method, we have chosen two canonical examples of amorphous

systems: amorphous silica (a-SiO2) and amorphous silicon (a-Si). The former is a classic

glass-former, and can be readily obtained by quenching molten models at high

temperature. The latter is preferably modeled via event-based approaches, such as

Winer-Wooten-Weire (WWW) [7] and activation-relaxation techniques [31]. Both
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systems have been studied extensively in the literature, which provides a wealth of

information for comparing experimental data with computational results for various

physical quantities. Here, we choose to employ the environment-dependent interatomic

potential (EDIP) by Justo et al. [73] for modeling a-Si. For a-SiO2, we choose the

potential proposed by Beest et al. (BKS) and their parameters [74]. The functional form of

the BKS potential is given by,

φiα, jβ =
QαQβ

riα, jβ

+ Aαβ exp(−Bαβ riα, jβ) −
Cαβ

r6
iα, jβ

, (3.3)

where φiα, jβ is the interaction energy between two atoms of species α and β at sites i and j,

respectively. The parameters Q, A, B and C depend on atomic species and can be found in

[75].

The presence of the electrostatic interaction in Eq. 3.3 stipulates that the Ewald

summation [76] should be used in the calculation of the total energy and forces. However,

as shown by Wolf et al. [77] in a recent communication, a pairwise sum can be

constructed in real space by ensuring charge neutrality of the system such that the sum

produces results very similar to that obtained from the Ewald summation. We have

adopted this real-space approach to calculate the total energy and forces via Wolf’s

summation. Following these authors, the expression for the electrostatic force between

two species α and β at sites i and j can be written as:

Fiα, jβ = QαQβ

{

erfc(κriα, jβ)
r2

iα, jβ

+
2κ
π1/2

exp(−κ2r2
iα, jβ)

riα, jβ

−
erfc(κRc)

R2
c

−
2κ
π1/2

exp(−κ2R2
c)

Rc

}

, for riα, jβ ≤ Rc.

(3.4)

The damping coefficient (κ) and the cutoff radius (Rc) play an important role in the

calculation by including contributions from the reciprocal and real spaces. Since these

parameters are not independent of each other, care must be taken to choose an appropriate

set of values for accurate calculations of total energy and forces. Following Fennell and

Gezelter [78], we have used a value of 0.2 and 9 Å for κ and Rc, respectively.
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Figure 3.1 presents a schematic diagram of the FEAR method showing the principal

steps of our calculations. Starting with an initial random configuration C1, the method

proceeds via χ2 minimization to generate a new configuration C2 by enforcing

experimental structure factor using conventional Reverse Monte Carlo (RMC)

simulations. The output from this step is then fed to the next step for optimization of total

energy via a gradient-descent approach. The structure of the resulting configuration C3 is

then examined for continuation or termination. This self-consistent iterative scheme

continues until the convergence criteria for each subspace optimization are met or a

maximum number of iteration is reached. The total-energy optimization and the χ2-fitting

of the structure factor constitute the principal components of the method, and are indicated

in Fig. 3.1 by the loop: 2→ 3→ 4→ 2. In the next section, we apply this method to

a-SiO2 and a-Si, and discuss the results in details.
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Figure 3.2: Scaling of total CPU time (red circles) vs. system size in FEAR simulations.
A least-square fit of the data with a quadratic polynomial is shown as a blue curve.
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Figure 3.3: Partial pair-correlation data for a-SiO2 models from FEAR simulations.
The corresponding data (dashed blue curve) for a DR model from [85] are included for
comparison.

3.3 Results and Discussion

3.3.1 Amorphous Silica (a-SiO2)

In this subsection, we present results for a-SiO2 from FEAR simulations. To this end,

we use total neutron static structure factor from [79] which is then coupled with the

total-energy BKS functional to generate a-SiO2 models consisting of 192, 648, 1020 and

1536 atoms. Starting with a random configuration with an experimental density of 2.20

g cm−3 for a-SiO2, the structure factor of the model is fitted with the corresponding

experimental data via RMC simulations. After 100 successful RMC moves, the total
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Figure 3.4: Calculated total neutron static structure factor for 648- and 1536-atom a-SiO2

models from FEAR simulations. Experimental data from [79] are shown as solid circles.
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Figure 3.5: Total energy (of a-SiO2) and the cost function χ2 vs. RMC steps during FEAR
simulations. The horizontal line corresponds to the energy of a DR model using the BKS
potential for comparison.

energy and forces on the atoms are calculated (using a single force call) and the atoms are

displaced along the direction of forces. This 2-step process is then repeated until the

convergence criteria for χ2 and the total energy are satisfied. Analysis of χ2 and total

energy suggest that approximately 3 × 104 force calls are sufficient for FEAR to converge
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Figure 3.6: Bond-angle distributions of a 1536-atom model of a-SiO2 from FEAR
calculations. The average and width of the distributions are listed in Table III.
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Figure 3.7: Electronic density of states (EDOS) for a 192-atom model of a-SiO2 obtained
from FEAR simulations. The corresponding result from a DR model is included for a
comparison. Fermi levels are indicated as vertical lines at 2.4 eV (DR) and 3.4 eV (FEAR).

to a reasonable accuracy of δχ2 ≈ 10−4 and δF≈ 0.02 eV/Å for system sizes we have

studied so far.

To estimate the overall computational cost of the method, we have calculated the total

CPU time for several system sizes, and compared the results with those obtained from
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classical and ab initio MD simulations reported in [80, 81]. In Fig.3.2, we have plotted the

CPU time for N = 192, 648, 1020 and 1536 atoms. While both RMC and force

calculations can be implemented in an order-N manner (see note [82]), we made no

attempts to obtain such improved scaling at this time in an effort to examine the usefulness

of this approach in this exploratory study. Thus, the CPU time for a run has been observed

to scale quadratically with the system size. This is indicated in Fig. 3.2 by a least-square

fit of the data using a quadratic polynomial. Despite this quadratic scaling of CPU time, a

notable feature of the method is the parsimonious use of gradient information for

structural optimization. FEAR makes significantly fewer force calls than conventional

classical/ab initio MD or other gradient-based methods. A comparison of the number of

force calls relaxation between FEAR and melt-quench MD (classical and ab

initio)[80, 81] can be found in Table 3.1.

Table 3.1: Number of Force Calls and Average CPU Time in FEAR Compared With
Classical and Quantum Melt-Quench Method [80, 81].

192-

atom

648-

atom

1020-

atom

1536-

atom

CPMD

(Ref[80])

Classical

MD

(Ref[81])

Number

of force

calls

3× 104 3× 104 3× 104 3× 104 27× 104 6× 104

CPU

time

(hours)

0.47 1.26 2.64 5.52
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The partial pair-correlations data for the FEAR models are shown in Table 3.2. The

peak positions and bond lengths are comparable with the results from other MD models

and experiments. The average coordination numbers of Si and O for the model with 1536

atoms are found to be 3.98 and 1.99, respectively. The presence of a few 3-fold (3.2 %)

and 5-fold (0.45 %) silicon and isolated (2.7 %) oxygen atoms can be attributed to the

BKS potential that lacks the three-body term[74]. None of the FEAR models shows any

chemical disorder or heteropolar bonding.

Table 3.2: Peak Positions of FEAR Model Compared With Other MD Models and
Experiments (Expt.).

Peak position (Å)

atom-atom FEAR MD (Ref[80]) Expt.(Ref[83])

Si-Si 3.15 3.10

Si-O 1.62 1.62 1.610± 0.050

O-O 2.64 2.64 2.632± 0.089

The total structure factor S (k) is compared to the neutron diffraction experiments

from Ref. [79], and is shown in Fig. 3.4. The origin of the peaks in S (k) can be inferred

from partial structure factors. The second peak in Fig. 3.4 arises from Si–Si and O–O

correlations with a partial cancellation from the Si–O anti-correlations. The third and

fourth peaks receive contributions of Si–Si, Si–O and O–O correlations. The first peak for

both the models is small compared to the experiment which can be attributed to finite-size

effects in the intermediate range order [84].

In Fig. 3.5, we have shown the variation of the cost function (χ2) and BKS energy per

atom during FEAR simulations. The horizontal line in the plot corresponds to the BKS

energy for a 648-atom model obtained from the decorate-and-relax approach described
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elsewhere [85]. The BKS energy, for both 1536- and 648-atom models, is close to -19.15

eV/atom, which is comparable to -19.18 eV/atom from the corresponding DR model. The

use of atomic forces or gradient information improves the quality of structure.

The bond-angle distributions for the model with 1536 atoms are plotted in Fig. 3.6.

The distribution of ∠O-Si-O shows that the silicon-centered O-Si-O angles are tetrahedral

in character with an average value of 109.5◦ and a full width (at half maximum) of 15.6◦.

