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Abstract

PRASAI, KIRAN, Ph.D., December 2017, Condensed Matter and Surface Science

Gap Engineering and Simulation of Advanced Materials (123 pp.)

Director of Dissertation: David A. Drabold

Generating computer models of materials that faithfully represent all of our current

state of knowledge about those materials has remained an unsolved problem. In particular,

models of amorphous solids following from a molecular dynamics (MD) simulation

commonly show structural defects and related mid-gap electronic states that are not

present in the real materials. In this dissertation, we present a novel way of using a priori

knowledge of the electronic band gap of amorphous systems to guide MD simulations.

This involves computing Hellmann-Feynman forces associated with certain electronic

states and judiciously coupling them to the total force in MD simulations. We show that

such a method can provide a means to purge structural defects. By producing a series of

models of amorphous carbon with varying sp2/sp3 ratio, we’ll show that this method offers

useful new flexibility in modeling. And, we demonstrate, for the first time, how MD

simulations can be biased to systematically model an insulator-metal transition in glassy

systems. The nature of electron transport in GeSe3Ag glass is explored using advanced

methods and important inferences are drawn about the role of Ag atoms in electronic

conductivity. In particular, it is shown that a certain Se-Ag phase in this glass plays a

dominant role in electron transport. We also investigate the response of a-GeSe3Ag to

radiation damage using empirical interatomic interactions and show that the glass exhibits

rapid recovery after a knock on event. Finally, we consider the the coupling between

lattice vibrations and electronic states in disordered systems and show that disorder

induced localization of states dictates the thermal modulation of electronic energy.
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17

1 Introduction

1.1 Background

Amorphous materials and glasses are technologically important materials, and

understanding their properties is an ongoing endeavor in condensed matter physics.

Amorphous materials do not have long range order. This means that the structure of these

materials cannot be expressed as a repetition of a finite sized building block analogous to

the unit cells of crystalline materials. Crystalline materials are periodic, and experimental

probes, like X-ray scattering experiments, point to a unique structural solution. The lack

of such periodicity in amorphous systems renders the conventional tools of probing

crystalline materials unusable and attracts a whole host of experimental as well as

theoretical approaches that are able to deal with the statistical nature of the underlying

system.

The structure of amorphous systems is far from random. These materials exhibit a

strong local order, called the short range order (SRO) on the length-scale of up to about 5

Å. And, depending on material systems and method of preparation, there exists an

intermediate range order (IRO) on the length scale of 5 to 20 Å [1]. The ordering can be

better understood by reflecting on the process of preparation of amorphous solids by

dynamical arrest where the smaller units forming the solids lose their dynamical degrees

of freedom (get ‘arrested’) before they are able to ‘click together’ into a global network.

Hence, the extent of order present in amorphous systems depends strongly on the details

of their preparation. This is also manifested in energy landscape terms, where the crystal

structure is represented as the global minimum in the landscape and the statistical nature

of the amorphous configuration is the result of a multitude of thermally accessible local

minima and the transition between those minima.
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Emergent phenomena from such structure constitute an immensely interesting

problem to a material scientist. On one hand, the structure is aesthetically beautiful: one

where there is ‘no dull repetition’ (Erwin Schrödinger in “What is Life?”, [2]) of a

building block, but instead comes with a more subtle and elaborate pattern. The structure

is dynamic and is constantly in transition among energy minima [3]. The disorder induces

localization in the electron states and this gives rise to large thermal fluctuation of these

states and a special electron-phonon coupling [4]. Localized states critically dictate the

transport properties and various types metal-insulator transitions ensue [5]. That the

disordered systems exhibit electronic band gap and display curious phenomena like

Urbach tails have produced many theories in condensed matter physics [6, 7, 8].

On the other hand, modeling disorder and understanding its consequences is a

daunting task. Experiments that probe the structure of amorphous materials usually

capture the average distributions of atoms with respect to each other. It has been

challenging to produce atomistic models of materials that match these average

distributions and predict their properties correctly. A widely accepted theoretical model

for certain amorphous materials is the continuous random network (CRN) by Zachariaisen

[9]. In this model, all atoms are perfectly coordinated following Mott’s ‘8-N rule’ [10] but

possess no long range order. In 1985, Wooten, Winer and Weaire [11] developed an

algorithm based on Monte Carlo bond switching that was able to produce CRN for

amorphous column IV materials. Later, the method was extended to binary glasses like

SiO2 [12]. This method is ad hoc in the sense that it assumes the complete a priori

knowledge of bonding environment of all the atoms and is thus limited to few systems.

Despite the limitation, WWW model of amorphous silicon is still considered the best

model so far.

Molecular dynamics simulations are widely used to produce atomic models of liquids

and amorphous materials [13]. Over the years, in parallel with the growth of
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computational power, MD simulations have improved in accuracy and scope and can now

describe complicated systems with impressive accuracy. In order to explore the stable low

energy disordered minima, MD simulations mimic the experimental procedure of rapid

quenching from liquid state. This consists of equilibrating the system at high enough

temperature for long enough time so that the system “forgets” the initial configuration and

then rapidly cooling the system and finally performing energy minimization to push the

configuration to a local minima.

One major drawback of MD simulations aimed at generating models of amorphous

materials is that they often end up producing models with too many defects, an

unphysically wide distribution of bond lengths and bond angles, and consequently a

strained network. Such structural defects may produce localized states in the band gap.

This shortcoming of MD simulation arises mainly from two sources: i) inaccurate

description of interactions within the system of electrons and ions ii) drastically short time

scale of MD simulations compared to laboratory quench from the melt procedures which

the MD simulations are designed to mimic.

The principal focus of this thesis is a newly developed method, called “Gap

Sculpting”, that attempts to address some of the shortcomings of MD simulation and

allow the inclusion of a priori electronic information. At its core, the method proceeds by

explicitly demanding that the final models of MD simulations have a realistic band gap, in

addition to being at an energy minimum. This fits with the lore of “inverting experimental

data” in the sense that a priori knowledge of band gap is used to guide the simulation

towards the correct band gap. It is possible do so because of the multitude of energy

minima available for amorphous systems and the process can be understood as exploring

the energy minima with preferred band gap. This is the first demonstration of direct

coupling of electronic structure information in MD. The method is developed in chapter 2.

Through examples, it is shown that the new electronic constraints not only produce
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realistic band gaps but also produce structures with fewer defects. It is a long-standing

observation that localized states in the band gap are associated with defects in the

network. There have been numerous works showing that better structures result in defect

free band gap. This work is the first demonstration that the inverse is also true.

Once the method of guiding MD simulations to desired band gap is developed, it

opens up a myriad of possibilities. We have exploited this to simulate a technologically

important insulator-metal transition in silver doped amorphous chalcogenides. In this

case, MD simulation is guided to produce a metal-like electronic structure. It is seen that

the structures with metal like density of states match with the experimental observations

of metallic state. The method is readily transferable to other systems and has potential to

be the go-to method to explicitly simulate metal-insulator transition. This method is

described chapter 3. This calculation emphasizes the utility of the method as a tool of

materials engineering and design. The other focus of the thesis is understanding the

structure of these silver doped chalcogenides and understand the atomistic mechanism of

electronic conduction from the view point of use of these materials in memory devices.

1.2 Molecular Dynamics Simulations

Molecular dynamics or MD is a widely used method to study many particle systems.

MD simulates the evolution of a system over a period of time by integrating equations of

motion numerically [13]. In a collection of N classical particles, at positions Ri at time t

and each with masses mi the following equation of motion gives the evolution of system at

time t+dt

mi

d2Ri(t)
dt2 = −

∂Φ(R1,R2...,R3N)

∂Ri

(1.1)

In MD simulation equation 1.1 is solved numerically over many time steps. Here, Φ

represents total energy when the positions on ions are given by R1, R2.... R3N and Φ is
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calculated in different ways depending upon the nature of the interatomic interaction being

considered. In this thesis, the following three types of interactions are used.

1.2.1 Empirical Potentials

Empirical potentials are widely used to model systems with thousands of atoms.

These potentials are formulated by “guessing” a functional form to describe bonding and

electrostatic interaction. Such a functional has free parameters which are then fitted in a

way such that a chosen set of experimentally observed (or other) properties are

reproduced. These potentials are computationally inexpensive so that large systems (from

thousands to millions of atoms) can be simulated and evolution of the system for longer

duration of time can be observed than is possible with more complex interactions.

However, they suffer from transferability issues i.e. the energy functional may not capture

the underlying physics when it is used to predict properties outside the domain of

properties used to fit the parameters.

In this thesis, a classical potential formulated by Iyetomi et.al. [14] is used to model

radiation damage in silver doped chalcogenide systems. Classical MD simulation code

LAMMPS [15] is used to run the simulation.

1.2.2 Tight-Binding Method

Tight-binding is the simplest (and thus computationally inexpensive) method that

explicitly involves an electronic structure calculation and is thus more predictive than

empirical schemes. Here, electrons are treated as being tightly bound to the atoms and

have limited overlap with rest of the electrons is the system. Then, if ci denotes atomic

orbitals (or the basis vectors), then the tight binding Hamiltonian is given by

HT B =
∑

i

Vic
†
i ci −

∑

i, j

(ti jc
†
i c j + t jic

†
jci) (1.2)
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where t’s are the so called ‘hopping’ matrix elements and give the overlap between

the atomic orbitals. The first term in Eq. 1.2 gives electron energy on isolated atoms and

the second term gives correction in energy due to overlap. The total energy (ion +

electron) governing the atomic motion is then given by the following relation [16]:

Etot =
∑

i

p2
i

2mi

+
∑

n

⟨ψn|HT B|ψn⟩ + Erep (1.3)

where pi is the momentum associated with ith atom, mi is the mass of the ith atom, |ψn > is

the wave function of the state occupied by nth electron and Erep is a repulsive pair potential

between the ions and also includes the correction to offset the errors due to other terms.

For silicon [16] and carbon [17], as considered in this dissertation, minimal basis set

comprises one s-orbital and three p-orbitals per atomic site. So the free parameters of the

model are i) Es and Ep: the on-site energies corresponding to the Vi in Eq. 1.2. ii) overlap

amplitudes tssσ tspσ tppσ tppπ: corresponding to the t’s in Eq. 1.2 iii) Erep: the repulsion

term corresponding to the one in Eq. 1.3 (in practice, it is there to offset everything else).

When the distances between the atoms is not fixed (as in the case of all amorphous

materials), the parameters in ii) and iii) become distance dependent and hence need to be

expressed in a functional form. In this dissertation, we follow the functional form

prescribed by Goodwin, Skinner and Pettifor [18].

1.2.3 Density Functional Theory

The many body Schrodinger equation that involves full interaction between all the

electrons and ions is an almost intractable problem [19]. Density functional theory (DFT)

is an approximate but very successful solution to some aspects of this problem. After

making the Born-Oppenheimer approximation (decoupling of ionic and electronic

motion), the electron density ρ(r) is used to simplify the complicated many body equation

into one-electron equations. This is possible due to a set of theorems by Kohn, Hohenberg
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and Sham [20, 21] that electron density at ground state has one-to-one relation with the

ground state energy. Kohn and Sham [21] postulated a form of Schrodinger equation that

self-consistently (non-linearly) depends on electron density. These equations are called

Kohn-Sham equations.

We employ the Vienna Ab-initio Simulation Package (VASP) [22, 23] to

self-consistently solve Kohn-Sham equations. VASP uses plane waves as basis vectors,

projector augmented wave (PAW) [24, 25] method for electron-ion interaction and local

density approximation (LDA) [26] or generalized gradient approximation (GGA) [27] for

exchange-correlation energy.

1.3 Chalcogenide Glasses

Glasses that contain one or more chalcogens (i.e. S, Se or Te) are called chalcogenide

glasses [28]. Widely studied among these are the binary chalcogenide glasses GetSe1−t

which are excellent glass formers for wide range of t [29]. In this dissertation, I will focus

on a silver doped chalcogenide glass: (GeSe3)1−xAgx where x denotes the Ag content.

These materials can be prepared either by the melt-quench method or by photo-dissolution

of Ag into the glassy host. This particular composition is a Se rich stoichiometry of a

more broader class represented as (GeySe1−y)1−xAgx. The later class of glass shares many

attributes used to characterize “network-former network modifier” class of glasses. In

Se-rich limits, Ag is shown to act as network modifier and the glass is known to phase

separate into Ag rich Ag2Se phase and the remaining Ge-rich host network [30]. Ag

atoms are known to be very mobile and this makes the whole glass structure very flexible

and responsive to external perturbations. For example, these glasses have extremely

interesting response to light [31, 32]. Among such interesting properties afforded by this

glass is also the swift and dramatic change in electrical conductivity in response to small

external bias. This property has been utilized to design memory elements out of these
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materials, one where a thin film of this material is sandwiched between two electrodes and

a small voltage is applied in between the electrodes. The bias voltage is seen to induce

structural changes in the thin film and sharply change its conductivity. Reversing the bias

is seen to reverse these changes back to the original state. This property has been utilized

to craft credible non-volatile memory materials called Conducting Bridge Random Access

Memory or CBRAM [33, 34]. Similarly, these materials are also shown to respond to

radiations with change in conductivity and come back to the original state when the

radiation stops. This makes this material a prospective material for radiation dosimeter.

The microscopic phenomena behind these interesting properties is a burgeoning field of

research.