These values are consistent with the experimental data reported by Mozzi and

Warren [86]. The corresponding values for ∠Si-O-Si are found to be 154.3◦ and 27.8◦,

respectively. The average value of ∠Si-O-S is about 6.4% higher than the experimental

value of 144◦, and the value obtained from other theoretical models [80, 84]. This

deviation, however, is not surprising, and is generally attributed to the lack of 3-body

interaction in the BKS potential [87]. Since Si-O-S angles involve two neighboring

tetrahedra connected via a bridging oxygen atom at a common vertex, it is difficult for the

BKS potential to produce this delicate geometrical arrangement accurately via 2-body

interactions only. A full comparison of FEAR results with experimental data and other

theoretical models are provided in Table 3.3.

Table 3.3: Bond-Angle Distributions From FEAR, MD and DR Models.

Bond Angle (deg)

FEAR MD

([80])

Expt.

([86])

DR

([79]

O-Si-O 109.5

(15.6)

109.6

(10)

109.5 109.5

(9)

Si-O-Si 154.3

(27.8)

142.0

(25)

144 (38) 140 (25)
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Table 3.4 presents the number of irreducible ring statistics for the models with 192,

648, and 1536 atoms using the I.S.A.A.C.S program [26]. The presence of only

even-member rings implies the absence of chemical disorder in the network.

Table 3.4: Ring Statistics of a-SiO2 From FEAR Models.

Ring

size (n)

4 6 8 10 12 14 16 18

192-

atom

0 7 9 26 17 28 16 12

648-

atom

5 12 36 57 80 109 53 42

1536-

atom

6 24 108 167 195 215 148 96

The structures obtained from FEAR have been relaxed using the density-functional

code (VASP) using a local-density approximation (LDA) and the LDA energies have been

found to be comparable with those obtained from the DR model[85]. The electronic

density of states (EDOS) for a 192-atom a-SiO2 is shown in Fig.3.7. The EDOS is

comparable with the results obtained by Sarnthein and co-workers [81] and hence with the

X-ray photoemission spectra (XPS)[88] in the sense that the states are well reproduced.

There are three distinct regions of occupied states. The states about -18 eV are oxygen 2s

states, while the one between -10 eV and -4 eV are the bonding states between Si sp3

hybrids and O 2p orbitals. The highest occupied states in valence band about -4 eV are the

O 2p states and the lowest unoccupied states of conduction band comprise of anti-bonding

states. However, the band gap of 3.96 eV is underestimated compared to 4.8 eV of that
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obtained from MD calculation [81] and the experimental value of 9.0 eV [89]. This is to

be expected from LDA DFT calculations.

Finally, to verify the reproducibility of the method, we have generated 20

configurations of 192- and 648-atom models, and 10 configurations of 1020- and

1536-atom models from different random starting configurations. Approximately, 90% of

final configurations have been observed to have almost identical structural and electronic

properties. The configuration fluctuations of various physical observables are found to be

within the statistical limits, which ensure the reproducibility and consistency of the FEAR

method.
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Figure 3.8: A comparison of FEAR structure factor for a 216-atom model of a-Si with the
experimental data from Ref. [32].

3.3.2 Modeling Amorphous Silicon (a-Si)

We have also employed FEAR to model structure of a-Si starting from a random

configuration with 216 atoms. The results of our calculations are plotted in Figs. 3.8-3.12.

Figure 3.8 shows the structure factor obtained from a 216-atom FEAR model of a-Si
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Figure 3.9: Pair-correlation data (blue) for a 216-atom model of a-Si obtained from FEAR.
The corresponding data (red) for a WWW model is also presented here for a comparison.
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Figure 3.10: The variation of χ2 and EDIP energy during FEAR simulations. The dashed
line is the EDIP energy for a WWW model with an identical size and the number density.

along with the experimental X-ray diffraction data from [32]. It is evident from Fig. 3.8

that the structure factor agrees very well with the experimental data except for a few

points near the first peak. This is also reflected in the correlation data in real space in

Fig. 3.9, where the pair-correlation function of the FEAR model is compared with the

same from a WWW model.

The cost function χ2 and the total EDIP energy is shown in Fig. 3.10. The energy is

compared to the 216-atom a-Si WWW model which is 4.199 eV (shown by dashed line).

This shows that in FEAR, the energy is minimized together with the structural refinement.
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Figure 3.11: (a) The bond-angle distribution for a 216-atom model of a-Si using FEAR
(solid line) and a WWW model (dashed line). (b) The bond-angle distribution for a 216-
atom ‘a-Si model’ from RMC simulations using experimental structure factor only. The
approximate semi-circular distribution is a characteristic feature of unconstrained RMC.
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Figure 3.12: Density of electronic states of a-Si using VASP from FEAR (blue) and
WWW (red) models. The corresponding Fermi levels are indicated as vertical lines at 6.1
eV (FEAR) and 5.7 eV (WWW).

The bond-angle distribution is shown in Fig.4.5a where the tetrahedral geometry is

retained compared to the WWW model of identical number of atoms. The corresponding

bond-angle distribution using RMC is shown in Fig.4.5b where the peaks are highly

underestimated and the distribution is broad without tetrahedral peak. We relaxed the
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structure obtained from FEAR using VASP and found the energy minimum to be -5.18

eV/atom compared to -5.23 eV/atom of the VASP relaxed WWW model. This shows that

the LDA energies are comparable. In Fig.3.12, the electronic density of states for the

FEAR model is compared with the same from a VASP-relaxed WWW model. The Fermi

energies are shown by the vertical dashed lines. As compared to RMC and constrained

RMC [62], the EDOS is in better agreement with optical measurements. The FEAR model

exhibits the presence of several defect states within the gap, which mostly arise from

coordination defects. This is expected in view of the fact that approximately 10% of total

Si atoms have a coordination number, which is different from 4. This coordination number

is better compared to the constrained RMC (88%)[62] and MD Quench from melt using

EDIP and Tersoff potentials [90, 91]. The EDIP for Si overestimates the five-fold bond in

Si which is evident in our FEAR calculation with almost 8% 5-fold Si present in the

network [90]. These floating bonds, clutter the gap and form defects states that closes the

gap. The presence of these defect states, and the use of the LDA that is known to

underestimate the optical gap, explains the small gap in the electronic density of states.

3.4 Conclusion

In this chapter, we have studied an approach, called force-enhanced atomic

refinement (FEAR), to model complex amorphous solids by combining experimental

structure factor with periodic usages of gradient information from a total-energy

functional. The approach consists of employing experimental scattering data to generate

an ensemble of possible structural solutions via Reverse Monte Carlo simulations, which

is followed by further refinement of the RMC solutions using gradient information from a

total-energy functional. Since conventional RMC cannot describe a 3-dimensional

structure uniquely, and its constrained counterpart with additional structural information

often transforms the original unconstrained problem to a difficult multi-objective
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optimization program, the emphasis on the present approach has been to develop a method

that retains the simplicity of RMC and yet overcomes the problem of non-uniqueness in

structural determination via the economical use of a total-energy functional and forces.

The approach can be viewed as a ‘predictor-corrector’ method for structural refinement.

Atomistic configurations predicted by RMC are corrected at regular interval via the

optimal usage of gradient information or forces from a total-energy functional. This

enables FEAR to track solutions in the manifold of the solution space that jointly satisfies

experimental structure-factor data and the total energy of the system. In this exploratory

study, we have demonstrated using two archetypal examples of amorphous solids (a-Si

and a-SiO2) that the method performs on a par with the traditional MD simulations or

other gradient-based relaxation approaches even at an elementary level of its

implementation.

We have successfully implemented FEAR to model a-SiO2 and a-Si. Structural and

electronic properties of the FEAR models are produced as accurately as possible within

the limit of the potentials and experimental input data.
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4 Inversion of Diffraction Data for AmorphousMaterials

The work presented in this chapter is published in Pandey, A., Biswas, P., and

Drabold, D. A. (2016). Inversion of diffraction data for amorphous materials.

Scientific Reports, 6, 33731.

4.1 Background and Introduction

On the eve of the First World War, William Lawrence Bragg and his father, William

Henry Bragg, exposed crystalline solids to X-rays and discovered what we now call

“Bragg diffraction”, strong reflection at particular incident angles and wavelengths. These

“Bragg peaks” were sharply defined and, when analyzed with a wave theory of the X-rays,

led to clear evidence of order in the crystalline state[1]. By analyzing the diffraction

angles at which the peaks appeared and the wavelength of the X-rays, the full structure of

the crystal could be ascertained. In the language of modern solid state physics, the X-ray

structure factor of a single crystal consists of a sequence of sharp spikes, which are

broadened in a minor way by thermal effects. The information obtained from this palisade

of delta functions, arising from a crystal, is sufficient for the determination of atomic

structure of crystal uniquely. The rapid development of X-ray Crystallography in the past

several decades had made it possible to successfully determine the structure of complex

protein molecules, with more than 105 atoms, leading to the formation of a new branch of

protein crystallography in structural biology[2].

In contrast with crystals, amorphous materials and liquids have structure factors that

are smooth, and thus contain far less specific information about structure. The lack of

sharp peaks principally originates from the presence of local atomic ordering in varying

length scales, and no long-range order in the amorphous state. The resulting structure

factor is one-dimensional and is effectively a sum rule that must be satisfied by the

three-dimensional amorphous solids. This presents a far more difficult problem of
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structural determination of amorphous solids that requires the development of new tools

and reasoning to obtain realistic structural models. A natural approach to address the

problem is to carry out computer simulations, either employing molecular dynamics or

Monte Carlo, with suitable interatomic potentials. We have called this approach the

“simulation paradigm”[23] elsewhere. By contrast, the other limit is to attempt to invert

the diffraction data by “Reverse Monte Carlo” (RMC) or otherwise without using any

interatomic potential but information only [62, 65]. This we have called the “information

paradigm”[23]. The information paradigm in its purest form produces models reproducing

the data using a random process. These models tend to be maximally disordered and

chemically unrealistic. The information paradigm is closely related to the challenge of

Materials by Design[92, 93], for which one imposes external constraints to incorporate

additional information on a model to enable a set of preferred physical properties that are

of technological utility.

Neither paradigm is ideal, or even adequate. The simulation paradigm is plagued by

severe size and time-scale limitations that misrepresent the real process of forming a glass,

not to mention imperfect interatomic interactions. Despite the development of hardware

and software technology for distributed-shared-memory computing, the lack of

appropriate force-fields or interatomic interactions has been a major obstacle in computer

simulations of complex multinary glasses. For amorphous materials with no or weak

glass-forming ability, either approach is rather desperate, and leads to the formation of

unrealistic models with too many structural defects in the networks. In this paper we

introduce ab initio Force Enhanced Atomic Refinement (AIFEAR). A preliminary trial of

the algorithm using only empirical potentials is discussed in Chapter 3[94].

Others have undertaken related approaches [24, 25, 47, 67, 68, 95–97] as discussed in

Chapter 3. These methods have all contributed significantly to the field, yet they have

limitations such as employing empirical potentials of limited reliability[24, 94], or
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unacceptable convergence properties[25]. A general and successful framework for

inverting solid state diffraction data does not exist. AIFEAR is a major step toward this

important goal.

4.2 Methodology

In this section, we discuss the AIFEAR method in detail. We present the AIFEAR,

RMC and melt-quench methods adopted for amorphous silicon (a-Si) and silver-doped

germanium selenide systems.

4.2.1 Ab Initio Force-Enhanced Atomic Refinement (AIFEAR)

If V(X1 . . . Xn) is the energy functional for atomic coordinates {Xi} and χ2 measures

the discrepancy between diffraction experiment and theory, we seek to find a set of atomic

coordinates {Xi} with the property that V=minimum and χ2 is within experimental error.

In other words, AIFEAR jointly minimizes the configurational energy V and[12, 65]

χ2 =
∑

i

[

FE(ki) − FM(ki)
σ(ki)

]2

, (4.1)

where FE/M(ki) is the experimental/model structure factor, and σ(ki) is the error associated

with the experimental data for wave vector ki. To undertake this program, (i) we begin

with a random model, (ii) invoke M RMC accepted moves followed by N

conjugate-gradient steps to optimize the total energy. We have found M = 1000 and

N = 10 to be satisfactory for the materials of this paper. The process (ii) is repeated until

the desired accuracy of δχ2 ≈ 0.1 and, a force tolerance of δ f ≈ 0.02 eV/Å is attained. All

that is required are RMC and total-energy codes and an appropriate driver program

connecting them.

AIFEAR avoids the problem of relative weighting of V and χ2 in a penalty or target

energy functional as in hybrid approaches developed elsewhere [24][98]. If the density of

the material is unknown, it is straightforward to carry out the simulation at zero pressure
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(with variable cell geometries) in the CG loop, and simply pass the modified supercell

vectors back to the RMC loop.

4.2.2 Amorphous Silicon (a-Si)

We began by preparing three 216-atom models of a-Si using (1) RMC, (2)

melt-quench, and (3) AIFEAR. Initially, conventional RMC (i.e. without any constraint)

was performed using the RMCProfile software [27] for a random starting configuration of

216-atom a-Si with a cubic box of side 16.281 Å corresponding to the density 2.33

g.cm−3 [99]. The maximum step length of the RMC moves for Si atoms is chosen to be

0.05 Å. In a parallel simulation, the same starting configuration is taken through a process

of melt-quench using the density-functional code SIESTA [16] with single-ζ basis under

Harris functional scheme [16] within the local density approximation. The total-energy

and force calculations are restricted to the Γ point of the supercell Brillouin zone. After

melting at 2300 K, the liquid structure was quenched to 300 K at a rate of 240 K/ps. Each

step was followed by the equilibration of the system for 2000 time steps. Finally, the

configuration is subjected to ab initio FEAR simulations with the same Hamiltonian and

“data”. The diffraction data from Ref. [7] were employed in RMC and AIFEAR. To

ensure the reproducibility of the method, we have modeled 10 a-Si models starting from

random configurations and the models yielded 4-fold coordination exceeding 96%.

4.2.3 Chalcogenide Glasses: (GeSe3)1−xAgx [x=0.05 and 0.077])

We employ the same scheme as for a-Si, but with ab initio interactions from the

plane-wave DFT code VASP[100–102], using projected augmented plane waves

(PAW) [19] with Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional [21]

and a plane-wave cutoff of 312.3 eV. All calculations were carried out at Γ point. For 5%

and 7.7% Ag doped systems, 135 and 108 atoms were taken in a unit cell of length 15.923

Å and 15.230 Å, respectively. These values correspond to the densities of 4.38 g.cm−3 and
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4.04 g.cm−3 for the models with 5% and 7.7% Ag, respectively. For x = 0.050, both the

structure-factor data and density of 4.38 g.cm−3 are taken from the work of Piarristeguy et

al. [103]. For x = 0.077, we have used the the pair distribution function (PDF) data

provided by Zeidler and Salmon[104], and a density of 4.04 g.cm−3 was obtained from a

zero-pressure conjugate gradient relaxation using VASP. For completeness, we have also

studied a melt-quench models.

The 5% Ag-doped GeSe3Ag ab initio FEAR models are compared to the

melt-quench model of the identical system of Piarristeguy and co-workers [103]. The

melt-quench model of 7.7% Ag-doped GeSe3 model is prepared by melting the same

starting configuration at 1400 K for 10,000 steps followed by a quenching to 300 K at the

rate of 100 K/ps, and then by equilibrating at 300 K for another 5000 steps. To estimate

the density of the equilibrated system, the volume of the simulation cell was relaxed. A

final relaxation at zero pressure was employed, which yielded a density of 4.04 g.cm−3.

Throughout the calculations, we have used a time step of 1.5 fs.

4.3 Application of AIFEAR

The method is applied to two very different systems: amorphous silicon and two

compositions of a solid electrolyte memory material silver-doped GeSe3.

4.3.0.1 Amorphous Silicon (a-Si)

To illustrate the efficacy of this new approach, we begin with a persistently vexing

problem: the structure of amorphous Si is particularly difficult because the network is

over-constrained[35, 105] and it is not a glass former. Structural and electronic

experiments reveal that coordination defects in good quality material have a concentration

less than a part in 1000. As such, a satisfactory model should have at most a few percent

(or less) defects. Inversion methods like RMC and ab initio melt-quench both produce
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unsatisfactory models with far too many coordination and strain defects compared to

experiments.

a) b) c)

d) e) f)

g) h) i)

Figure 4.1: Top: A 216-atom model of a-Si obtained from (a) RMC, (b) melt-quench and
(c) ab initio FEAR simulations. Silicon atoms with a coordination number of 3, 4 and 5 are
shown in green, blue and red colors, respectively. Center: The radial distribution function
(RDF) for the (d) RMC, (e) melt-quench and (f) ab initio FEAR models. Bottom: The
bond-angle distributions for the models as indicated in the figure. For animations showing
the formation of three-dimensional network structure and the corresponding evolution of
the radial and coordination-number distributions follow the youtube links provided in the
application section.
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a) b)

c)

Figure 4.2: Results for 216-atom a-Si: (a) The variation of cost function and total energy
with the number of AIFEAR steps. (b) Electronic density of states (EDOS) for RMC, melt-
quench and AIFEAR models with the Fermi level at 0 eV. (c) The bond-angle distribution
from AIFEAR compared to that of WWW (see Table 1 for details).

The structural properties of a-Si, obtained from these models, are summarized in

Fig. 4.1. Details of convergence and comparison to the best available WWW model is

provided in Fig. 4.2.

RMC produces a highly unrealistic model, far from the accepted tetrahedral network

topology, as seen in Fig.4.1. Melt-quench, while better, still produces far too many

coordination defects. By contrast, AIFEAR produces a nearly perfect structure, with

99.07% fourfold coordination, and a bond-angle distribution close to that of from a

WWW model. In comparing the bond-angle distributions (from AIFEAR with that of
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from WWW), one must take into account the fact that ab initio interactions tend to

produce a slightly wider bond-angle distribution than the artificial WWW (Keating spring)

interactions. The AIFEAR model has energy 0.03 eV/atom higher than the WWW model

compared to 0.08 eV/atom for the melt-quench and 3.84 eV/atom for the RMC models. It

suggests that the AIFEAR model is energetically stable compared to remaining two

models.