1.4 Common Descriptors of Amorphous Solids

Structure of amorphous solids is described in statistical sense i.e. using distribution

functions. The most common distribution function is the pair distribution function (PDF)

written as [35]:

g(⃗r) =
1
ρN

∑

i

∑

j!i

δ(⃗r − r⃗i)δ(⃗r − r⃗ j) (1.4)

where ρ is the number density, given by ρ=N/V where N is number of atoms and V is the

volume. r⃗i is the position of atom i with respect to the central atom.

The radial distribution function (RDF) is obtained by integrating out the angular

dependance as [35]:

g(r) =
∫

dΩ

4π
g(⃗r) (1.5)

and is given by

g(r) =
1

4πρr2N

∑

i!i

δ(r − ri j) (1.6)

where ri j is the distance between atom i and atom j. The RDF is widely used to

describe the structure of amorphous systems. The first peak and the first minimum in RDF

show the degree of short range order in the solid whereas the position of first peak (also
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called the radius of first coordination shell) gives the bond length (for a system with only

one atom type). The degree of medium range order in the solid dictates the form of

intermediate peaks beyond the first coordination sphere. Since amorphous solids don’t

have long range order, g(r) flattens out to a constant (=1) at long distances (e.g. 20 Å). For

system with more than one species, partial pair correlation function gαβ(r) between species

α and β are computed as

dnαβ = 4πr2ρβgαβdr (1.7)

where dnαβ gives the average number of β atoms between distance r and r + dr from the

centre α atom. ρβ is the number density of β species. Total pair distribution function

(PDF) is then obtained by taking weighted sum over partial PDFs.

RDF can be inferred from experiments as the Fourier transform of static structure

factor S(q) [36],

g(r) = 1 +
1

2πrρo

∫ ∞

0
q(S (q) − 1)sin(qr)dq (1.8)

More discussion of structural analysis of amorphous solids can be found in [36, 37].

In many cases in this dissertation, I have used an open source program ISAACS [38] for

structure analysis.

The electronic properties of amorphous systems is described through electronic

density of states (EDOS). In this dissertation, we use density functional theory based

calculations and the electronic states are single particle Kohn-Sham eigenvectors. The

EDOS in that case represents the density of Kohn-Sham states plotted against the energy

axis. For finite systems, the EDOS is discrete and can be expressed as [19]:

D(E) =
1
N

N
∑

i=1

δ(E − Ei) (1.9)

where N is size of the basis set and Ei is the eigenvalue of ith eigenvector. The electronic

band gap and the distribution of states around Fermi energy are important determinants of

properties of these systems.
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The electronic states in amorphous materials are not all extended as they are in

crystals. This is a direct consequence of the disorder present in the structure. The

localization of electronic states can be quantified in several ways. In this dissertation, we

extensively use Inverse Participation Ratio (IPR) [7, 39] as the measure of localization of

electronic states. We compute IPR of the nth electronic state ψn as,

In =

∑Nbasis

i=1 (⟨ψn|φi⟩)4

(
∑Nbasis

i=1 (⟨ψn|φi⟩)2)2
(1.10)

where φi is a basis vector. In this formulation, IPR assumes values between 0 to 1,

where 1 corresponds to the most localized state.

1.5 Dissertation Outline

The rest of the dissertation is organized in the following way: In Chapter 2, the

method of gap sculpting is developed and its applications within tight-binding framework

to model amorphous silicon and amorphous carbon are presented. In Chapter 3, we extend

the application of gap sculpting to ab initio calculation and present a scheme of modeling

insulator-metal transition for silver doped chalcogenide glass. In Chapter 4, first principles

studies of mechanism of electronic conduction in a-GeSe3Ag is presented and results from

explicit simulation of Ag nanowires in glassy matrix are discussed. In Chapter 5, response

of a-GeSe3Ag to radiation impact is discussed within the framework of empirical MD

simulation. In the last chapter (Chapter 6), the coupling between electron states and

thermal vibrations of lattice is discussed within the framework of first principles

calculations. Much of the text of the chapters that follow are from my published works

cited here: [40, 41, 42, 43, 44].
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2 Gap Sculpting

The work presented in this chapter has been published in (i) Prasai, K., Biswas, P.,

and Drabold, D. A. (2015). Sculpting the band gap: a computational approach.

Scientific reports 5, 15522. (ii) Prasai, K., Biswas, P., and Drabold, D. A. (2016).

Electronically designed amorphous carbon and silicon. physica status solidi (a),

213(7), 1653-1660. (iii) Prasai, K., Biswas, P., and Drabold, D. A. (2016). Electrons

and phonons in amorphous semiconductors. Semiconductor Science and Technology,

31(7), 73002-73015.

Here, we offer a method of including a priori electronic information in molecular

dynamics (MD) simulations. This method provides a novel tool for structural modeling

and materials design by gap engineering.

2.1 Motivation for Structural Modeling

Computer models of disordered semiconductors have usually fallen short of

realistically representing the material in that these models often include too many defects

(e.g. miscoordinated atoms, strained bonds or misaligned bond angles). These

imperfections drastically impact electronic structure of these models making them

inconsistent with experimental results, usually in the form of localized electronic states in

the band gap region. The details of the nanometer-scale structure of an amorphous solid

are not uniquely defined for these materials since it is not the global minimum of energy.

In a celebrated work, Stillinger has shown that the number of structural energy minima

scales exponentially with the system size [45]. Since experimental data reflect an

ensemble average of physical observables from a huge set of low-lying energy minima, it

is possible to successfully sample these configurations aided by external information in

order to improve the realism of atomistic simulations and the quality of structural models.

Atomistic simulations have taken the approach of using a priori knowledge about the
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system (in the form of experimental information) to reduce the search space. These

include various types of Reverse Monte Carlo (RMC) schemes that use diffraction

data [46, 47, 48], diffraction data and constraints of spatial homogeneity [49], and

diffraction data as well as information from electronic structure [50, 51] and nuclear

magnetic resonance spectra [52]. Recently, an approach of including ionic forces

“Force-Enhanced Atomic Refinement” (FEAR) has emerged [53].

Recent works have shown that imposing spatial homogeneity as a modeling

constraint had a dramatic effect in improving models of a-Si, solid C60 and other systems

[49, 54]. These workers invert the structural data (e.g. from scattering experiments) and

use the reverse monte-carlo (RMC) approach to implement the constraint. The modeling

of amorphous semi-conductors by enabling electronic constraints can also be viewed as

imposing “electronic homogeneity” (in particular, by eliminating localized eigenstates in

the gap region) for improving the structural models.

2.2 Motivation for Materials Design

In the theory of complex materials, one frequently confronts the following question:

“Given particular optical properties (for example, extent of an optical gap or lack thereof),

what atomic coordinates provide the desired properties?”. This is an inverse problem, and

requires a computational scheme that efficiently explores the configuration space and

leaves us with an atomistic model satisfying our conditions. A way to approach this

problem is to construct a large number of models using some random process, and keep

promising candidates. While this can be effective for small systems (crystals with a small

unit cell), it is impractical for more complex systems like amorphous materials. In some

cases, the emphasis is not to construct a full structural model from scratch, but rather to

improve an existing model by imposing additional atomistic information on the model. A
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simple example is to generate a model of a-Si with a clean optical gap from an amorphous

silicon network with defect states in the gap region.

There are diverse motivations for these calculations. The most obvious reason is to

find materials optimized for photovoltaic (PV) applications, i.e. tuning a band gap to the

solar spectrum, for example. It is also possible to induce metallization via gap tuning:

compelling the density of states to be large at the Fermi level would significantly increase

the conductivity of the model to induce transition to the metallic state. It also provides an

effective means to discover the structural signatures of photodarkening or photobleaching,

much studied effects in chalcogenide glasses [55]. For phase-change computer memory

materials, the optical contrast between the amorphous and crystalline phases is

fundamental, and these techniques should enable additional insight into the processes.

2.3 Theory

We adopt tight-binding Hamiltonians and employ Hellmann-Feynman forces [19, 56]

in a novel way to determine structures with desired optical gap. Recall that the spatially

non-local part of the interatomic force, the band-structure force, has the form:

F⃗BS
α = −

occ
∑

i

⟨Ψi(r)|
∂H

∂Rα
|Ψi(r)⟩ = −

occ
∑

i

∂λi

∂Rα
≡

occ
∑

i

F⃗BS
i,α . (2.1)

Here i indexes eigenvalues (or bands) and runs through all occupied states, Rα are the 3N

positional degrees of freedom, H is the Hamiltonian, and Ψi is an eigenvector. If one

considers individual terms in the sum in Eq.(2.1), the term F⃗BS
i represents the contribution

from the ith eigenvalue (or band) to the total band-structure force. In effect, F⃗BS
i is a

gradient for the ith energy eigenvalue λi. As such, F⃗BS
i provides the direction in the

3N-dimensional configuration space of most rapid change of λi. Thus, to shift λi to higher

(lower) energies, we should move atoms incrementally along the direction –F⃗BS
i ( + F⃗BS

i ).

For incremental displacements δRα along this gradient, the shift δλi of an eigenvalue λi
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can be written as δλi =
∑

α
−F⃗BS

i,α δRα. To this end, we introduce the term gap force for state

i to indicate the force (negative nuclear gradient) associated with eigenvalue λi. We exploit

such forces to push eigenvalues out of a spectral range that we wish to be free of states.

Our modified or biased dynamics follow from a Lagrangian L = T − Φ, in which

T = 1
2

3N
∑

α=1
mαṘα

2, and

Φ(R1,R2 . . . ,R3N) =
∑

i

fi⟨Ψi|H|Ψi⟩ + Ur

+

′
∑

i

γg
(

⟨Ψn|H|Ψn⟩ − ε f

)

(2.2)

The sum in the last term in Eq. (2.2) is restricted to the energy range we wish to clear of

states i.e. in the spectral range λn ∈ [Emin, Emax]. fi is the occupation number of ith energy

level. The parameter γ controls the strength of the gap force, g is either +1 or -1 and it

determines whether the state is pushed to the conduction edge or to the valence edge. In

the equation above, ε f is the Fermi energy, and Ur is the repulsive ion-ion interaction. The

force associated with the αth degree of freedom is given by,

F⃗bias
α = F⃗BS

α + F⃗ion
α + F⃗gap

α , (2.3)

which can be used to obtain stable local minima by minimizing the total energy and forces

via MD simulations and/or relaxations. In the tight-binding formulation, the forces on the

right-hand side of (Eq. 2.3) are:

F⃗BS
α = −

occ
∑

i

fi⟨Ψi(r)|
∂H

∂Rα
|Ψi(r)⟩

F⃗ion
α = −

∂Ur

∂Rα

F⃗gap
α = −

Emax
∑

i=Emin

γg(λi)⟨Ψi|
∂H

∂Rα
|Ψi⟩
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Here, choosing g = +1 will push the corresponding state to valence edge and

choosing g = −1 will push it to conduction edge. We show empirically that the method

works well even for mid-gap states near εF . We have observed that the method is also

applicable in the opposite mode: to maximize the density of states at the Fermi level by

shepherding eigenvalues toward the Fermi level [43]. This might, for example, introduce

new structural features and produce models with interesting electrical conductivity.

Naturally, there is no a priori guarantee that a model with preferred electronic

properties should be a minimum of the total energy functional. To ensure that the model is

at equilibrium, we have adopted a quench and relax procedure in which biased dynamics

is employed to push the system toward a configuration with preferred electronic optical

gap (by using “gap forces” described above to drive states away from the desired spectral

gap into the valence or conduction bands), and slowly quenching the diffusive dynamics

so that the system may explore many configurations as its dynamics is gradually arrested.

The system is then relaxed with physical forces to obtain a strong energy minimum and

coordinates that yield the prescribed electronic gap.

2.4 Examples in Tight Binding Approximation

We demonstrate our method by modeling amorphous silicon (a-Si) and tetrahedral

amorphous carbon (ta-C). These are well known to be difficult to model and to obtain a

well-defined gap. We demonstrate the biased dynamics using the tight-binding

parametrization for carbon by Xu et al. [17] and that of Goodwin, Skinner and Pettifor

[18] for Si. In a conventional melt-quench method, a well equilibrated liquid model is

quenched below the glass-forming temperature by performing dissipative dynamics. We

take the same point of view here, except that we bias the dissipative dynamics toward a

configuration with fewer states in the gap region. The biasing is done by adding the gap

forces to the band-structure and ionic forces as given by Eq. (2.3).
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All models are then compared to the corresponding Wooten, Weire, Weiner (WWW)

models [11, 57], which are widely recognized as best models of a-Si and ta-C. This is a

proxy for comparing to experiments, since the agreement of WWW model with

experiments is well established [58, 59, 60]. Furthermore, our results are substantiated by

density functional theory (DFT) calculations [22, 23, 24, 25, 26] in both examples.

2.4.1 Amorphous Carbon

Amorphous carbon is technologically important and has intriguing microscopic

structure. Carbon forms strong bonds in both sp2 and sp3 environments and can be

prepared in various forms. Sputtering and evaporation usually produce disordered phases

that are rich in sp2 bonds, whereas mass-selected ion beam deposition produce a

disordered phase with more than 90% sp3 character [61]. Structural, electronic and optical

properties of these materials are of great technological and scientific importance, which

have led to considerable works in this field [17, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71]

There have been many attempts of modeling amorphous carbon [68, 17, 66, 67, 71].