We wish to emphasize that the starting configuration used in AIFEAR was random,

so that one can logically infer that a combination of atomic-radial-correlation data and

DFT interactions leads to an almost perfect tetrahedral network as illustrated in Fig. 4.1.

Table 1 lists the key structural properties of the model, along with the total energy per

atom.
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Figure 4.3: The evolution of four-fold Si atoms during FEAR simulation for three different
combinations of the number of accepted moves (M) and number of CG steps (N). (black)
M=1000 and N=5, (red) M=1000 and N=20 and (green) M=6000 and N=5.

To illustrate the choice of M and N steps on the convergence of the structure, we have

plotted the evolution of the four-fold coordinated Si atoms in FEAR for various

combinations of M and N. The convergence for three different combinations are shown in

Fig.4.3. The structure is abruptly trapped into a local minimum for a higher value of CG
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steps (N=20). The higher number of RMC accepted moves (M=6000) generates a

structure with a large number of defects. For the efficient use of algorithm, we suggest the

optimum value for M as anything between 100 and 2000 and for N any value between 3 to

10. Although, there is no significant change in the structure by a choice within this range,

a short quick run with the extreme values will help user guess the appropriate ones.

An animation of the convergence of AIFEAR showing the formation of a nearly

perfect tetrahedral network as the simulation proceeds with the disappearance of

coordination defects can be found in a link: https://youtu.be/B6Y2lv75V6s. The evolution

of radial distribution function and coordination number during AIFEAR can be visualized

in the links: https://youtu.be/M0HERVDMMN4 and https://youtu.be/hl1H wBgo54.

Table 4.1: Total Energy and Key Structural Properties of a-Si Models. The Energy per
Atom is Expressed With Reference to the Energy of the WWW Model.

RMC Melt-

quench

AIFEAR WWW

4-fold Si (%) 27 80 99.07 100

SIESTA

energy

(eV/atom)

3.84 0.08 0.03 0.00

Average bond

angle (RMS

deviation)

101.57◦

(31.12◦)

107.04◦

(20.16◦)

108.80◦

(14.55◦)

108.97◦

(11.93◦)

4.3.0.2 Chalcogenide Glasses: (GeSe3)1−xAgx [x=0.050 and 0.077])

For a challenging and timely example, we have also studied the solid electrolyte

material Agx(GeSe3)1−x. This is a chemically complex system with important applications
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to conducting bridge computer FLASH memory devices, which are of considerable

fundamental and technological interest.

The melt-quench model (in Fig. 4.4a) shows significant discrepancies with

experiments: the first sharp diffraction peak (FSDP) near 1 Å−1 is absent, and there are

significant inconsistencies in the structure factor at high k values. The FSDP is an

indicator of medium range order, a signature of structural correlations between the

tetrahedral GeSe structural building blocks of the glass. By contrast, the AIFEAR model

captures all the basic characteristics of the structure factor, including the FSDP (in fact, it

slightly overfits the FSDP). We show that the method has similar utility in either real or k

space, using S (k) for the first composition and g(r) for the second. Figure 4.4 shows the

structure factors and radial distribution functions obtained from AIFEAR and melt-quench

simulations, and compares with the experimental data from neutron diffraction

measurements [103, 104].

The GeSeAg systems are of basic interest as solid electrolytes. One of the most

interesting questions pertains to the dynamics of Ag atoms, which are sufficiently rapid

that they can be tracked even in first-principles molecular-dynamics simulations [107].

The fast Ag dynamics have led to the invention of conducting bridge Random Access

Memory [108, 109]. As this dynamics appears to be of trap-release form [107], the

structure, including features like medium range order, and associated energetics may be

expected to play a key role in the silver hopping. The 7.7% Ag composition is near to a

remarkable and abrupt ionic mobility transition [110, 111]. Dynamical simulations are

currently underway to determine the role of the structure in this dynamics.

The following features of Agx(GeSe3)1−x glasses have been observed in the AIFEAR

model: 1) The Ge-Se correlation is not affected by an increase in Ag content: Ge(Se1/2)4

tetrahedra remain the fundamental structural units in the network. 2) Ge-Ge correlations,

greatly affected by Ag doping, are revealed by the shift in Ge-Ge nearest-neighbor
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a)

b)

Figure 4.4: (a) Structure factors of (GeSe3)1−xAgx [x=0.05] from ab initio FEAR. Exper-
imental data, from neutron diffraction measurements, are shown for comparison [103].
Melt-quench data are from Pradel et al.[103] (b) The radial distribution function of
(GeSe3)1−xAgx [x=0.077] from ab initio FEAR and melt-quench simulations. Experimen-
tal RDF shown here are from Zeidler et al. [104].

distance from 3.81 Å in Ag=0% [103] to 2.64 Å and 2.56 Å in Ag=5% and Ag=7.7%

respectively, supporting the argument of Ag being the network modifier. 3) The Ag-Se

correlation peak is near 2.66 Å for both the systems, which is consistent with the
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a) b)

Figure 4.5: Total energy per atom and the cost function (χ2) versus AIFEAR steps for two
models with (a) 5% and (b) 7.7% Ag-doped GeSe3. The melt-quench energy for the 7.7%
Ag model is indicated for comparison.

experimental work of Zeidler [104] and others [103]. 4) The Se-Se coordination number

for 5% and 7.7% Ag are 1.12 and 0.83 (0.81 from experimental data [104]), respectively.

This is consistent with the observed phenomena of decrease in Se coordination with the

increase in Ag concentration [103].

Beside retaining the important chemical features of the network, the AIFEAR model

is superior to the melt-quench model by the manifestation of a prominent FSDP (cf.

Fig. 4.4a), a signature of medium range order in these materials. Absence of the FSDP

indicates the lack of structural correlations in the Ge(Se1/2)4 tetrahedra, which is less

prominent for low Ag concentration. Also, the energy of the AIFEAR model for x=0.077

is 0.02 eV/atom less than the melt-quench model (see Fig. 4.5b).

It is important and promising that in the GeSeAg systems, as in a-Si, AIFEAR is not

a greedy optimization scheme, as it is evidently able to unstick itself (for example in

Fig.4.5b) near 400 steps, there is a dramatic and temporary increase in χ2, which then

enabled the system to find a new topology which enabled further reduction of both χ2 and

E. A similar, if less dramatic, event is indicated in Fig.4.5a around step 1100). The
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Monte-Carlo moves robustly explore the configuration space and are not so prone to

getting trapped as MD simulations, and yet the chemistry is properly included in the ab

initio relaxation loop.

We have included a comparison of the number of force calls in the various

simulations in Fig. 4.6. It is evident from Fig. 4.6 that AIFEAR offers a significant

computational advantage, with fewer force calls to the expensive ab initio codes.
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Figure 4.6: Comparison of number of force calls in ab initio FEAR with melt-quench
simulations for a-Si, and 5% and 7.7% Ag-doped GeSe3. Note that the number of force
calls in melt-quench simulations vary considerably for different systems.

4.4 Conclusion

In conclusion, we have introduced a new and practical method that enables the joint

exploitation of experimental information and the information inherent to ab initio

total-energy calculations, and a powerful new approach, to the century-old problem of

structural inversion of diffraction data. The method is simple and robust, and independent

of the systems, the convergence of which has been readily obtained in two highly distinct

systems, both known to be challenging and technologically useful. By direct calculation,

we show the network topology implied by pair correlations and accurate total energies: an

essentially fourfold tetrahedral network, structurally similar to WWW models, including
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the bond-angle distribution. Using only the total structure factor (or pair-correlation) data

and SIESTA/VASP, we obtain models of unprecedented accuracy for a difficult test case

(a-Si) and a technologically important memory material (GeSe3Ag). The inclusion of a

priori experimental information emphasized here may also be developed into a scheme to

include other information for materials optimization. It is easily utilized with any

interatomic potentials, including promising current developments in “machine

learning” [112]. The method is unbiased in the sense that it starts from a completely

random configuration and explore the configuration space of a total-energy functional

aided by additional experimental information to arrive at a stable amorphous state. Beside

these attributes, it requires fewer force calls to the expensive ab initio interactions.
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5 Realistic Inversion of Diffraction Data for an

Amorphous Solid: The Case of Amorphous Silicon

The work shown in this chapter has been submitted to the Physical Review B and is

published in an arxiv as: Pandey, A., Biswas, P., Bhattarai, B., and Drabold, D. A.

(2016). Realistic inversion of diffraction data for an amorphous solid: the case of

amorphous silicon. arXiv preprint arXiv:1610.00065.

5.1 Introduction

It has long been realized that the inversion of diffraction data – extracting a structural

model based upon the data at hand – is a difficult problem of materials theory. It is worth

noting that the success of inverting diffraction data for crystals has been one of the

profound success stories of science, even revealing the structure of the Ribosome [113].