Particularly, sp2 -bonded carbon is modeled and characterized by using empirical

potential [68], tight-binding approximation [17] and ab initio methods [66, 67, 71] with a

varying degree of success. Tight-binding MD simulations were employed in Ref. [69, 72]

to model diamond-like carbon but the authors used, as a critical requirement, much higher

density than the experimental density of 2.9 gm/cm3 [66]. Drabold et al. used

first-principles methods to model ta-C at the experimental density and produced 64-atom

models of ta-C with 91% 4-fold coordination [66]. Djordjevic, Wooten and Thrope used

the bond-switching algorithm of Wooten, Weaire and Winer [11] to prepare perfectly

tetrahedral models of a-C [57]. However, modeling alloy systems with a significant

fraction of both sp2 - and sp3 -bonded carbon has not been accomplished to our

knowledge.
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It has been observed that systems with a higher fraction of sp3 -bonded C atoms have

a wider electronic gap than its sp3 counterpart. For example, evaporated a-C has a gap of

0.4-0.7 eV, whereas diamond-like a-C has gap of 0.5-1.5 eV (see ref. [61] and table 1

therein for details). This correlation between the gap size and concentration of

sp3 -bonded atoms is valuable and can be used as a priori information to bias the

dynamics in order to tune the concentration of sp3 -bonded atoms in a model. Here, we

have implemented such a biased dynamics using the tight-binding approximation and

reported models of disordered carbon, which consist of both sp2 - and sp3 -bonded carbon

atoms at various concentrations.

It is notable that imposing electronic information not only opens up the electronic

gap, but also influences the structural properties by changing the character of

carbon-carbon bonding from sp2 to sp3 . The fraction of sp3 -bonded atoms increases

with increasing γ, and thereby provides a previously unavailable knob to tune the

sp3 concentration in the network – in this mode using an electronic constraint to obtain a

desired structural result. For this calculation, we relaxed Djordjevic’s model [57] with TB

Hamiltonian and used the size and location of the gap of the relaxed model as required

electronic information for biased MD simulations.

We have chosen three densities to conduct biased dynamics: 2.9, 3.2 and 3.5 gm/cm3.

The conventional melt-quench MD simulations at these densities produce amorphous

carbon with more than 90% sp2 concentration as observed in our present work and in

previous work by others [73, 70]. Melt-quench procedure at higher pressure has been

shown to produce a strong sp3 character of C-C bonding in the liquid state [73, 74]. On

the other hand, quenching at higher densities have been employed to force the models into

a diamond-like structure [69, 72].

The models reported here are constructed by quenching from equilibrated liquid C.

For each density, a cubic supercell of 216 atoms in diamond lattice with periodic boundary
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condition was heated beyond its melting temperature. (We note that, with increasing

density, the cell needs to be heated to higher temperature and for longer duration in order

to impart sufficient disorder to fully melt the cell. Accordingly, we heated the cell at

density 2.9 gm/cm3 to 7000 K and then equilibrated it at that temperature for 7.5 ps. The

cell at density 3.2 gm/cm3 was heated to 9000 K and equilibrated for long time following

to successive equilibrations at 7000 K and 8000 K respectively. The cell at density 3.5

gm/cm3 was heated to 10000 K and the equilibrated after two successive equilibrations at

8000 K and 9000 K respectively.) We verified that the these well-equilibrated liquid

models bear the standard signatures of liquid carbon (radial distribution, bond-angle

distribution, coordination numbers and electronic structure) reported in [73, 74]. We have

observed that conventional TBMD has led to results, which are consistent with the earlier

results obtained by others using this Hamiltonian.

To produce gap-engineered models, we bias the quenching from the liquid by

modifying the TB forces according to Eq. (2.3). To impart diamond like character in the

network, we biased the dynamics towards the electronic structure of a perfectly tetrahedral

amorphous carbon model (We rescaled Djordjevic’s perfectly tetrahedral model [57] to

densities 2.9 gm/cm3 , 3.2 gm/cm3 and 3.5 gm/cm3, then relaxed the rescaled models

using Xu’s tight-binding Hamiltonian [17] until the forces on each atom vanishes. These

relaxed models have gap of size 3.14 eV, 3.80 eV and 4.10 eV respectively. We used the

size and location of these gaps at the respective densities to bias the dynamics (i.e. the

values of Emin and Emax in Eq. (2.4) were set equal to the gap limits of these relaxed

models). The strength of the biasing forces were tuned by appropriately choosing γ.)

Finally the quenched models at 600K were relaxed to their local minimum using true

(unbiased) TB forces. Hence, the final structures are true inherent structures of the carbon

system, and the models are stable.
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Figure 2.1: Evolution of total energy and band gap in gap sculpting. (Top) The total energy
per atom of the system upon quenching for 7000 K to 600 K at density 2.9 gm/cm3. For
small γ, the energy penalty is very small. Note that these models are relaxed using unbiased
TB forces (i.e. γ = 0) following the quench to ensure that we obtain a “true” minimum.
The total energy of these systems after relaxation is -7.92 eV/atom, -7.88 eV/atom and -
7.70 eV/atom for γ= 0, 1 and 3, respectively. (Bottom) The evolution of the gap during the
quench. For clarity and reduction of noises in the data, a running-window average of the
gap values are presented here.

We note that for small γ, the energy penalty of biasing the dynamics is small. Figure

2.1 (top) shows the total energy per atom during quenching. The energy penalty is

reconciled to some extent by the relaxation with respect to true forces and the final models

are less than 0.15 eV/atom apart for γ = 1. The dynamics steers the network to wider gap

configurations as seen in figure 2.1 (bottom) and that has a strong effect on the nature of

bonding in the network that results. We see that for increasing value of γ at a particular

density, the concentration of sp3 bonds increases. For density 2.9 gm/cm3, which is the

experimental density of ta-C, we get 22.7%, 48.1% and 55.5% sp3 character in the models

for γ= 1, 2 and 3 respectively, compared to 6.5% sp3 -bonded atoms for γ=0 (see figure
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Figure 2.2: The concentration of tetrahedrally-bonded carbon atoms in the relaxed models.
The labels along the horizontal axis designate the density (ρ) and the strength of gap forces
(γ) used to bias the forces. For clarity, (ρ,γ) is written as ρ/γ.

2.2). We find that the leverage on γ declines after γ=3 because further increase in γ

significantly alters the dynamics and does not increase the sp3 concentration.

Similar behavior is observed at higher densities. At density 3.2 gm/cm3, the final

models have sp3 concentration of 74.1% and 80.5% for γ=1 and 1.5, respectively.

Similarly, biased dynamics at density 3.5 gm/cm3 produced models with

sp3 concentration of 81.5%, 86.1% and 93.5% for γ= 1, 1.5 and 2 respectively. It is

important to note here that, while increased pressure at 3.2 gm/cm3 and 3.5 gm/cm3 has

certainly helped to align the dynamics to tetrahedral geometry, an application of biasing

forces is absolutely necessary to obtain to these models. Our calculations have shown that

unbiased dynamics at all three densities presented here produce a predominantly

sp2 network. The alloy systems with comparable concentrations of sp2 and sp3 have the

character of both types of network. Figure 2.3 shows the RDF of the relaxed models with
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Figure 2.3: The radial distribution function of various relaxed models of amorphous carbon.
The labels along the horizontal axis designate the density (ρ) and gamma (γ) used to bias the
TB forces. These models correspond to increasing concentration of tetrahedral character in
the network. This change in character is reflected in the gradual widening and shift of the
first RDF peak from 1.41 Å (for lowest sp3 density) to 1.53 Å (for highest sp3 density).

48.1% and 80.5% sp3 bonding respect to predominantly sp2 and sp3 networks. This

demonstrates the magnitude of structural consequences of electronic constraints in

atomistic simulations.

In figure 2.4, we compare some key features of the models obtained using biased and

unbiased dynamics at density 3.5 gm/cm3. To be able to appreciate the sp3 character in the

network, we compare these two models with Djordjevic’s model. We see that the biased

model very closely resembles the radial distribution function of Djordjevic’s model and

has the bond length of 1.51 Å (original Djordjevic model has bond length of 1.54 Å [57].)

Similarly, the unbiased model registers a peak in the bond-angle distribution (BAD)

around ≈ 120◦, characteristic of sp2 networks. The bond-angle distribution of the biased
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Figure 2.4: Radial distribution function (RDF), bond angle distribution function (BADF)
and electronic density of states (EDOS) for unbiased model (γ=0, black), biased model
(γ=2, red) and relaxed Djordjevic’s model (blue) [57] at density 3.5 gm/cm3. The biased
model plotted here has 93.5% four-coordinated C atoms and resembles closely with
Djordjevic’s model.

model closely resembles that of relaxed Djordjevic’s model. Finally, we show that the

biased model has the diamond-like electronic structure.

2.4.2 Amorphous Silicon

A realistic model of disordered silicon is needed in order to understand the material

for technological as well as scientific purposes. Amorphous silicon has electronic and

optoelectronic applications and this material has long been used by the community as

archetypal material to understand various structural, electronic as well as vibrational

properties of disordered materials. It has been difficult to make reliable models of

a-Si using MD simulations even with the most advanced ab-initio methods. Models of

a-Si due to Wooten, Winer and Weire [11, 57] are widely recognized as among the best

models so far. Their agreement with structural and electronic properties of bulk a-Si is

well established [58, 59, 60]. But, these models are created using a guided metropolis

algorithm (the “bond-switching method”) which is obviously less general and intuitive

than the conventional melt-quench method. The later mimics the glass formation process

by performing dissipative dynamics on well-equilibrated liquid models. But, the models
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of a-Si created using the melt-quench method usually show many remnants of the liquid

silicon (l-Si): too many floating, strained and dangling bonds leading to far too many

defect states in the electronic gap region. Silicon, despite its ubiquity in nature and the

literature is particularly difficult to model because of its over-constrained bonding

topology.

In this example, we show again that a priori knowledge of the electronic gap can be

coupled with the conventional TB forces to produce models of a-Si that are structurally

and electronically superior to the models using conventional TB forces. Much of the

method of conducting biased dynamics is similar to that used for a-C in previous section.

Here, we carry out the melt-quench method using the tight-binding Hamiltonian of

Goodwin, Skinner and Pettifor [18]. The melt-quench process is similar to those used in

earlier works [73, 75, 76, 16]. We started with a random collection of 216 atoms at a

density of 2.33 gm/cm3 and we equilibrated the system at 2500 K for 4 ps, followed by

three successive equilibrations: at 2300 K for 2 ps, at 2100 K for 2 ps, at 1900 K for 2 ps.

The system was then equilibrated at 1780 K (close to the melting point of Si) for 50 ps to

arrive at l-Si model. We checked the l-Si model by computing its radial distribution

function (RDF), bond-angle distribution function (BADF) and electronic density of states

(EDOS). These calculations conform to earlier calculations on l-Si by Kim and Lee [75].

We then obtained 25 distinct configurations of l-Si by equilibrating the model at 1780 K

for 25 ps and capturing the instantaneous configurations at the interval of 1 ps. These 25

configurations are then quenched to 300 K at a rate of ≈ 100 K/ps using biased dissipative

dynamics. We used the electronic gap of WWW model as the target gap and used γ = 1.

The models are then relaxed by damping the velocity of atoms by 1% at each step until the

forces on the atoms become smaller than 0.05 eV/Å. We point out here that the biased

dynamics is used only while quenching the system and, for the particular choice of γ = 1,

the average magnitude of the biasing force remains smaller than 18% of the average TB
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force throughout the quench. For the sake of comparison, we also quenched all 25 models

using only the conventional TB forces. The quenched models were then relaxed using the

method described above.

Figure 2.5: The structural features of the TBMD, biased TBMD and WWW models of
a-Si (a, b and c respectively). Mis-coordinated atoms and their bonds are visualized in red
and normally coordinated atoms are in blue. Cutoff radius of 2.8 Å was used to define a
bond for all three models. d, e and f: Radial distribution function (RDF) of these models
are plotted in the same order.

We have examined structural and electronic features of an array of relaxed models

following biased quenching runs (referred to as ‘biased TBMD models’), as well as the

corresponding conventional TBMD models (referred to as ‘TBMD models’). The merits

of these two ensembles of models can be determined by validating them against the

WWW model.

Biasing forces skew the dynamics towards a structure with a clean gap. In direct

consequence of this, the network organizes with higher structural order while still in a

topologically disordered state of tetrahedral character. (This leads us to suspect that
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Figure 2.6: Radial distribution functions of a TBMD model (γ=0), biased TBMD model
(γ=1) and WWW model [11]. The biased model has a clean first minimum and closely
resembles with the WWW model.

simulations of crystallization might be significantly accelerated in this framework.)

Durandurdu et al. [77] have pointed out that models with a cleaner gap (narrower band

tails) are also the ones with narrower bond-length and bond-angle distributions [77]. The

radial distribution function of the biased model presents significant structural order,

indicated by a clear first minimum (see Fig. 2.6) compared to that of the unbiased model.

The biased model clearly agrees more closely with the RDF of the WWW model. The

structural order is also indicated by the bond-length and bond-angle distributions. The

biased model presents a narrower bond-angle distribution as evident in figure 2.7. We note

that the biased model is free of the presence of small (60 degrees) bond angles that arise in

conventional MD. We have computed the variance of bond length for both TBMD models,

as well as for the biased TBMD models. We observe that out of 25 models sampled, 20 of
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Figure 2.7: The bond-length (left) and bond-angle (right) distribution functions of TBMD
model (γ=0), biased TBMD model (γ=1) and the WWW model [11]. The biased model
is nearly free of over-coordinated atoms that give rise to small bond angles and long bond
lengths in TBMD model. Biased model closely resembles with WWW model.

the biased models show a smaller variance in bond length. Also, the number of

4-coordinated atoms is higher for models following the biased dynamics in 19 out of 25

instances (see Fig. 2.8).