The situation is different for non-crystalline materials. Evidence from Reverse Monte

Carlo (RMC) studies [12, 61, 62, 65] show that the information inherent to

pair-correlations alone is not adequate to produce a model with chemically realistic

coordination and ordering. This is not really surprising, as the structure factor S (Q) or

pair-correlation function g(r) (PCF) is a smooth one-dimensional function, and its

information entropy [114] is vastly higher (and information commensurately lower) than

for a crystal, the latter PCF being a sequence of sharply localized functions. It seems clear

that including chemical information, in an unbiased mode, should aid the structure

determination substantially. Others have clearly described this challenge as the

“nanostructure problem” [115], and noted the appeal of including an interatomic potential.

We show here that such an approach is successful, by uniting the RMC code

“RMCProfile” and including chemistry in a self-consistent manner using density

functional theory, but not by invoking ad hoc constraints. We have named this method
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“Force Enhanced Atomic Refinement” (FEAR). In this chapter, we focus on the classic

and persistently vexing problem of amorphous silicon.

From a practical modeling perspective, the utilization of a priori information by

constraining chemical order and preferred coordination has improved some of the most

serious limitations of RMC [47, 68, 79, 117, 118]. These constraints are externally

imposed and sensible though they might be, they introduce the investigators bias in the

modeling. In other applications, more along the lines of ”Materials by Design” the point is

indeed to impose conditions that the model must obey – and see if a physical realization of

the desired properties may be realized. The present work is focused on trying to best

understand well explored specific samples of a-Si.

More in the spirit of our work, many hybrid schemes have been introduced,

incorporating experimental data and a penalty function scheme [24, 66]. A short review

on various methods is provided in Chapter 3 and 4. The first attempt to incorporate

experimental information in a first-principle approach was experimentally constrained

molecular relaxation (ECMR) [25, 69]. ECMR merely alternated full relaxations of fitting

pair-correlations (via RMC) and energy minimization. When this process converged (as it

did for the case of glassy GeSe2), an excellent model resulted [25]. The problem was that

this scheme often failed to converge. We therefore amended ECMR and introduced ab

initio force-enhanced atomic refinement (ab initio FEAR) [116]. In effect we alternate

between partially fitting the RDF (or structure factor) using RMC and carrying out partial

relaxations using ab initio interactions, as we explain in detail in References [94, 116]. By

carrying out the iteration in “bite-sized” bits rather than iterated full relaxations as in the

original ECMR, we find that the method is robust, working for silver-doped chalcogenides

with plane-wave DFT and for WWW a-Si with SIESTA and also for forms of amorphous

carbon [119].
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We should clarify that in our previous work on a-Si [116] we used the WWW RDF as

input “experimental data”, whereas in this work we have used high energy X-ray

diffraction data from Laaziri et al. [32]. WWW models are a fixture of the modeling

community (a continuous random network of ideal four-fold coordination and involving

up to 100,000 atoms [31, 48], and represent an important benchmark that a new method

must handle. It is reasonably interpreted as “ideal” a-Si, with minimum strain. While the

RDF of WWW and Lazirri [32] are indeed fairly similar, there are key differences as

noted by Roorda and coworkers [34]. Given the high quality and precision of the

experiments, we have undertaken a FEAR inversion of their data in this work.

One key assumption that we forthrightly emphasize is that the dataset of Laaziri and

coworkers may be represented by a small supercell model of silicon. This is obviously an

approximation, as the material must surely include some voids and damaged regions from

the ion bombardment procedure from which the material was made, and of course the

X-ray diffraction includes these. While we think this is a reasonable approximation, it is

clear that a very large scale simulation with thousands of atoms allowing for internal

surfaces and other inhomogeneities would be desirable, possibly opening up the

possibility of paracrystallites [120] and other longer length scale irregularities. It is not

obvious whether the RDF by itself would provide information enough to open up voids.

Such computations might be undertaken with transferable potentials devised from

“machine earning”[112].

5.2 Methodology

More details about FEAR can be found in Chapter 3 and 4 and elsewhere [94, 116].

To summarize, in FEAR, a random starting configuration is subjected to partial RMC

refinement followed by partial conjugate gradient (CG) relaxation according to a

chemically realistic (say DFT interaction). The two steps are repeated until both the
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Figure 5.1: Comparison of the simulated X-ray static structure factor (black) from FEAR
with the experimental diffraction data (red circle) from Ref. [32]. A 216-atom model is
used to produced the simulated structure factor.

Figure 5.2: The reduced pair-correlation function of a-Si obtained from a 216-atom model
using FEAR (black) and WWW (blue) methods. The experimental data (red) shown above
are the Fourier transform of the high-energy X-ray diffraction data from Ref. [32].

structure and energy converge [94, 116]. In this work, we have carried out RMC for 500

accepted moves followed by 5 CG relaxations steps (we have tried other recipes such as

1000 and 10 moves, respectively, with similar results). This process is then repeated until

convergence (namely finding coordinates both matching diffraction data and being at a
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minimum of a DFT total energy). The RMC algorithm (in our case RMCProfile [27]) is

used to invert the experimental data. We have so far only used diffraction data, though

EXAFS and NMR are also natural datasets to attempt, and in principle multiple

experimental datasets might be jointly fit while the CG relaxations enforce chemistry in

the material. We employ a local-orbital basis DFT code (Siesta) [16] using the local

density approximation (LDA). The cubic box edge length is 16.281 Å which corresponds

with the experimental density of 2.33 gm/cm3 (which, in the spirit of full reporting should

be understood to be another assumption).
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Figure 5.3: The number of n-fold ring per atom (RC) for the FEAR model (blue) compared
to the WWW model of same size.

5.3 Results and Discussion

In this section, we present results for a-Si obtained from FEAR. Since the FEAR

method essentially consists of incorporating the pair-correlation data via reverse monte

carlo simulations (RMC), followed by ab initio total-energy relaxations using the

conjugate-gradient (CG) method, we also include the results from the CG-only model

(e.g. from the initial random state) to evaluate the performance of FEAR with the CG

method as a function of simulation time or steps. In particular, we address the structure
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factor S (Q), bond-angle distribution P(θ), electronic density of states (EDOS), the

vibrational density of states (VDOS) and the vibrational specific heat of the FEAR models

of a-Si. To examine the convergence of the method with respect to the total energy and the

evolution of structure, we take a close look at the variation of the average coordination

number and optical gap as a function of FEAR steps.

5.3.1 Structural Analysis

Figure 5.1 shows the structure factor of a-Si for the model configurations obtained

from the FEAR along with the (annealed sample) structure-factor data of a-Si reported by

Lazirri et al. [32]. Fitting was carried out in Q space. It is apparent that, while the

CG-only model shows a consistent deviation from the experimental data, particularly at

high Q values, the structure factor from the FEAR model compares very well with the

experimental data. The only exceptions are a minor deviation of S (Q) near Q=2.5 Å and 7

Å. A comparison of the S (Q) data from the FEAR and CG-only models suggests that the

former is superior to the latter as far as the two-body correlations of the models are

concerned even though both the systems have been treated with identical ab initio

interactions. This observation is also reflected on Fig. 5.2, where the reduced radial

distribution function, G(r) = 4πrn0(g(r) − 1), obtained from FEAR, WWW, and X-ray

diffraction experiments are plotted.

Since the pair-correlation data or structure factors of a model cannot determine a

three-dimensional amorphous structure uniquely, it is necessary to examine the models

further by going beyond two-body correlation functions. To this end, we have calculated

the bond-angle distribution P(θ), and compared it with the results obtained from WWW,

CG-only and the width of the transverse optical (TO) peak of the Raman spectrum of a-Si.

Following Beeman et al. [35], we have assumed that the half-width at half-maximum

(HWHM) of the Raman TO peak of a-Si is related to the average width of the bond-angle
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Table 5.1: Total Energy and Key Structural Properties of a-Si Models. The Energy per
Atom is Expressed With Reference to the Energy of the WWW Model.

RMC Only

CG

FEAR WWW

4-fold Si

(%)

27 75 96 100

3-fold Si

(%)

15 21 2 0

5-fold Si

(%)

25 3 2 0

Energy

(eV/atom)

3.84 0.09 0.06 0.00

Average

bond an-

gle (RMS

deviation)

101.57◦

(31.12◦)

107.31◦

(20.42◦)

108.52◦

(15.59◦)

108.97◦

(11.93◦)

Average

coordi-

nation

number

4.27 3.83 4.00 4.00

distribution. Since a typical value of the width of the Raman TO peak in a-Si ranges from

33 to 50 cm−1, this approximately translates into a value of 9-13◦for the average

bond-angle deviation. This value is not far from with the RMS angular deviation

(HWHM) of 15.6◦from the FEAR model. It is noteworthy that the FEAR model is
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statistically free of very small (≤ 60◦) or large (≥ 160◦) angles, and that the bond-angle

distribution closely matches with the same from the WWW model. In contrast, a

considerable number of small and large angles, below 60◦ and above 160◦, respectively,

have appeared in the bond-angle distribution of the CG-only model and in the RMC-only

model[116]. Thus, the FEAR method not only produces correct two-body correlations

between atoms, but also a better reduced three-body correlations by judicious use of the

input experimental data and the local chemical information of a-Si provided from the ab

initio total-energy functional from SIESTA within the CG loop of the refinement process.

We have compared the ring statistics for the FEAR model to that of the WWW model in

Fig. 5.3. Three-member rings are absent in both FEAR and WWW model which is

consistent with the absence of unphysical Si triangles in good quality models. The only

notable difference between the WWW and FEAR model is the existence of fewer

6-member rings in the FEAR model.

In Table 6.1, we have listed the characteristic structural properties of the models

along with the total energy per atom obtained from the density-functional code Siesta.

The FEAR model has 96% four-fold coordination, with equal (2% fractions) of 3-fold and

5-fold Si. This is equal to the melt-quench model using environment-dependent

interaction potential (96%) [90] and better than models obtained from other

techniques [47, 62, 91]. The average coordination number of our model is 4 which

deviates from that of the experimental annealed sample (3.88) [32]. For comparison we

have presented average coordination for various models in Table 6.1. It appears that the

models having fewer coordination defects have higher average coordination then the

experimentally reported value.
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Figure 5.4: Total energy per atom and χ2 versus FEAR steps for a 216-atom a-Si model.
The green and black broken lines represent the energy per atom for the CG-only and WWW
model, respectively.
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Figure 5.5: Variation of the average coordination number for the final 500 steps of FEAR
using two different input RDF data. The upper panel is for high-energy X-ray diffraction
data from Laaziri et al. [32] and the lower panel is for the WWW radial distribution function
(RDF) as an input data [116]. The broken horizontal line, in the upper panel, represents the
average coordination number, 3.88, reported by Laaziri et. al. [32]

5.3.2 Fluctuations in FEAR

The variation of the total energy (E) and χ2 as FEAR proceeds is indicated in Fig.5.4.

Figure 5.4 suggests that the initial structure formation takes place very rapidly in the first
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Figure 5.6: Variation of the highest occupied molecular orbital (HOMO)level and the
lowest unoccupied molecular orbital (LUMO) level for the final 500 steps of FEAR. Note
the annihilation of an electronic (gap state) defect near 600 steps.

few hundred steps with the simultaneous decrease of E and χ2. We then reach a period of

“saturation” in which there are tiny fluctuations in the energy and χ2. We have reported a

particular “snapshot” of a conformation, and discuss it above. However, the many

conformations in the saturated part of the computation are equally meaningful.

Fortunately they do not fluctuate much, reflecting the fact that the combination of

experimental data and chemistry converge to a well-defined collection of configurations.

We track the fluctuations in mean coordination in Fig. 5.5, excised from the last 500 steps

of FEAR. For convenience we also show the results for a simulation with the WWW RDF,

as we report in Ref. [116]. Using the RDF of WWW as input data forces the network to

have fewer defects compared to the real experimental data. FEAR for the experimental

sample fluctuates around 3.96, whereas the WWW fluctuates around 3.99.

In Fig. 5.6, we also track the fluctuations in the optical gap for the last 500 steps of

FEAR, as crudely estimated as the energy splitting between the LUMO and HOMO

levels. It is of considerable interest that for the last 500 FEAR steps, there is a substantial

variation in the electronic density of states near the Fermi level even though the FEAR
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process had already reached a “steady state” value for χ2 and the total energy (compare

Fig. 5.4). Observe too that while the HOMO level is fairly stationary, the LUMO

meanders with relative impunity no doubt because it does not contribute to the total

energy, being above the Fermi level. Thus, we see that FEAR effectively generates an

ensemble of candidate structural models for a-Si which are essentially indistinguishable

according to χ2 and energy. Nevertheless, this affords another opportunity to use a priori

information – we should select one of these models with the gap most like the

experimental sample. To our knowledge, the electronic density of states is not well

characterized for the sample, but if it was it would be natural to use it as an additional

criterion to select the most experimentally realistic FEAR model. In effect if we had

electronic information it would break the “structural degeneracy”, emphasizing the

information-based nature of our approach.

It is evident from Fig. 5.4 that the FEAR model has a lower energy than its CG-only

counterpart. Table 6.1 lists the total-energy per atom w.r.t the energy of the WWW model,

which is set at 0.0 eV for convenience. The energy for the FEAR model is found to be 0.06

eV/atom, which is approximately 50% lower than the CG-only model with a total-energy

of 0.09 eV/atom. This is a reasonable number compared to other published work [121].

5.3.3 Electronic Structure

The electronic density of states (EDOS) of a-Si obtained from the FEAR, CG-only

and RMC models are shown in Fig.5.7. For the 216-atom FEAR model, the quality of

EDOS is significantly improved compared to that of CG relaxed model and the EDOS of

the RMC model which is featureless. The significant number of defects states clutters the

gap in FEAR, which is a prediction in this case, since the EDOS has not to our knowledge

been measured for the sample we are studying. Electronic localization is studied using the
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Figure 5.7: Electronic density of states (EDOS) of a-Si obtained from FEAR (red), CG-
only (green) and pure RMC (blue) models. The Fermi levels are located at 0 eV.
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Figure 5.8: Inverse participation ratio (IPR) of 216-atom a-Si model for FEAR (black) and
RMC (red) models near the gap. Fermi levels are shown by arrows of respective colors.

inverse participation ratio (IPR) [123] which is shown in Fig.5.8. Banding among the

states in the gap leads to an expected delocalization[122].

5.3.4 Vibrational Properties

The vibrational density of states (VDOS) is computed by estimating the force

constant matrix, from finite-difference calculations resulting from perturbing the atoms of
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a well relaxed 216-atom FEAR model by 0.02 Å in six directions (± x-, ± y- and ± z-

axis) and calculating the forces in all the remaining atoms for each perturbed

configurations. The eigenvalues and eigenmodes are obtained by diagonalizing the

dynamical matrix. The details can be found in a recent work of Bhattarai and Drabold

[124]. The VDOS for 216-atom model FEAR model is shown in Fig.5.9. The calculated

vdos is in rather good agreement with the experimental vdos obtained from inelastic

neutron scattering [127]. The exception, probably a shortcoming of our Hamiltonian is a

shift in the high frequency optical tail by ∼35 cm−1. This observation is consistent with

the other empirical and ab initio molecular-dynamics simulations [125, 126].

Figure 5.9: Vibrational density of states of a-Si, g(ω), from a 216-atom FEAR model
(blue). The experimental vdos (red) obtained from Kamitakahara et al. [127]

The specific heat in the harmonic approximation is easily obtained from the density

of states, g(ω). We note that wavelengths larger than our supercell size are not included in

the obtained VDOS. We compute the specific heat Cv(T ) from the relation[128],[129],

C(T ) = 3R

∫ Emax

0

(

E

kBT

)2
eE/kBT

(

eEkBT − 1
)2 g(E)dE (5.1)

Here, the VDOS (g(E)) is normalized to unity.
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Figure 5.10: The specific heat capacity (CV /T3) for 216-atom a-Si FEAR model (black)
compared to the experiment [130]. The inset shows the ”Dulong-Petit” limit at higher
temperature.

In Fig.5.10, we see that CV(T ) for FEAR model is in a good agreement with

experiment for T > 40K [130]. The inset in Fig. 5.10 indicates the “3R” (Dulong-Petit)

limit at high temperature. This is an additional indication that the FEAR model is

reproducing features of a-Si beside those “built in” (from the experimental data), and is

also an indication of consistency between these very different physical observables.

5.4 Conclusion

In this chapter, we have studied a-Si using a new approach FEAR. For the first time

the experimental structure factor of a-Si [32] has been employed in FEAR along with ab

initio interactions to generate a homogeneous model consistent with the data and at a

plausible energy minimum according to reliable interatomic interactions. FEAR retains

the simplicity and logic of RMC and successfully augments it with total-energy functional

and forces to generate structures that are energetically stable, even exhibiting a

satisfactory VDOS. The method can also be viewed as a new way to undertake first

principles modeling of materials, when structural experiments are available.

By using an entirely information-based approach, educated by chemistry through the

CG sub loops, we find highly plausible models derived from experimental data with
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interesting similarities and differences with continuous random network models.

Following this logic, the best that we can hope to achieve is a structural model jointly

agreeing with all experiments, but critically, augmented with chemical information in an

unbiased mode as we offer here.
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6 Density FunctionalModel of Amorphous Zinc Oxide

(a-ZnO) and Aluminium (Al), Gallium (Ga) and Indium (In)

Doped a-ZnO

The work shown in this chapter has been accepted in the Journal of Non-Crystalline

Solids and is published in an arxiv as: Pandey, A., Scherich, H., and Drabold, D. A.

(2016). Ab initio model of amorphous zinc oxide (a-ZnO) and a-X0.375Z0.625O (X= Al,

Ga and In). arXiv preprint arXiv:1610.00156..

6.1 Introduction

Crystalline ZnO has important application as a piezoelectric material and because of

its property of being transparent in visible light [131]. It has a wide direct band gap (∼

3.37 eV at 300 K) which makes it a promising candidate for optoelectronic devices

[131, 132]. Therefore, there has been a wealth of experimental work in crystalline ZnO.