The electronic density of states of the relaxed models is plotted in figure 2.9. It is

observed that the biased TBMD models have cleaner gap than the TBMD models. Note

that for the particular instance plotted in figure 2.9, the gap of biased model is wider than

that of WWW model.

We characterized models described in this section in local density approximation

(LDA) using density functional code VASP [22, 23]. Interestingly, the biased TBMD

model has lower energy than the TBMD model. Similarly, biased model exerts cleaner

gap in LDA. To study the dependence of the method on system size, we carried out the

biased dynamics in 512 atom cell with the same quenching rate and biasing parameter.

For five out of five samples that we tested, biased dynamics produced models with higher

concentration of 4-folds and cleaner gap.
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Figure 2.8: (Top) The number of four-coordinated Si-atoms in models that are quenched
and relaxed from 25 different liquid models at 1780 K. For models plotted in red, biased
TB forces with γ = 1 were used during quenching whereas for those in black, conventional
(unbiased). TB forces were used. Both batches of quenched models were relaxed using
unbiased TB forces. (Bottom) The variance of bond lengths for the corresponding models.

2.5 Density Functional Approach

This approach of gap sculpting is preferably performed using first principles

calculations since tight-binding methods suffer from well-known problems of limited

transferability. We have used VASP to carry out biased dynamics. As an example, we

report here a wide band gap amorphous form of silicon that is structurally different from

the tetrahedral continuous random network picture of a-Si. This structure is stable and has

lower energy that its conventional counterpart.

We started with a random collection of 64 atoms and prepared a liquid model of

silicon (l-Si). The system was heated to 1800 K for 2 ps and was then melted at various

temperatures higher than 1800K for 10 ps. The system was then equilibrated at 1800K for
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Figure 2.9: The electronic density of states of the unbiased model (γ=0), biased model
(γ=1) and relaxed WWW model [11]. The unbiased model (labeled ‘TBMD’) registers
few states in the gap while the biased model is free of defect states. The gap of the biased
model is wider than that of the WWW model by ≈ 0.1 eV.

another 12ps. The liquid model so obtained was then quenched to 300K using biased

forces. The band gap of the 64-atom WWW model was taken as reference to electronic

gap. We tested 4 different biasing factors (γ = 0.0, 0.3, 0.5 and 1.0). We see that the biased

dynamics gradually steers the model to configurations with larger electronic gap and the

size of the gap roughly correlates with value of γ within reasonable limit (Fig. 2.10).

The quenched models are then relaxed to their nearest minimum using true LDA

forces (γ = 0). We find that relaxed models so obtained have a band gap larger than

conventional model by 0.24 eV (for γ = 0.3), 0.35 eV (for γ = 0.5) and 0.15 eV (for

γ = 1.0). The band gap of our best model (that with γ = 0.5) is still smaller than that of

WWW model of the same volume by 0.25 eV. We report the comparison of electronic

EDOS and RDF of the model using γ = 0.5 with the conventional model (i.e. using γ =

0.0). The former has more structural defects in the form of floating bonds than the later

and it is remarkable that these defects somehow do not register states in the gap. The
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Figure 2.10: The band gap of the model during biased quenching from 1800 K to 300 K. γ
represents the biasing factor, which remains constant throughout the quenching dynamics.
For all data sets, a running window average is taken to reduce the noise.

structure with γ = 0.5 has lower energy than its conventional counterpart (γ = 0) by 0.02

eV/atom but has higher energy than WWW model of same volume by 0.07 eV/atom.

2.6 Discussion

Listed below are few comments on statistics and technical details. 1) As we have

shown, our method is best employed in a “statistical mode”–unsurprisingly the final

structures depend on the initial state. In some fraction (≈ 20%), the method does not

improve the gap in case of a-Si. We suppose that this may be due to the very simple rule

of shifting atoms along gradients toward the nearest band edge, even for eigenvalues very

near ε f . 2) We have experimented with various γ, and have found no particular advantage

to selecting γ ! 1 to date. 3) Preliminary studies suggest that the results presented here

also accrue for larger (512-atom) models. 4) For a-Si, we use a priori knowledge of the

gap from the best available models. In the general case, one can define a gap by trial and
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Figure 2.11: Electronic density of states (EDOS) of the relaxed models. The model
indicated γ = 0.0 is constructed using unbiased first principles MD where as the one
indicated γ = 0.5 is constructed using biased dynamics with γ = 0.5. The Γ-point gap is
0.64 eV for model with γ = 0.5, compared to 0.89 eV in WWW a-Si of the same volume.

error, with the choice being determined in part by a requirement that the physical forces

vanish at the end.

As is the case with all methods, our approach has limitations: (1) We used standard

orthogonal tight-binding Hamiltonians for the simulations. This is hugely limiting, since

such Hamiltonians have only been devised and tested for a handful of systems, mostly

elemental, and suffer from significant limitations with respect to transferability [78]. 2)

Even in a density-functional framework, gap estimates from Kohn-Sham eigenvalues are

spurious, though usually these account reasonably well for trends. With significant
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Figure 2.12: Radial distribution function (RDF) of the relaxed models. The model indicated
γ = 0.0 is constructed using conventional molecular dynamics where as the one indicated
γ = 0.5 is constructed using biased dynamics with γ = 0.5. The calculation was carried out
with the plane-wave LDA code VASP

computational expense, these estimates may be improved e.g. with GW or Hybrid

Functional schemes [19].

2.7 Conclusions

We demonstrate the utility of the method with two examples and suggest that the

approach may be developed in promising ways. We show in a practical way how to

include electronic information in structural modeling, and we prove that imposing

electronic constraints leads to relaxed models in better agreement with structural

experiments, particularly for the case of a-Si. The method can be used to make a nearly

state-free gap, or to maximize metallicity. For ta-C, considerable flexibility is afforded by

our approach in tuning sp2/sp3 ratios. Our method is highly efficient since it employs
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Hellmann-Feynman (HF) forces [19, 56], which are the byproduct of any electronic

structure simulations. We expect that the scheme will be useful for many other complex

materials not only for discovering structures with desired gaps but also for imposing

electronic constraints in modeling. This scheme opens the way for new avenues of

materials engineering, especially for optical properties, and we expect it to have a broad

impact when implemented fully with ab initio methods.
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3 Insulator-Metal Transition in GeSe3Ag Glass

The work presented in this chapter has been published in Prasai, K., Chen, G., and

Drabold, D. A. (2017). Amorphous to amorphous insulator-metal transition in

GeSe3Ag glasses. Physical Review Materials, 1(1), 015603.

3.1 Introduction

Metal-Insulator transitions (MIT) and their associated science are among the

cornerstones of condensed matter physics [79]. In this chapter, we describe the atomistics

of a technically important but poorly understood MIT in GeSe:Ag glasses, a prime

workhorse of conducting bridge memory (CBRAM) devices [33, 34]. By design, we

construct a stable conducting model from a slightly energetically favored insulating phase.

Predictions are made for structural, electronic and transport properties. We demonstrate

the utility of our gap sculpting method [40] as a tool of materials design.

We report here the metallic phases of amorphous (GeSe3)1−xAgx at x = 0.15 and

0.25. These are canonical examples of Ag-doped chalcogenide glasses, which are studied

in relation to their photo-response and diverse opto-electronic applications [31, 32]. Ag is

remarkably mobile making the material a solid electrolyte and is known to act as

“network-modifier” in these glasses as it alters the connectivity of network. Experiments

have shown Se rich ternaries ((GeySe1−y)1−xAgx with y < 1/3) to be phase-separated into

Ag-rich Ag2Se phase and residual GetSe1−t phase [30].

Using first-principles calculations, we show that stable amorphous phases with at

least ∼ 108 times higher electronic conductivity exist with only small (≈ 0.04 eV/atom)

difference in total energy. These conducting states present the same basic structural order

in the glass, but have a higher relative fraction of an a-Ag2Se phase compared to the

insulating states. It is known that amorphous materials are characterized by large numbers

of degenerate conformations that are mutually accessible to each other at small energy
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cost, but those usually have similar macroscopic properties. The remarkable utility of

these materials accrues from states with distinct properties, nevertheless readily accessible

to each other.

We discover the conducting phase of GeSe3Ag glass by designing atomistic models

with a large density of states (DOS) near the Fermi energy [80]. This is achieved by

utilizing Hellmann-Feynman forces from the band edge states, the theory of which has

been developed in chapter 2. These forces are used to bias the true forces in ab initio

molecular dynamics (AIMD) simulations to form structures with a large DOS at the Fermi

level. The biased force on atom α, Fbias
α , is obtained by suitably summing Hellmann

Feynman forces for the band edge states (second term in Eq. 3.1) with the total force from

AIMD calculations, FAIMD
α .

Fbias
α = FAIMD

α +
∑

i

γi⟨ψi|
∂H

∂Rα
|ψi⟩ (3.1)

Here, γ’s set the sign and magnitude of the HF forces from individual states i. To

maximize the density of states near ϵF , gap states closer to the valence edge will have

γ > 0, whereas the states in the conduction edge will have γ < 0. The magnitude of γ

determines the size of biasing force (with γ = 0 representing true AIMD forces). We have

employed biased forces as an electronic constraint to model semiconductors and insulators

in chapter 2 where the biasing is done in just the opposite sense: to force to states out of

the band gap region.

3.2 Computational Approach

We start with conventional 240 atom models of (GeSe3)1−xAgx, x=0.15 and 0.25, at

their experimental densities 5.03 and 5.31 gm/cm3 [81] respectively. These were prepared

using melt-quench MD simulations, followed by conjugate-gradient relaxation to a local

energy minimum. The MD simulations are performed using the Vienna Ab initio
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Simulation Package (VASP) [22, 23]. Plane waves of up to 350 eV are used as basis and

DFT exchange correlation functionals of Perdew-Burke-Ernzerhof [27] were used.

Brillouin zone (BZ) is represented by Γ-point for bulk of the calculations. For static

calculations, BZ is sampled over 4 k-points. These models fit the experimental structure

factor reasonably well (Figure 3.1).

Figure 3.1: The structure factor of (GeSe3)1−xAgx models (solid red line) compared with
experiment (black squares)[81]

We obtain conducting conformations by annealing the starting configurations using

biased forces at 700 K for 18 ps. The electronic states in the energy range [ϵF–0.4 eV,

ϵF+0.4 eV] are included in the computation of bias force and γ = 3.0 is used. The bias

potential (Φb(R1, ..,R3N) =
∑

−γi⟨ψi|H(R1, ..,R3N)|ψi⟩) shepherds the electronic states at

the band edges into the band-gap region. Since we want any proposed metallic

conformation to be a minimum of the unbiased DFT energy functional, we relax

instantaneous snapshots of biased dynamics (taken at the interval of 0.2 ps, leaving out the

first 4 ps) to their nearest minima using conjugate gradient algorithm with true DFT-GGA

forces. We study all relaxed snapshots by i) gauging the density and localization of states
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around Fermi energy and, ii) testing the stability of the configurations by annealing them

at 300 K (n.b. glass transition temperatures (Tg) are 488 K and 496 K for compositions

x=0.15 and 0.25 respectively [82]). At each composition, we selected five models that

display a large density of extended states around Fermi energy and are stable against

extended annealing at 300 K as the ‘metallized’ models. These metallized systems are, on

average, 0.040±0.009 eV/atom above their insulating counterparts.

Figure 3.2: The electronic density of states (DOS) of the insulating model (black curve)
and the metallized model (red curve). Energy axis is shifted to have Fermi level at 0 eV
(the broken vertical line)

3.3 Results

3.3.1 Electronic Structure and Transport

The metallized models, by construction, exhibit a large density of states around the

Fermi energy (Figure 3.2) whereas the insulating models display small but well defined

PBE [27] gap of 0.41 eV and 0.54 eV for x=0.15 and 0.25 respectively. For disordered

materials, a high DOS at ϵF alone may not produce conducting behaviour since these

states can be localized (example: amorphous graphene, [83]). We gauge the localization of
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Figure 3.3: The (black curve) electronic density of states (DOS) and (orange drop lines)
Inverse Participation Ratio (IPR) of the insulating model (a) and the metallized model (b).
Energy axis for all datasets is shifted to have Fermi level at 0 eV (highlighted by the broken
vertical line)

these states by computing inverse participation ratio (IPR, [7]) (plotted for x=0.25 system

in Figure 3.3) and show that these states are indeed extended. We compute the electronic

conductivity [σ(ω)] using the Kubo-Greenwood formula (KGF) in the following form:

σk(ω) =
2πe2!2

3m2ωΩ

N
∑

j=1

N
∑

i=1

3
∑

α=1

[F(ϵi, k) − F(ϵ j, k)]

|⟨ψ j,k| ▽α |ψi,k⟩|
2δ(ϵ j,k − ϵi,k − !ω)

(3.2)

It has been used with reasonable success to predict conductivity [84, 85, 86]. Our

calculations used 4 k-points to sample the Brillouin zone. To compensate for the

sparseness in the DOS due to the size of the supercell, a Gaussian broadening (δE) for the

δ-function is used. We note that the choice of δE between 0.01 eV and 0.1 eV does not

significantly alter the computed values of DC conductivity [σ(ω = 0)] (Figure 3.4). For

the choice of δE=0.05 eV (which is small compared to the thermal fluctuation of

Kohn-Sham states for disordered systems at room temperature. For a heuristic theory, see
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[44]), the DC conductivity of metallic models are of the order of 102 Ω−1cm−1 at both

concentrations. For the insulating model at x=0.15, this value is of order 10−6 Ω−1cm−1

whereas for insulating model at x=0.25, this value is lower but can not be ascertained from

our calculations. We find that the metallized models show, at least, ∼ 108 times higher

conductivity than the insulating models. The computed conductivity for metallic models

are comparable to the DC conductivity values of liquid silicon (≈ 104 Ω−1cm−1, [87]).