On the other hand, the study of amorphous ZnO is still in its nascent stage compared to its

crystalline counterpart.

The amorphous transparent oxide materials have immense use in device

technology [133]. Ionic amorphous oxide semiconductors like a-ZnO have high electron

mobility (∼ 5-40 cm2/V s) compared to the covalent amorphous semiconductor like a-Si

(∼ 1 cm2/V s) which make them a better candidate for device applications such as thin film

transistors (TFTs) [134]. Experimentally, various techniques such as pulse laser deposition

[135], molecular beam epitaxy [136], radio-frequency magnetron sputtering [137] etc.

have been used to make a-ZnO and the structure obtained is highly dependent on the

substrate material and temperature. There are advantages of a-ZnO over its crystalline

counterpart. First, it is easier and more cost efficient to produce a large amorphous sheet

compared to a large single crystal. Also, the a-ZnO has been prepared at low temperature
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(∼ 300 K) compared to crystalline ZnO (∼ 800 K - 1100 K) [131]. On doping trivalent

elements such as Al, Ga and In on a-ZnO mobility can be increased significantly [138].

In this chapter, we report the structure and electronic properties of amorphous phases

of ZnO and a-ZnO doped with trivalent dopant atoms such as Indium (In), Gallium (Ga)

and Aluminium (Al) using a plane wave basis density functional theory (DFT) code and

comparisons with the experiments and other molecular dynamics (MD) simulations are

made when possible. For the first time, accurate methods are used to compute the

topological and chemical order of the materials and determine the electronic properties.

Figure 6.1: The total radial distribution function (RDF) for four a-ZnO models. Model
1 and Model 2 corresponds to the models obtained by two different quenching rates as
described in the method section. Blue is for Model 1 and green is for Model 2.

6.2 Computational Methods

Density functional theory (DFT) calculations are performed using the plane-wave

basis code VASP [100–102], using projected augmented plane waves (PAW) [19] with the

Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional [21] and a plane-wave
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cutoff off energy of 300 eV. All calculations were carried out at Γ point. For a-ZnO, the

system consists of 128 atoms in a cubic box of side 12.34 Å corresponding to the

experimental density of 4.6 g/cm3 [132]. A random initial configuration is equilibrated at

5000 K, is then cooled to 3000 K at 100 K/ps followed by an equilibration of 5 ps. The

structure at 3000 K is cooled in steps to temperatures 2300 K, 1600 K and 300 K at the

rate of 50 K/ps followed by 5 ps equilibration at each temperature. Finally, the structure at

300 K is quenched to 0 K at the rate of 25 K/ps which is again followed by equilibration of

5 ps. The structure is then relaxed using the conjugate gradient (CG) method. This model

is termed Model 1. To contrast different quench rates, the configuration at 3000 K was

also cooled to 300 K at a rate of 180 K/ps followed by the equilibration of 5 ps. Finally,

the equilibrated structure is quenched to 0 K at a rate of 50 K/ps and then equilibrated for

another 5 ps. The model is relaxed using CG method. We call this Model 2.

For a-X0.375Z0.625O (X= Al, Ga and In), a random starting configuration of 128 atoms

was melted at 5000 K followed by cooling to 3000 K at 100 K/ps and then equilibrated for

5 ps. A subsequent schedule of cooling is carried out at temperatures 2300 K, 1600 K and

300 K at a rate of 25 K/ps followed by the equilibration of 5 ps in each temperature.

Finally, the structures are cooled to 0 K at the rate of 40 K/ps followed by an equilibration

of 5 ps. The final structures are volume relaxed with the conjugate gradient method to

tune the density. The cubical box lengths for Al-, Ga- and In-doped models after volume

relaxations are 12.26 Å, 12.28 Å and 12.31 Å respectively, close to the assumed 12.34 Å.

6.3 Results and Discussion

In this section, we present the results for a-ZnO and Al-, Ga- and In-doped a-ZnO

obtained from the ab initio molecular dynamics simulations using the ’melt-quench’

technique. In particular, we investigate the structure and electronic properties by



102

0

1

2

3

g 
(r

)

Model 1
Model 2

0

2

4

6

g 
(r

)

1 2 3 4 5 6
r (Å)

0

1

2

3

g 
(r

)

Zn-Zn

Zn-O

O-O

Figure 6.2: Partial pair correlation functions for 128-atom models of a-ZnO. Blue is for
Model 1 and red is for Model 2 as described in the method section.

calculating the radial distribution functions (RDFs) and electronic density of states

(EDOS).

6.3.1 Amorphous Zinc Oxide (a-ZnO)

Structural properties are investigated by the radial distribution functions (RDFs) and

partial radial distribution functions. The total RDFs for Model 1 and Model 2 are shown

in Fig.6.1. The partial pair correlation functions for Zn-Zn, Zn-O and O-O are shown in

Fig.6.2. The partials for both models show similar features. For both Zn-Zn and O-O

partials, the first peak is around 3.30 Å while for Zn-O the first peak position is at 2.00 Å

as shown in Fig.6.2.

The network is chemically ordered. We calculated the coordination number for Zn

and O. Most of the atoms are four-fold coordinated with above 75% four-fold coordinated

Zn and O in both the models. Our models exhibit a higher fraction of four-fold Zn

compared to the empirical molecular dynamics simulation model (∼ 60%) [132]. The

average coordination number for Zn (nZn) and O (nO) and the 3-, 4- and 5-fold coordinated
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Table 6.1: Coordination Number for Zn and O Expressed in Percentage, Average
Coordination Number and the DFT-GGA Energy for a-ZnO Model. The Coordination
Numbers for Zn are Compared With the Other MD Model [132]. As Expected There Are a
Few More Coordination Defects in the More Rapidly Quenched Model 2.

Model 1 Model 2 MD

(Ref.([132])

Zn-Zn (%) 0 0 -

O-O (%) 0 0 -

Zn3(%) 15.63 23.44 32.00

Zn4(%) 81.25 75.00 60.00

Zn5(%) 3.12 1.56 7.00

O3(%) 15.63 25.00 -

O4(%) 81.25 71.88 -

O5(%) 3.12 3.12 -

nZn 3.88 3.78 -

nO 3.88 3.78 -

Energy

(eV/atom)

-4.36 -4.34 -

Zn and O, denoted by the respective subscript (Zn3, O3,...) is shown in Table 6.1. The

DFT energy per atom for Model 1 is -4.36 eV/atom and for Model 2 is -4.34 eV/atom

(Table 6.1). The energies of the two models are comparable.

The electronic structure is analysed by calculating the electronic density of states

(EDOS) and inverse participation ratio (IPR) of the individual states. The EDOS is just

taken to be the density of Kohn-Sham eigenvalues and the IPR is computed from the

atom-projected Kohn-Sham eigenvectors. The EDOS is shown in Fig.6.3 (black) and the



104

-20 -15 -10 -5 0 5 10
Energy (eV)

0

100

200

300

400

500

E
D

O
S

 (
st

at
es

/e
V

) EDOS

0

0.2

0.4

0.6

0.8

1

IP
R

IPR

Figure 6.3: (black) Electronic density of states of the 128-atom model a-ZnO (Model
I) obtained using GGA-PBE density functional theory calculation. The green vertical
lines represent the inverse participation ratio (IPR) used to measure the electronic state
localization. Longer IPR implies strong localization. The Fermi level is at 0.28 eV. The
PBE gap is 1.36 eV.

green vertical lines represents the electronic state localization measured by IPR [140? ].

The value of IPR is 1 for a highly localized state and 1/N for an extended state, where N is

the number of atoms. IPR in Fig.6.3 shows that the localization of valence tail states is

much larger than the conduction tail states. Thus, the mobility of n-type of carrier is

expected to be much higher than the p-type. This feature supports the asymmetry in the

localization of valence and conduction band tail states in amorphous metal oxide by

Robertson [134]. Similar asymmetrical behavior in amorphous gallium nitride was shown

by Cai and Drabold [141].

The band gap (gap between the highest occupied electronic state and the lowest

unoccupied electronic state), is 1.36 eV which is slightly less than the experimental band

gap of 1.60 eV between the valence band edge and Zn4s4p states [144]. The band gap is

always underestimated in a DFT-GGA calculation which could be improved by using

hybrid functional [142], GW approximation [143], etc.

6.3.2 Al-, Ga- and In-doped Amorphous ZnO: a-X0.375Z0.625O (X= Al, Ga and In)

To investigate the effect of trivalent dopants on local coordination and electronic

structure of a-ZnO, 37.5% of Zn is replaced by group III elements X (X= Al, Ga and In)
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Figure 6.5: Electronic density of states for a-X0.375Z0.625O (X= Al, Ga and In) models
compared to that of a-ZnO. The Fermi levels are shown by vertical broken lines.

to model a-X0.375Z0.625O. The atomic percentage of dopants in all the models is 18.75%.