Figure 3.4: (a) Optical conductivity of insulating (black curve) and metallized (red curve)
models for (GeSe3)0.75Ag0.25 model computed using Kubo-Greenwood formula. Brillouin
zone sampling is done over 4 k-points and averaged over 3 directions to eliminate artificial
anisotropy. (b) DC conductivity as a function of Gaussian approximant δE (see text).
black squares: insulating model at x=015, red triangles: metallic model at x=0.15, green
diamonds: insulating model at x=0.25, blue circles: metallic model at x=0.25

3.3.2 Structure of Conducting Phase

We track the atomic rearrangements associated with the metallization of the network

to identify the microscopic origin of metallicity. Recalling that these are inhomogenous

glasses with phase separation into Ag-rich a-Ag2Se phase and residual Ge-Se backbone,

we note that the insulator-metal transition in these glasses can be viewed in terms of

relative ratio of these two competing phases. In particular, we make the following three
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observations associated with the insulator-metal transition: i) Growth of Ag-Se phase, ii)

Depletion of tetrahedral GeSe2 phase, and iii) Growth of Ge-rich phase in the host

network. Below we briefly comment on these three observations, a more detailed account

of structural rearrangements will be published later.

Growth of Ag-Se phase. We observe that the Ag-Se phase grows upon metallization.

Se-Ag correlation (rAg−S e = 2.67 Å) is found to increase from the insulating to metallic

model (see Figure 3.5, also the increase in peak P2 in Figure 3.6). For both Ag

concentrations, Se-coordination around Ag is found to increase from insulating to metallic

models. For x=0.15, Se-coordination around Ag increases from 3.47 to 3.72 (the later

value is an average over 5 metallic models, see Figure 3.5). For x=0.25, it increases from

3.23 to (on average) 3.53.

Figure 3.5: The Ag-Se correlation in insulating (black) and metallized (red) models at
two concentrations of silver (a) x=0.15 and (b) x=0.25. The histogram in inset shows
the Se-coordination around Ag atoms (nAg(Se)) for insulating (black) and 5 metallic (red)
confirmations at both values of x. The cutoff for computing coordination is 3.00 Å,
highlighted by an arrow.
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Depletion of tetrahedral GeSe2. The network in the insulating phase is dominated by

Se-rich tetrahedral Ge(Se1/2)4, accompanied by a competing Ag-Se phase. The fraction of

later phase is directly determined by Ag-concentration in the network. These two phases

appear as two distinct peaks in total radial distribution function (RDF) (Figure 3.6 and

3.7). Upon metallization, the growth of Ag-Se shifts the balance of stoichiometries in

network and the host network becomes Se deficient. At composition x=0.25 (plotted in

Fig. 3.6), the network in metallic phase is dominated by the Ag-Se subnetwork (peak P2).

The corresponding Ge-Se coordination number in metallic model is 3.22, slightly lower

than 3.40 in insulating model. These values are 3.28 and 3.43 respectively for x=0.15.

The correlation cutoff of 2.70 Å is taken to determine the coordinations.

Growth of Ge-rich phase in the host network. The host network of Ge-Se consists of

Se-rich tetrahedral GeSe2 and non-tetrahedral Ge-rich phases including the ethane-like

Ge2Se3 units. These subnetworks were reported in GeSe2 by Boolchand and coworkers

[88] and in ternary chalcogenide glasses by Mitkova and coworkers [89]. We find that

these Ge-Se stoichiometries have different bondlength distributions: Se rich phases

(nGe−S e ≥ 4) have bondlengths smaller than 2.55 Å whereas Ge-rich phases (nGe−S e < 4)

have bondlengths longer than 2.55 Å. In an insulating conformation, the former phase

dominates and registers an RDF peak at ≈ 2.40 Å (Fig. 6.6). For metallic conformations,

fewer Se atoms are available to Ge. This increases the fraction of Ge-rich phases and the

Ge-Se bondlength distribution shifts to longer distances. This is represented by a shift in

Ge-Se pair correlation function in Figure 3.6 (inset) and appearance of peak P3 in total

RDF. Due to increase in fraction of Ge2(Se1/2)6, Ge-Ge correlation peak appears around

3.5 Å in metallic models. We note that it is such a Ge-Ge signal in Raman scattering and

119Sn Mössbauer spectroscopy that led to experimental discovery of Ge-rich Ge2(Se1/2)6

phase in stoichiometric bulk GexSe100−x glasses [88].
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Figure 3.6: The total radial distribution function [g(r)] of the insulating and metallized
models (black and red curves respectively) at x=0.25. Note the bifurcated first peak
originates from Ge-Se correlation (P1 at 2.40 Å) and Ag-Se correlation (P2 at 2.67 Å). For
metallized model, peak P3 arises due to depletion of tetrahedral Ge(Se1/2)4 and formation
of Ge-rich Ge-Se phases.

3.3.3 Electronic Activity of Ag-Se Phase

Now we comment further on the role of the Ag-Se phase in conduction. It is well

known that the states around the Fermi energy are mainly Se p-orbitals ([90, 91], In

GeSAg: [92]). The electronic structure of metallic model projected onto its constituent

subnetworks (Ag-Se and Ge-Se) shows different electronic activity of Se-atoms in the two

subnetworks. We find that Se atoms in Ag2Se network have twice as much projection

around the Fermi energy than the Se atoms in Ge-Se network (Figure 3.8). This suggests

that a more concentrated Ag-Se network will enhance the conduction. Experimentally,

growth of Ag-rich nanocrystals in GeS2 matrix has been shown to enhance the electronic

conductivity [93, 94]. The Se-atoms in Ag-Se phase are found in atomic state (qS e ∼ 0)
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Figure 3.7: The partial pair correlation functions of the metallized models at x=0.15. Inset
presents these correlation functions for insulating models. The remaining Ge-Ge, Ag-Ag
and Ge-Ag correlations are noisy and are not presented here.

where as those in Ge-Se network are ionic with negative charge (qS e ∼ −1 or −2) (See

inset in Figure 3.8).

3.4 Discussion

In the more general context of oxides and chalcogenides, the states in the energy gap

are associated with oxygen or chalcogen p-states. An insulator-metal transition thus

involves phase separation of material into an oxygen or chalcogen rich phase embedded in

oxygen or chalcogen deficit matrix. Such a process has been experimentally and

theoretically demonstrated in amorphous gallium oxide [95] wherein a transition to a

metallic phase is shown to involve formation of O-rich Ga2O3 nano-crystals accompanied

by O-depleted Ga-O matrix. In the case of GeS2:Ag2S, it has been reported that the size of
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Figure 3.8: The density of states of metallic model projected onto Se-atoms in the two
subnetworks: Ag-Se subnetwork (black curve) and Ge-Se subnetwork (red curve). Since
these two subnetworks contain different number of Se atoms (23 and 59 for this plot),
an average was taken to enable comparison. Bridging Se-atoms are not included in the
calculation. The energy axis was shifted to have Fermi energy (ϵF) at 0 eV. The inset shows
Bader charges (qS e) for the same two groups of Se atoms. Black filled circles represent Se
in Ag-Se network, Red filled squares represent Se in Ge-Se network.

Ag2S nano-crystallites in a GeS2 matrix correlates directly with electronic conductivity of

the composite sample, and for sufficiently large nano-crystallites, approaches the

conductivity of Ag2S film [93]. The formation of Ag2S and a Ge-rich host network upon

the addition Ag atoms has been observed using Raman Spectroscopy [96] and this

supports our observation of formation of Ge-rich backbone upon metallization.

The observed conducting phase of GeSe3:Ag does not require Ag wires as often

supposed. The conductivity of our phase is still rather low, of order of 200 Ω−1cm−1, and

due to an impurity band formed at the Fermi level, associated with Se p-orbitals on certain

Se-atoms bonded to Ag-atoms. The impurity bands depend on the concentration of Ag

and phase separation. More discussion on the conduction through impurity bands and



60

resonant clusters [97] is presented in chapter 4. We note here that the observed weakly

conducting phases might correspond to recent observations by Chen and coworkers [98]

of intermediate-phase switching in GeSe2:Ag. Such intermediate conducting phase is

induced by applying a weak electrochemical bias and is observed before the onset of

Ag-nanowire formation.

The metallic and insulating phases reported here are an unusual example of

poly-amorphism. It is interesting to observe that amorphous phases that are energetically

similar can exhibit markedly different transport behavior.

3.5 Conclusions

Altogether, we have presented a direct simulation of conducting phase of CBRAM

material GeSe3Ag and it provides evidence of the conduction through interconnected

regions of Ag2Se phase in the glassy matrix [93, 94]. This chapter does not attempt to

describe the conduction through Ag-nanowires which may be the mechanism of

conduction in two terminal metal-electrolyte-metal devices [99]. It demonstrates the

existence of metastable amorphous forms (“poly-amorphism”) of the glass with

drastically different optical response. The observation that the DFT energies of these

states are only 0.04 eV/atom higher than insulating state suggests that these states might to

accessible. We also showed by direct computation that our gap sculpting method can be

an effective tool to explore/discover phases of matter with desired optical properties.
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4 Indirect Role of Silver Atoms in Electronic Transport

in GeSe3Ag Glass

The work presented in this chapter being prepared for publication: Prasai, K., Chen,

G., Biswas, P., and Drabold, D. A. Indirect role of silver atoms in electronic transport

in GeSe3Ag glass. In preparation.

4.1 Introduction

Electron transport in disordered semi-conductors is intricately connected with the

degree of spatial localization of electron states and various regimes of transport come into

play at various manifestations of disorder [100, 101, 5]. For solids of technological use,

this critically dictates the choice of stoichiometry, doping level, dimensionality and the

fabrication method as a whole. Despite the elaborate theoretical frameworks laid out for

such transport, computational tools are yet to be developed to help guide experiments on

real materials.

This discussion is highly relevant for chalcogenide glasses being used to develop

memory applications. An example of such memory application is called the

“programmable metallization cell” which is based on bias induced swift change in

conductivity in these materials [94, 34, 102]. These devices are shown to operate at low

voltage, provide high speed and excellent scalability and retention and yet are simple to

make. Various compositions of chalcogenides doped with silver or copper are shown to be

effective materials and have been built into functional devices. These glasses in their

as-formed state are well known semiconductors. The observed increase in conductivity by

many orders of magnitude upon the application of external bias cannot be explained by

ionic conduction alone. There are indications that there exists a transient electronically
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conducting phase and some studies have suggested that such phase involves conducting

pathways possibly made of metal atoms.

In chapter 3, we reported on direct simulations of insulator-metal transition in

GeSe3Ag glasses and showed that the transition to metallic phase is characterized by an

apparent “redistribution” of Se atoms from Ge(Se1/2)4 phase to Ag2Se phase [43].

Unmistakably, this points to the question: what role does Ag play in conduction? Or, put

differently, does the conduction proceed through Ag channels that are continuous from

electrode to electrode or does Ag have more indirect role in bolstering conduction of the

whole cell? From our point of view, it is important to examine these questions in order to

understand the formation and function of conducting channels in memory cells. There

have been many attempts in this direction and some experiments have been able to

identify Ag-filaments in conducting phase [103]. In this chapter, we provide important

insights into the microscopic processes behind conduction through density functional

simulations. We show that Ag atoms play an indirect role in transport, i.e. through the

formation of non-bridging and terminating Se atoms. By explicit calculations, we

demonstrate the existence of electronically resonant clusters and discuss the idea of

hopping transport as a possible mode of conduction. While the existence of Ag-nanowires

in conducting phase appears to be the consensus view, we show that Ag-nanowires of 2 to

3 atomic thickness don’t conduct. We’ll follow the results by a discussion of different

conduction regimes where these modes of conduction may play out.

We’ll center our discussion on non-stoichiometric glass: (GeSe3)1−xAgx, for varying

values of x. It is a preferred class of materials for CBRAM applications. Beyond a

threshold concentration, Ag atoms are shown to be highly diffusive and take part in ionic

conductivity. The system has been extensively studied, using experiments [104, 105, 106]

and simulations [14, 107, 90, 92, 108]. This family of silver doped chalcogenides can be

prepared either by melt-quench method or by photo-dissolution of silver into glassy host.
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Selenium rich stoichiometries have been shown to be phase separated into Se-rich Se2Ag

phase and Se-deficient Ge-Se backbone [30, 88, 109, 89, 93]. This glass shares many

attributes of the family of glasses called “network-former network-modifier”, with Ag

atoms (the cations) in Se-rich stoichiometries disrupting homogeneity of network and

triggering a phase separation into GeSe2 and Ag2Se. This leads to another interesting

angle to view this class of material i.e. as mixture of two extremes: GeSe2 (strongly glass

forming network glass) and Ag2Se (a fast ion conductor, Ag being the fast ion). The

distribution of Ag atoms within or relative to the network is a highly important and widely

researched topic [109, 107].

4.2 Methods

Here, we study (GeSe3)100−xAgx at 4 different concentrations of Ag, viz., x=10%,

15%, 25% and 35%. For each of these concentrations, we take a supercell containing 240

atoms. The volumes of the supercells are chosen such that their densities matches with the

experimentally measured values. We find that these glasses have been experimentally

studied for x= 10, 15, and 25. The experimental densities (shown in Table 4.2) are taken

from [81, 110]. For higher concentrations of Ag (i.e x= 35), we use extrapolated density.

We get a more accurate density by performing relaxation at zero pressure during the

simulation. Table 4.2 presents the details of the systems used in the simulation.

Table 4.1: System Stoichiometries and Densities

x Mol. Formula NGe,NS e,NAg ρ(gm/cm3)

10 (GeSe3)0.90Ag0.10 54, 162, 24 4.98

15 (GeSe3)0.85Ag0.15 51, 153, 36 5.03

25 (GeSe3)0.75Ag0.25 45, 135, 60 5.31

35 (GeSe3)0.65Ag0.35 39, 117, 84 5.52
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Total energies and forces we calculated using density functional theory (DFT) [19].

Plane waves of up to 350 eV were used as basis functions and PAW potentials [24, 25]

with gradient corrections due to Perdew-Burke-Ernzerhof [27] was used. The simulation

was carried out using Vienna Ab-Initio Simulation Package (VASP) [22, 23]. For systems

as big as 240 atoms, the energy landscape can be very complex and AIMD simulation

starting from a random structure may take very long time to reach a stable energy minima.

So, before starting AIMD, we performed complete melt-quench-relax cycle for each of

these configurations using the two-body classical potential of Vashishta et al [14]. The

resulting structures from these calculations were used as starting configuration for AIMD.

Figure 4.1: The structure factor of (GeSe3)100−xAgx models (solid red line) compared with
experiment (black squares) [81]. For the sake of clarity, vertical axis is shifted by 2 for
x=15 and by 4 for x=25.

The starting configurations were equilibrated at 2000 K for 4 ps and then were cooled

to 1200 K over 12 ps. Then, the models were equilibrated at 1200 K for 6 ps. These

models were quenched to 300 K over 18 ps. Then, all systems were equilibrated at 300 K

for 10 ps. Finally, the models are relaxed to their nearest energy minima using conjugate
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gradient algorithm. The resulting models closely reproduce the structural features (e.g.

structure factor, Figure 4.1) that are reported in the literature for these widely studied

materials.

4.3 Results

4.3.1 Spatially Resolved Conductivity

In one of its form, the Kubo Greenwood formula (KGF) [111, 79] for electronic

conductivity is written as:

σk(ω) =
2πe2!2

3m2ωΩ

N
∑

j=1

N
∑

i=1

3
∑

α=1

[F(ϵi, k) − F(ϵ j, k)]

|⟨ψ j,k| ▽α |ψi,k⟩|
2δ(ϵ j,k − ϵi,k − !ω)

(4.1)

We’ll show elsewhere how to produce a real space decomposition of the conductivity

[112]. Here, we take an empirical approach and approximate the spatial dependance by

substituting the matrix elements by the product qi(⃗r) × q j(⃗r) where qi(⃗r) (= |ψi(⃗r)|2)

represents the charge density corresponding to ith electronic state at position r⃗. Such an

expression clearly would not be the quantitative measure of the conductivity but would

rather estimate the likelihood of a point in space to take part in electron transport. This is

because the charge densities (complex squares of electron wave functions) directly

represent the spatial spread of the wave functions and the product of charge densities from

two electron states evaluate to higher values at points in space where the overlap of those

states is higher. The product is then modulated by electron distribution function and the

delta function to eliminate the overlaps that do not contribute to the conduction at a given

frequency. Taking only Γ point (k=0), we compute,
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ξω(⃗r) =
2πe2!2

m2ωΩ

N
∑

j=1

N
∑

i=1

[F(ϵi) − F(ϵ j)]

qi(⃗r)qj(⃗r)δ(ϵ j − ϵi − !ω)

(4.2)

For each ω, the above equation crudely highlights the “path” of electron transport. If

ξω(⃗r) is projected onto the atomic sites, those parts of the network would get maximum

projection (would “light up”) that contribute most significantly to the conduction at that

frequency. Figure 4.2 shows the transport active parts of the network for DC limit at

Ag-concentrations 10%, 15%, 25% and 35%.

The results indicate that the Se-atoms play the most active role in electron transport.

It is also interesting to observe that the transport active parts of the network form a cluster

and, at higher Ag concentrations, there seems to exist a transport channel that extends

through the entire length of the supercell.

4.3.2 Broken Chemical Order in Host Network

The network structure in the (network former)-(network modifier) family of glasses

is often described in terms of phase separated metal chalcogenide (or metal oxide)

embedded in host-network with higher glass forming tendency. In the case of Ge/Se/Ag

glasses, this manifests as phase separated Ag2Se in the glassy matrix of GetSe1−t where

the value of t depends on composition and is discussed here.

For homogenous continuous random network glass GeSe2, Ge is tetrahedrally

coordinated and t = 1/3. In a constrained glass network, there are local fluctuations in

Ge-environment. Boolchand and co-workers, through Raman and Massabauer

spectroscopy, showed that glassy GeSe2 shows intrinsic inhomogeneity by phase

separating into GeSe2 and Ge2Se3 networks [88]. Such inhomogeneity is also found in the

host network of ternary GeSeAg glasses [96, 89] and is highly dependent on
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Figure 4.2: The transport active parts of GeSe3:Ag models for Ag-concentrations of 10%,
15%, 25% and 35% at the DC limit at 700 K. Equation 4.2 is used to compute space
projected conductivity which is then projected on the atomic sites. Color nomenclature:
Red Se atoms, Blue Ag atoms and Black Ge atoms.

Ag-concentration. We recently reported that metallized GeSe3:Ag models show higher

fraction of Ge-rich phases [43].

We report here that such broken order in the host network has correlated bond-length

and Bader-charge distribution. It is observed that the Ge-Se bonds associated with

tetrahedral Ge sites tend to be short and those associated with Se-deficit Ge sites tend to

be longer. Figure 4.3 shows the correlation between Ge-Se bond lengths and the
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Bader-charge on the associated Ge-atoms. The Bader charge on Ge-atoms roughly

correlates with Se-deficiency around them. This is true both from valence-charge

arguments as well as from our nearest neighbor analysis.

Figure 4.3: The correlation between Ge-Se bond lengths and Bader charge on associated
Ge-atoms. Average Ge-Se bond length around each Ge atom is taken. A bond cutoff of
2.8 Å is taken to define the Ge-Se bonds. The broken circle encloses Ge atoms forming
ethane-line Ge2Se3.

We note here the following considerations. Although average bond lengths are

reported in figure 4.3, there is remarkable uniformity in bond lengths around each

Ge-atoms. The plot suggests that Se-coordination around a Ge-atom alone may not fully

characterize the Se-environment around those Ge-atoms and that the associated

bond-lengths may be more relevant.
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4.3.3 Electrical Activity of Se Atoms

We observe that Se-atoms play significant role in transport behavior of these glasses.

First, we observe that the states in the band edges are derived mainly from Selenium

p-orbitals as shown from the projected density of states (Figure 4.4).

Figure 4.4: The projected electronic density of states for (GeSe3)1−x:Agx with x=0.15. The
energy axis has its zero at the Fermi energy.

Se atoms exhibit wide range of bonding abilities, bonding with Ge to form host

network, bonding with Ag atoms to form Ag2Se phase and bonding with other excess Se

atoms to form Se-filaments. These bonding environments project different electronic

activity around the Fermi energy. To discuss this in familiar terms, we use the terminology

commonly used to describe oxygen atoms in common network-former/network-modifier

glasses (e.g. NaSiO3). We categorize Se-atoms bonded to 2 Ge atoms as ‘bridging’ Se

atoms. Similarly, Se-atoms bonded to one or no Ge-atom are referred here as
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‘non-bridging’ Se-atoms. The later group of Se-atoms either ‘terminates’ the GeSe

network (one-fold Se) or is more or less mobile and form Ag2Se phase/short Se-chains.

With this classification in mind, it is interesting to observe that the non-bridging Se atoms

are highly electronically active around Fermi-energy and are transport significant. We

make this point in figure 4.5 where we show the top projections of eight band-edge states

on to the atoms. It is clear that the non-bridging Se-atoms play a key role band edges.

Figure 4.5: The projected charges of band edge states onto the atoms. Eight bands in
the band-gap region are presented here. HOMO and LUMO represent the valence edge
and conduction edge respectively. Each rectangle in the histogram represents an atomic
site where the color is used to denote atom environments: Bridging Se-atoms (Red), Non-
bridging Se-atoms (Green and Blue, Green for Se atoms bonded with one Ge-atom and
Blue for Se-atoms not bonded to any Ge atom). Black and Orange colors represent Ge and
Ag atoms respectively. Only the atoms with highest contribution to the band up to 50% of
total charge of the band (i.e. 2e−) are shown.

This also aligns with the well-known observation that states deeper into the band are

more extended as can be noted from the higher number of atom projections used to amass

top 50% of the band charge for those states. We also note the asymmetrical localization on
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the two sides of Fermi level. Conduction edge states appear to be more localized than the

valence edge states. The states LUMO+1 and LUMO+2 have anomalous origins and are

derived from two strained tetrahedral Ge sites.

4.3.4 Modeling of Ag-Nanowires in Glassy Host

We now comment on the role of Ag-nanowires on electronic transport by taking the

approach of explicitly simulating the Ag-filaments in GeSe3Ag glass matrix using first

principles simulation. We take the model with 10% Ag and employ a constrained

dynamics to install a Ag-nanowire in the following way: The atoms in rectangular block

of 5.06 Å× 5.06 Å× 18.60 Å were identified as Ag. The cross-section of this block is

chosen in order to preserve the overall nGe to nS e ratio. The final stoichiometry of the

wire-matrix system is (GeSe3)0.84Ag0.16. This model is then annealed at 700 K for 5 ps,

then at 1000 K for 5 ps and finally quenched to 300 K in 4.5 ps. During the annealing and

quenching cycle, the initial Ag atoms in the rectangular block are constrained to move

only along the axis of block. The quenched structure is then relaxed to its nearest energy

minima using unconstrained conjugate gradient moves. The final model has a continuous

Ag filament across the center of the cell (figure 4.6) and the glassy backbone bonds well

with the filament so that no internal surfaces are formed in the boundary between the

filament and the matrix. The forces on the atoms are on the order of 10−2 eV/Å. The

volume is kept fixed since the density difference between the systems with x=10 and x=15

is small. The internal pressure in the model is found to be 0.02 GPa which is quite

acceptable value. For the sake of convenience, we label this model as ‘Model A’.

For the sake of comparison, we repeat the same process starting with the model with

15% Ag and model a nanowire in rectangular block of dimension 7.00 Å× 7.00 Å× 18.65

Å. The final stoichiometry of the wire-matrix system for this system is (GeSe3)0.74Ag0.26.

In the discussion that follows, we call this model ‘Model B’ (see figure 4.6).
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Figure 4.6: (Top left) Model A with Ag-filament viewed parallel to the axis of the filament.
(Top right) The central Ag filament in the model A. (Bottom left) Model B with Ag-filament
viewed parallel to the axis of the filament. (Bottom right) The central Ag filament in the
model B. Color nomenclature: Ge:Purple, Se: Green, Ag: Silver

We compute the electronic structure of the systems by sampling over 4 points on the

Brillouin zone. As expected, there is negligible K-dispersion since the size of the unit cell

is fairly large. Figure 4.7 and 4.8 show band structures of model A and model B alongside

homogenous models of comparable composition. Interestingly, we observe that

Ag-nanowire does not produce a metal-like DOS but rather all models show a well defined

band gap. We find that model A is slightly p-doped. The HOMO-LUMO gap in the model

with Ag-filament is 0.04 eV. The optical gap is 0.29 eV which is still smaller compared to

0.38 eV of model without the Ag-filament. For model B, the HOMO-LUMO gap is 0.43

eV which is smaller compared to 0.53 eV of the model without the Ag-filament. These
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gaps are calculated using GGA functional of Perdew-Burke-Ernzerhof [27] which are

commonly known for underestimating the gap.

Figure 4.7: The band structure of model A (right) compared with homogenous model with
close stoichiometry (left). The band structure on the left is of a homogenous model with
composition (GeSe3)0.85Ag0.15 and that on the right is of the model A (i.e the model with
Ag nanowire and with composition (GeSe3)0.84Ag0.16). The Fermi energy is at zero and
HOMO level is highlighted by red line.

We computed the conductivity of model A using Kubo Greenwood formula (Eq. 4.1).

In order to account for the discreteness of the density of states, we used Gaussian

broadening (△ E=0.05 eV) to replace the δ−function. The DC conductivity is calculated to

be ≈ 102 Siemens/cm for model A which is large compared to that of the model without

Ag-filament ≈ 10−6. We do not find anisotropy along different directions (α’s in Eq. 4.1).

Bader charge analysis for the Ag-filament model A finds the Ag atoms in the filament

in slightly positively charged state, similar to the Ag-atoms in the glass backbone (see

figure 4.9). Se atoms have various negatively charged to neutral states where as Ge atoms

are found in various positively charged state from Ge+1 to Ge+4.
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Figure 4.8: The band structure of model B (right) compared with homogenous model with
close stoichiometry (left). The band structure on the left is of a homogenous model with
composition (GeSe3)0.75Ag0.25 and that on the right is of the model B (i.e the model with
Ag nanowire and with composition (GeSe3)0.74Ag0.26). The Fermi energy is at zero and
HOMO level is highlighted by red line.

We probe the localization of the Kohn-Sham states in model A by computing inverse

participation ratio (IPR). IPR is defined as
∑

i a4
i /(
∑

i a2
i )2 where ai are projections of

eigenvectors onto atomic orbitals, as measure of localization of states. We find band edge

states to be localized (see figure 4.10).