The effect of dopants on structure and electronic properties are investigated by RDFs,

partial pair correlation functions and electronic density of states.

Table 6.2: First Peak Position for Zn-Zn, Zn-O and O-O Partial Pair Correlation Functions
of a-ZnO (Model 1) and a-X0.375Z0.625O (X= Al, Ga and In) Models.

Peak position (Å)

First

peak

ZnO (Model1) Al0.375Z0.625O Ga0.375Z0.625O In0.375Z0.625O

Zn-Zn 3.28 2.60 2.87 3.26

Zn-O 2.00 2.00 2.00 2.00

O-O 3.36 2.93 3.10 3.33

The total RDFs for In-doped a-ZnO is shown in Fig.6.4a. The Zn-O correlation is not

affected by the presence of dopants while there is a slight decrease in the correlation peaks

for Zn-Zn and O-O which is illustrated in Table 6.2. The peak positions are obtained from
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the partial pair correlation functions shown in Fig.6.4b for In-doped a-ZnO and similar

plots for Al-, and Ga-doped a-ZnO which is not shown here. The 4-fold Zn and O are

reduced significantly in all three doped models. The Al and In bond only with O. In the

Al-doped model, 95.83% and 4.17% Al forms 4-fold and 3-fold bond with O. In the

In-doped model, 20.83%, 25.00%, 8.33%, 37.5% and 8.34% In form 6-, 5-, 4-, 3- and

2-fold bond with O atom. In the Ga-doped model, 58.33% and 33.33% Ga form 4-fold

and 3-fold bond with O while 8.34% Ga form 3-fold with O and 1-fold with Zn. This

suggest that the group III elements are more likely to form a bond with O while

introduced to a a-ZnO.

The Zn-Zn and In-In distances in our model are around 3.26 Å and 3.50 Å which is

close to 3.20-3.40 Å for Zn-Zn and 3.30-3.6 Å for In-In of classical MD model [145].

This compares well with the average metal-metal peak in x-ray diffraction measurements

of IZO thin layers [146]. Also, the Zn-O and In-O distances in our model are around 2.00

Å and 2.20 Å compared to the 1.95 Å— and 2.20 Å respectively of the classical MD

model [145]. These peak positions are consistent with the metal-oxygen peaks at

2.12-2-14 Å in the experiment [146].

The electronic density of states (EDOS) for a-X0.375Z0.625O (X= Al, Ga and In)

models is shown in Fig.6.5. Dopants lead to the creation of defect states. The localized

states near the valence band edge induced by doping can be associated to the increase in

undercoordinated O atoms in the network introduced by doping. The conduction band

edge is unaltered by the addition of dopant elements. The extended nature of the

conduction band is preserved by the addition of dopants which is in accordance with the

conclusion by Hosono [138]. On the other hand, in crystalline ZnO doped by group III

elements Al, Ga and In, the dopants form extra localized level in the conduction band,

which modifies the conduction band and reduces the optical band gap [139].
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6.4 Conclusion

In conclusion, we have created models of amorphous zinc oxide (a-ZnO) using a

melt-quench method and studied their structural and electronic properties in detail. The

electronic band gap of our model is 1.36 eV which is in reasonable agreement with the

experimental band gap 1.60 eV. We have calculated the DFT energies for the two models

of a-ZnO obtained by different quenching rate for comparison. The effect of trivalent

dopants in the local structure and the electronic structure of a-ZnO is investigated in detail

by preparing a-X0.375Z0.625O (X= Al, Ga and In) models by melt-quench method. The

dopants reduce the number of 4-fold coordinated Zn and O in the network and most of

them prefer to bond with oxygen. The electronic gap is reduced by the presence of defect

states by forming undercoordinated O states in the valence band edge while the

conduction band edge is still extended.
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7 Conclusion and FutureWork

We have introduced a new and practical method, Force-Enhanced Atomic

Refinement (FEAR), that jointly exploits the features inherent to the ab initio total-energy

calculations and experimental information. The method is simple, robust, faster and

independent of the systems. As a preliminary trial, using empirical interactions, FEAR

successfully generated a-Si and a-SiO2 models that are comparable to the ones obtained

from other successful approaches. We have implemented the method with ab initio

interactions to model two highly distinct systems: a-Si and two different compositions of

Ag-doped GeSe3. The former is an archetypal non-glass forming amorphous material

while the latter ones are the chalcogenide glasses that are used for computer memory

materials. The a-Si model is structurally comparable to the WWW models, both in terms

of coordination number and bond angle. The GeSe3Ag models are better than the ones

obtained from the traditional methods, such as melt-quench and RMC. An additional

application of FEAR, the a-Si model obtained using experimental X-ray diffraction data is

on a par with the existing models and represent a structure for a real sample. It was also

discovered that the method requires a fewer number of force calls to the expensive ab

initio interactions than the conventional melt-quench approach.

An ab initio molecular dynamics simulations (AIMD) was used to study the doping

in a-Si:H. It was found that the non-tetrahedral impurities (B and P) create strain in the

local bonding, which attracts H atoms and induce H passivation. Also, the fluctuations in

HOMO-LUMO levels, induced by H hopping and network motion, affect the conductivity

of this material. Likewise, a-ZnO and a-X0.375Z0.625O (X= Al, Ga, and In) models were

prepared by the melt-quench method using AIMD and their structures and electronic

structures were investigated in detail. The electronic band gap of the a-ZnO model is 1.36

eV which is in a reasonable agreement with the experimental band gap 1.60 eV. The

trivalent dopants (Al, Ga, and In) prefer to bond with O and reduce the number of 4-fold
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coordinated Zn and O in the network. The electronic gap is reduced by the valence tail

states introduced by undercoordinated O atoms.

7.1 Future Work

FEAR would be an alternative method to model those amorphous materials that are

challenging using the conventional approaches of MD simulations and data inversion (e.g.

amorphous phosphorous, selenium rich chalcogenide (GeSe9), etc.). In the current work,

only a single data set, either the structure factor or the pair correlation function, is used in

FEAR. The method can be developed into a scheme to include multiple datasets or other

information for materials optimization. The simplest thing would be to use the partial pair

correlation functions in the modeling of multi-component complex materials.

Incorporating NMR results and EXAFS data would be an another thing to try in FEAR.

Due to the phase separation in silver-doped germanium selenide, larger theoretical models

that could capture the phase separations are essential in the study of such materials. FEAR

with an empirical potential would be an appropriate method to try modeling larger

samples (containing thousands of atoms) of silver-doped chalcogenide materials.
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Appendix: A Brief Description on How to Use FEAR

In this appendix, a scheme to use FEAR employing the RMCProfile code and a

density functional theory code (VASP or SIESTA) is presented. As described in the

algorithm in Chapter 4, FEAR simulation with ab initio interactions is carried out in an

iterative loop of RMC and ab initio calculations. Therefore, the first thing that a user

should know is to apply these programs separately.

RMCProfile is freely available software that can be downloaded on :

www.rmcprofile.org. It is highly recommended to go through the manual and work on the

tutorials. One should be careful in choosing a data type to fit (see DATA TYPE tag in .dat

main file of RMCProfile). The various functions (structure data forms) are provided in the

section ”Using Experimental DATA” of the manual and their implementations are

summarized in the section ”Implementation with RMCProfile”. As an example: for fitting

the radial distribution function g(r), the correct data type is G’(r) normalized and for the

neutrons structure factor S(Q) the data type is S (Q) normalized, etc. Recently, fitting

EXAFS data has also been introduced in RMCProfile (see manual).

RMCProfile requires three files: filename.rmc6f, filename.dat and data.dat. The

.rmc6f is an input coordinate file, filename.dat is a main file with all the important tags and

input parameters and data.dat is an input data file. Likewise, SIESTA requires two files:

filename.fdf (main file including the coordinates) and pp.psf (pseudopotential file).

Optionally, coordinates can be put in a separate file coordinates.dat which is

recommended. VASP requires four files, namely INCAR, POSCAR, POTCAR and

KPOINTS.

In addition, three driver programs are also essential:



129

• mrmc.f90 : This file reads outputs of RMCProfile (filename.rmc6f and out.dat), mainly

the coordinates and chi-square values, etc. The output of this program is the

coordinate file for SIESTA/VASP (coordinates.dat/POSCAR).

• msiesta.f90/mvasp.f90 : This file reads outputs of SIESTA/VASP, mainly the

coordinates (config out.dat/CONTCAR) and energies. It gives coordinates file for

RMCProfile as an output (filename.rmc6f)

• main.sh : This shell script is written according to the FEAR algorithm. It contains

iterative calls for RMCProfile, reading RMC output (mrmc), SIESTA/VASP and

reading the SIESTA/VASP outputs (msiesta/mvasp).

For future application of the method, it might be worthy to use ”SIESTA as a

subroutine” (see SIESTA as a subroutine in the manual). This feature enables to call

SIESTA as a subroutine in any other program (code) and provides energy and forces

which can be utilized for optimizations. This has been applied in FEAR using a different

code for RMC.

Tutorials for using DFT codes can be found on the web for both VASP and SIESTA.
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