4.3.5 Impurity Bands and Resonant Clusters

In order to understand the role the impurity states in model A might play in the

transport, we investigate the structural origins of these states. We observe that the

energetically close (nearly degenerate) doping levels in model A come from the same

parts in the network (See figure 4.11). This suggests that there is mixing between the

doping levels and these levels form an extended band. In such a system should enable

electronic conduction since an electron is more likely to find an overlapping state with
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Figure 4.9: Bader charge distribution for the model A. Black circles: Ge, Blue squares: Se
atoms in glass matrix, Red diamonds: Se atoms in the filament block, Orange triangles: Ag
atoms in glass matrix, Pink triangles: Ag atoms in filament

similar energy. The likely mechanism of conduction from this line of reasoning is the

hopping transport through the resonant clusters, discussed in more detail elsewhere [97].

4.4 Conclusions

We discussed that electronic conduction in GeSe3Ag glass proceeds through Se-Ag

network and not directly through Ag atoms as is usually assumed. By explicitly modeling

Ag nanowires in glassy matrix, we showed that Ag filaments of 2 to 3 atom thickness do

not conduct.



76

Figure 4.10: Localization of states in model A. The inverse participation ratio (IPR) of
electronic states in model A is plotted against the energies of those states. The Fermi energy
is at 0 eV and is indicated by broken line. Point to be noted is the degree of localization
of doping levels right above the Fermi level in energy axis. These are seen to be slightly
localized with IPR equal to ≈ 0.2. Note, in this formulation of IPR, 0 corresponds to
homogeneously spread state and 1 corresponds to maximally localized state.
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Figure 4.11: The resonant clusters in model A. The top 40 atoms (out of 240) contributing
to three doping levels with energy ϵF+0.055 eV, ϵF+0.096 eV and ϵF+0.150 eV are
presented in color. Those atoms that fall in top 40 of all three states (two of three states/one
of three states) are painted in dark blue (light blue/ice blue).
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5 Simulations of Silver-Doped Germanium-Selenide

Glasses and Their Response to Radiation

The work presented in this chapter has been published in Prasai, K. and Drabold,

D. A. (2014). Simulations of silver-doped germanium-selenide glasses and their

response to radiation. Nanoscale research letters, 9(1), 594.

5.1 Introduction

Chalcogenide materials are among the most flexible and useful in current technology.

Certain GeSbTe alloys are the basis of phase change memory technology [113] (now a

credible alternative to conventional FLASH memory) and DVDs [114]. Amorphous Se is

the active element for digital x-ray radiography [115], and metal-doped chalcogenide

glasses are among the best known solid electrolytes or ‘fast ion conductors’[116] and form

the basis for another quite promising class of FLASH memory devices, ‘conducting

bridge’ memory. The basic science of the material is just as interesting as the other

phenomena such as the optomechanical effect [117] and photomelting [118]. Recently, a

new application has emerged: the use of chalcogenide glasses for the detection or sensing

of radiation (a dosimeter) [119, 120]. The electrical conductivity is found to be

well-correlated to radiation dose [121]. With annealing, the damage is readily reversed so

that the device may be reused. This important discovery is presently empirically

understood, suggesting the need for theoretical research both to understand the basic

process and to aid in optimizing the materials for future device application.

In this chapter, we undertake the first simulation to understand the atomistics of the

response of chalcogenide glasses to highly energetic events. Like many other challenging

material problems, we find it helpful to use multiple methods, in this case both empirical

potentials, and ab initio techniques. We also have taken advantage of the contributions of
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others, such as the use of an appropriate ‘heat bath’ to handle the excess thermal energy

after the thermal spike [122]. We detail the disordering process from a knock-on event to

the subsequent recovery process. We show that the spike is indeed reversible upon

annealing and discuss the electron states near the Fermi level - those responsible for the

changes in (electronic) conduction after radiation exposure. The picture that emerges is

that the electronic transport is significantly determined by the connectivity of the Ag

subnetwork. Thus, if clusters percolate through the entire system, we have a network of

nanowires that provide a low resistivity. As these nanowires break, form, or otherwise

change, the carrier transport changes accordingly.

5.2 Methods

5.2.1 Model Formation

Simulations have been widely used to characterize amorphous materials and

satisfactory ab initio models of GeSeAg glasses for various compositions that have

already been reported [123, 124]. Molecular dynamics (MD) simulation is a natural

approach to simulate high-energy processes because MD offers detailed trajectories of the

atoms as the system evolves after the radiation induced event. The pitfall of MD is that it

is only as good as the force field used and it is as computationally costly as it is detailed.

Furthermore, large models are needed to realistically simulate radiation events in any

material and this greatly increases the computational cost.

Many simulations of radiation damage have been presented, with varying details and

system sizes ranging from 446 to 2.3 million atoms; the following is a highly incomplete

list [125, 126, 122, 127]. Early simulations applied many approximations like the binary

collision approximation (BCA) [128], linear interactions [129, 128], and others to reduce

the computational demand. Clever algorithms and parallel machines have enabled full

simulations on large models [127]. We used the potential of Iyetomi et al.[14] to model
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the interatomic attractions. This potential is simple in its form containing a Coulomb

interaction term, charge-dipole interaction term, and a short range repulsion term, and yet

commendable in its ability to predict wide range of properties of this material.

The primary model of a silver rich glass (with stoichiometry close to that used for a

detector) was fabricated as follows. We used a cubic supercell containing 5,184 atoms

with periodic boundary condition to represent bulk Ge3Se9Ag4 (the cell had 984, 2,888,

and 1,312 atoms of Ge, Se, and Ag, respectively). The model described in this work is

obtained by using the melt-quenching method [130]. Starting from a randomly placed

collection of atoms, we performed 105 steps of MD with constant NVE. Then the atoms

were given random velocities corresponding to a macroscopic temperature of 5,000 K and

were allowed to equilibrate for another 105 steps. The system was then cooled to 1,200 K

over 3.8 × 105 steps and equilibrated at 1,200 K for another 105 steps. The system was

then cooled to 300 K over 0.75 × 105 steps and equilibrated at 300 K for 105 steps.

Finally, the system was relaxed using a conjugate gradient algorithm. The MD simulations

described in this work were performed using the classical molecular dynamics simulation

package LAMMPS [15]. A time step of 1 fs was used throughout, except when variable

time steps were required.

This model faithfully reproduces many features of the material (see also reference

[14]). The total radial distribution function (RDF) given by this model is in reasonable

agreement with the experimental RDF [131] including a two-peak first neighbor feature in

g(r) (see Figure 5.1). Our model also reproduces the experimental nearest neighbor

distances of Ge-Se, Se-Se, and Se-Ag correlations [131]. It overestimates the Ag-Ag

correlation distance, but this can be understood considering the broad peak of Ag-Ag pair

correlation function (see Figure 5.2).

The first peak of the partial RDF of Se-Ag displays a companion alongside the first

peak in total RDF. The Se-Ag interatomic potential has a shallow minimum near the
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Figure 5.1: Radial distribution function (RDF): models and experiment. The total RDF of
our model compared with experimental values for same composition (the red circles) from
reference [131].

Se-Ag correlation distance, whereas all other interactions of Ag-atoms are repulsive. As a

result, Ag atoms are very mobile in the network and Se atoms see high coordination with

respect to Ag. The exceptional mobility of Ag atoms with respect to the host atoms is a

widely reported phenomenon [90, 14, 132], and the basis of many applications, and even

the accelerated crystallization of phase-change memory materials [133]. The

mean-squared displacement (MSD) of atoms calculated for our model also predicts the

high mobility of silver at all temperatures below the melting point of the material.

Figure 5.3 shows the MSD for Ag atoms at different temperatures. The diffusion

coefficients and conductivity calculated using the total MSD of the system compare
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Figure 5.2: Partial correlations. The partial pair distribution function, g(r), of our model.
Note the weakly defined correlation of Ag-Ag interaction.

favorably with the corresponding experimental and ab initio values reported for most

similar system as ours (see Table 5.1).

Table 5.1: Diffusion Coefficients and Ionic Conductivity

D(cm2/s) Conductivity ( Siemens/cm)

This work Ref [123] This work Ref [123] Expt [134]

300 K 4.05e-7 1.16e-8 0.0989 5.3e-4 7.5e-5

700 K 2.33e-6 1.20e-5 0.2436 0.235 0.0657

1,000 K 6.84e-6 2.53e-5 0.501 0.347 0.2584
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Figure 5.3: Silver dynamics and diffusion. Mean squared displacement of silver at different
temperatures. The size of the simulation box is 50.86 Å.

5.2.2 Damage Simulation Using Thermal Spike

We carry out a thermal spike simulation using the model above. The damage inflicted

on a material by high-energy radiation starts with a sudden transfer of kinetic energy from

the incoming particle to an atom or a group of atoms that happen to suffer a collision with

the incoming particle. For incident particles of energy in the range of MeV, the first

interaction with the atoms on the target is entirely ballistic and the detailed role of

interatomic potential between the impinging projectile and the target can be neglected. So,

following Rubia et al.[126], we modeled the onset of radiation damage by igniting a

thermal spike at the center of the supercell. We defined a sphere of radius 2.5 Å located at

the center of the supercell, i.e., at d/2, d/2, and d/2, where d is the size of the cubic

supercell to receive the thermal spike. For the particular configuration we modeled, this
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sphere contained two atoms. These two atoms were given an initial velocity consistent

with 1 MeV of energy, and the rest of the atoms were assigned a velocity distribution

associated with a temperature of 300 K. These conditions are thus intended to mimic a

damage event at 300 K with the center two atoms representing the primary knock-on

atoms (PKAs). The system was then allowed to evolve. For an isotropic material like

GeSeAg and energy of PKA being as high as MeV, the direction of the initial velocity of

the PKA should have no observable effect on the damage production.

In view of the large velocity imparted to the atoms and the unknown behavior of the

empirical potential under extreme conditions, we used a variable time step as in [135]. To

avoid the diverging cascade of damage from bouncing back from the boundary, we used a

damped outer layer of 0.5 Å thickness. The velocities of the atoms falling in this

boundary region were rescaled at every dynamical step [136]. The schematic diagram of

the simulation setup is shown in Figure 5.4.

5.3 Results

Immediately after the detonation of a thermal spike at the center, the hot atoms’

trajectories resemble a projectile, and they pass through the network transferring huge

amount of momentum to the atoms along their trajectory. These recipients of momentum

get knocked from the network and, in turn, start moving like a projectile, thus creating a

cascade. At this stage, the velocity of the PKA is highly non-canonical as indicated by the

observation that temperature of the system excluding the PKA lags behind the temperature

of the whole system for a brief period of time (see Figure 5.5). An animation tracking the

positions of atoms and the average temperature of the system reveals rapid local melting.

The average temperature of the system remains above the melting point of GeSe3Ag

(approximately 1150 K, [131]) for 11.9 ps. To visualize radiation damage inflicted on the

network, we present snapshots of a slice of the supercell containing central 6 Å of the
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Figure 5.4: Schematics of simulation box. Diagram showing the regions of a simulation
box where the thermal spike was modeled (the central circle), where the velocity
rescaling was applied (the outer boundary), and where the normal molecular dynamics
was performed.

simulation box at different times after the detonation (Figure 5.6). The damage is most

conspicuous at 2.25 ps, and the image clearly shows the formation of voids and internal

surfaces. At 10 ps, the system can be seen returning to its initial structure as also indicated

by first peak of total RDF gaining height around that time.

With the onset of local melting, the system loses its short-range order. The temporal

evolution of the RDF in Figure 5.7 shows an interesting recovery. The short-range order

can be seen evolving continuously with the first peak gaining height and the first minimum

continuously deepening. The evolution of second peak follows. The hump in the first peak

originating from Se-Ag coordination, however, does not reappear as late as 50 ps.
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Figure 5.5: Evolution of the thermal spike. The logarithm of the average temperature (top
box), logarithm of temperature of the hottest atom in the system (second box from top),
logarithm of temperature of PKAs (third box from top), logarithm of force on the atoms
(fourth box from top), and the size of largest cluster in the system (bottom).

To investigate the effect of radiation events on the phase separation of Ag atoms, we

performed a cluster analysis of Ag atoms over the entire evolution of damage. We defined

a cluster as a group of all atoms lying within a cutoff distance from at least one other atom

belonging to the same cluster. We chose a cutoff distance of 3.7 Å (the Ag-Ag correlation

distance is 3.55 Å) to define the cluster. Defined in this way, the initial configuration has

one large cluster of about 750 atoms and other numerous smaller clusters. At just 2 ps into

the damage evolution, the clustering of Ag is lost and the cluster distribution at this point
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Figure 5.6: Damaged snapshots: Snapshots of central 6 of the simulation box (a) before
the event, (b) at 2.25 ps after the event (c) at 10 ps after the even (d) at 50 ps after the event
(fully equilibrated). The temperature drops below the melting point at around 12 ps.

essentially resembles a random configuration. The clusters, however, begin to grow as the

network rearranges and recovers its initial connectivity (see Figure 5.8). The size of the

biggest cluster in the network hits its minimum between 1.6 and 2.6 ps (see Figure 5.5).

This is an interesting observation in that it lags behind the time the system has the highest

temperature. We observe that the electrical conductivity presumably depends sensitively

on the connectivity of the Ag subnetwork, the number, and the structure of the Ag

filaments.

We performed ab initio calculation of the electronic densities of states (EDOS) of a

648-atom model prepared using the same empirical potential and the damaged snapshots
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Figure 5.7: Evolution of RDF. The temporal change in total RDF of the system after the
damage event. The features at the beginning are largely recovered after approximately
20,000 steps in the detonation-healing process. The RDF values for the first 1,000 steps
after the detonation are highlighted in a separate band at the bottom. Note the peak values
in the beginning and loss of the second peak of the first coordination.

of this model. The size of this model is a compromise between being large enough for

damage production and being small enough for an ab initio calculation. Our calculations

and reference [14] have confirmed that the 648-atom model is statistically similar to the

5184-atom model we discussed above. EDOS calculation is done using plane-wave basis

code VASP [22, 23]. Plane waves of up to 350 eV and PAW potentials were used [24, 25].

EDOS and inverse participation ratio (IPR) (a measure of the spatial localization of

the Kohn-Sham electronic states) of our 648-atom model is plotted in Figure 5.9. A

comparison with EDOS from an ab initio model [123] reveals that our model lacks an

energy gap though there are fewer slightly localized states in the expected gap region.

Tracing the structural origin of these states, we note these are p-orbitals localized around

Se atoms that are under coordinated with respect to Ge atoms (either one-fold or no Ge

coordination). Our calculation on a smaller 100-atom model of [123], prepared using first
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Figure 5.8: Cluster size distribution. The distribution of different sizes of Ag-clusters in
system at the beginning, at 2 ps, at 5 ps, at 10 ps and in a random collection of Ag atoms.
Vertical axis is in shifted logarithmic scale.

principles method, also shows that gap states are contributed by Se atoms that are

under-coordinated with respect to Ge atoms.

We also analyzed the evolution of the electronic structure as the system passes

through damage and restoration (see Figure 5.10). The damaged structures lead to gap

states arising from under-coordinated Se atoms. It is interesting to note that the electronic

structure recovers very quickly compared to the network itself. The RDF evolution of

Figure 5.7 suggests that although the first peak and first minimum begin to take qualitative

shape very early, the network attains similar structural order as the starting configuration

as late as 25 ps. The electronic states however show a remarkable healing and reversibility

even at 10 ps after the incidence of radiation. This naturally points to an interesting

physics underlying the damage recovery that some features of network recover early
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Figure 5.9: Electronic density of states (EDOS) and inverse participation ratio (IPR): The
black curve shows EDOS and the green drop lines represent IPR (a measure of spatial
localization of states) of 648-atom models obtained using empirical potential of reference
[14]. Fermi level is at 2.01 eV.

whereas some others (eg., the Se-Ag correlation) are not recovered even after some

equilibration of the system.

5.4 Conclusions

This paper is the first word on the atomistic processes underlying the fascinating

experiments and device of Mitkova and coworkers [119, 121]. To fully realize the

potential of our approach, many issues such as cell size, composition, details of the

modeling of thermal spikes (and subsequent relaxation), and material composition must

be explored. Observables like the transport and optical properties should be extracted at

representative moments in the simulation. Nevertheless, this work reveals key aspects

seen in the experiments including a remarkable reversibility upon annealing. We show

that judicious use of the empirical potential of Iyetomi et al [14] leads to a credible model

of the dynamical processes and correctly reproduces many aspects of the material. Ab

initio methods are an important tool to augment this work and to understand its limitations
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Figure 5.10: The evolution and reversibility of electronic structure. Electronic density
of states of six instantaneous configurations of the model at different times with respect
to damage event. The model structure and damaged structures were produced using
empirical potential, and the electronic structure was calculated for these structures using
first principle methods. Note the high degree of reversibility (comparing t=0 and t=50 ps).

and the electronic and optical properties. We have not yet modeled the conductivity of the

system. This is complicated by the existence of both ionic and electronic conductivities

for some parts of the simulation. Realistic calculations are currently being formulated

(chapter 4 and reference [112]).
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6 Electrons and Phonons in Amorphous Semiconductors

The work presented in this chapter has been published in Prasai, K., Biswas, P., and

Drabold, D. A. (2016). Electrons and phonons in amorphous semiconductors.

Semiconductor Science and Technology, 31(7), 73002-73015.

6.1 Introduction

Amorphous materials lack long-range structural order. For electrons and phonons in

amorphous materials, the wave functions and classical normal modes may be localized,

i.e. confined only to a finite volume of space. This is in contrast with any crystals, for

which Bloch’s Theorem applies and it is clear that all electron or vibrational states are

extended (though of course not necessarily uniformly so). The localized states occur in

spectral gaps in the electron or vibrational density of states. Any physical process that

involves these localized states will be markedly different than for the extended states of

translationally invariant systems.

In this chapter, we focus on one substantial issue – the interplay between the

electronic properties (electronic states and energies) and the atomic coordinates (and

associated motion of the atoms when in or out of thermal equilibrium). This linkage

between the electronic and ionic degrees of freedom is described by the electron-phonon

coupling (EPC) and plays a crucial role in determining thermal and optical responses of a

solid to light and charge-carrier transport. We explore the electron-lattice coupling using

current tools of first-principles computer simulation. We choose three materials to

illustrate the phenomena: amorphous silicon (a-Si), amorphous selenium (a-Se) and

amorphous gallium nitride (a-GaN). In each case, we show that there is a strong

correlation between the localization of electron states and the magnitude of

thermally-induced fluctuations in energy eigenvalues obtained from the density-functional

theory (i.e. Kohn-Sham eigenvalues). We provide a heuristic theory to explain these



93

observations. Next, we explore the consequences of changing the charge state of a system

as a proxy for tracking photo-induced structural changes in the materials.

6.2 Theory

The framework underlying these calculations is the many-body (electron and

nucleon) Schrödinger equation. The first essential approximation is the

Born-Oppenheimer or adiabatic approximation, which enables the decoupling of the

electrons and phonons into separate quantum many-body problems. Still prohibitively

difficult, we then make the assumption that the lattice dynamics may be treated classically.

In practice, this means that the nuclei move in a potential determined by the electronic

structure of the system (computed for that set of instantaneous atomic coordinates). Like

others, we approach the many-electron problem using density functional theory in the

local density approximation [137, 19]. Then, with specified initial conditions, we evolve

the positions of the nuclei for a short time (of order 1 fs), obtaining updated coordinates

and thus a new electronic Hamiltonian, with a new force field, and so the dynamics

continues. Yet another approximation is to treat the Kohn-Sham orbitals as quasiparticle

states, and we take the density of electron states to just be the density of Kohn-Sham

eigenvalues. While these are substantial approximations, the resulting dynamics are

reliable, as seen by direct comparisons to inelastic neutron scattering measurements.

These are standard assumptions used in current ab initio molecular dynamics simulations.

The simulations in this work were carried using the plane-wave code, Vienna Ab initio

Simulation Package (VASP) [22, 23], in the local density approximation (LDA) [26].

Although we carry out first principles calculation for rest of the chapter, here let us

consider an orthogonal tight-binding prescription for the electronic structure and the

forces for the simplicity of equations. In this picture the ionic dynamics are determined by
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Newton’s Second Law (in the form of 3N coupled nonlinear ordinary differential

equations):

mα
d2Rα

dt2 = −
∂Φ(R1,R2, ...,R3N)

∂Rα
(6.1)

where,

Φ(R1,R2, ...,R3N) = 2
∑

iocc

λi(R1,R2....R3N)

+ U(R1,R2....R3N) (6.2)

Here, Φ is the total energy, a function of the atomic coordinates Rα, λi are the energy

eigenvalues for the tight-binding Hamiltonian H (Hψi = λiψ), the sum over occupied

eigenvalues is the electronic contribution to the total energy (the so-called band-structure

energy), and U is a short-range repulsive potential between ions. The greatest complexity

emerges in Eq. 6.2, for which the computation of the energy eigenvalues λ requires a

matrix diagonalization, so that the dependence of Φ on Rα may take a highly complex, and

nonlocal and non-analytic functional form. Equation 6.1 represents the influence of the

electrons on the particle coordinates in the form of a second-order differential equation,

the second equation identifies the functional dependence of the total energy in terms of the

electronic structure.

Equations 6.1 and 6.2 highlight the role of the Hellmann-Feynman derivatives,

∇αλi =
∂λi(R1,R2, ...,R3N)

∂Rα
= ⟨ψi|

∂H(R1,R2, ...,R3N)
∂Rα

|ψi⟩, (6.3)

which are gradients of the electronic eigenvalues. The result is particularly useful

because the RHS is easily computed and necessary for any molecular dynamics simulation

based on an interatomic potential derived from electronic structure. Since they are

gradients, they represent the direction of the most rapid increase of the eigenvalues in the
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configuration space. These gradients have special utility for modeling of photoresponse

[138] and computational gap engineering [40].

6.2.1 Lattice Dynamics and Electronic Fluctuations

To appreciate the difference in electronic (and optical) properties between crystals

and semiconductors, we begin by addressing the time evolution of the Kohn-Sham (KS)

eigenvalues from molecular-dynamics simulations as shown in Fig. 6.1.

Here we show the fluctuations of the KS eigenvalues at room temperature (300 K) in

crystalline Si and amorphous Si. The thermal fluctuations of the KS eigenvalues are

considerably larger for the amorphous system (a-Si) than for the crystal (c-Si), and the

degree of fluctuation is obviously energy-dependent. It’s also apparent that the tail states

have a large fluctuation that ‘fills in’ much of the gap region. The energy scale of the

problem is the thermal energy kBT , of the order of 0.025 eV at T=300 K. While this value

roughly characterizes the magnitude of fluctuations observed for the crystal, the thermal

excursions of the Kohn-Sham states may be significantly larger (more than a factor of 10)

near the Fermi level. Further, the fluctuations decay in amplitude as we move away from

the conduction or valence band edges (far from the Fermi level) to a region where the

states are normally delocalized. This leads to the conclusion that localization of a given

eigenstate amplifies the fluctuations for the eigenvalue associated with that state.

6.2.2 Electron-Phonon Coupling, Eigenvalue Fluctuations and Localization

A crude derivation of electron phonon coupling (EPC) has been presented in [4] and

is summarized below. EPC, denoted by Ξn(ω), has been shown to be given by

Ξn(ω) =
3N
∑

α=1

⟨ψn|
∂H

∂Rα
|ψn⟩ χα(ω) (6.4)
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Figure 6.1: Thermal fluctuations of Kohn-Sham eigenvalues in the vicinity of the Fermi
level for a 216-atom model of c-Si (top) and a-Si (bottom), both at 300K. The natural
energy scale for the lattice in equilibrium is kT ≈ 0.025eV , not far from what is seen for
c-Si. The fluctuations in a-Si near the Fermi level can be ten times this. Here (and it the
rest of the chapter, we employ the Γ approximation. A nearly universal approximation for
semiconductor models with more than 100 atoms is the Γ-point approximation. Electron
states are computed only at k = 0, from which total energies and forces are computed based
upon the assumption that the bands are nearly flat (with respect to k dispersion) for such a
large cell. In a similar way, the density of states is usually taken at Γ only. It is noteworthy
that for the 216-atom crystal cell there is a “gap” between ≈ 5.4 and 6.0 eV, appearing only
because we did not integrate over the Brillouin zone of the cell (that is, we sampled only the
Γ point), a sobering reminder of how slowly we approach the thermodynamic limit from an
electronic perspective [139]!

where ψn is the wave function of nth electron state, H is the Hamiltonian (i.e.

Hψn = λnψn), χα(ω) is the normal mode with angular frequency ω and the α’s are the

indices for the 3N degrees of freedom.



97

Inverse Participation Ratio (IPR) provides an estimate for the degree of localization

of a wave function. A large value of IPR reflects a spatially compact or localized state,

whereas a small value indicates an extended state. Here, the IPR, In is computed as

In =

∑

i a4
in

(
∑

i a2
in)2

(6.5)

where the ain is the projection of eigenfunction ψn onto ith basis vector. In this work,

projections of states onto atomic s, p and d orbitals (provided by VASP) are used.

In reference [4], using a simplified framework to describe electron-phonon coupling,

the following empirical relations have been derived:

Ξ2
n(ω) ∼ In, (6.6)

⟨δλ2
n⟩ ∝ In. (6.7)

where δλrms is the root mean squared fluctuations in eigenvalues as given by

δλrms =

√

λ̄2 − (λ̄)2
. (6.8)

In equation 6.8, the raised bar means average over the simulation at constant

temperature T . In the course of analyzing new simulations for this chapter, we noted that a

more general (closer) linkage between localization I and thermal variation of eigenvalues

of the form

δλrms = αĪ + β, (6.9)

where α and β are constants that depend on the type of material. The value of α gives the

‘amplification factor’, a measure of how strongly the lattice vibrations affect electronic
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energies of localized states. One may suppose that parameter α is a partial indicator of the

TCR of a material doped into the fluctuating states.

6.2.3 Structural Change from Electronic/Optical Modification

Topological or chemical irregularities in amorphous networks lead to localized

electron states in the gap or in the band tails. If such a system is exposed to light of

appropriate wave length, then it becomes possible for the light to induce transitions of

electrons from the top of the occupied states to low-lying unoccupied (conduction) states.

Such a process is explicitly non-equilibrium and the response suffered by the system is of

key interest. Here, we will simply assume that a photo-induced promotion of an electron

occurs, by depleting the occupied states of one electron forming a hole and moving the

electron to the bottom of the unoccupied conduction states. We will not dwell on the

system specific details here but instead describe the short time response of the such

systems suffering an occupation change and in particular the case of structure changes

from placing an electron at the bottom of the conduction edge. We discuss this for a-Si

and a-Se. Such a change in occupation results in a change of the Hellmann-Feynman

forces leading to structural rearrangements, either negligible or significant, depending on

the flexibility or stability of the network, and the localization of the states (and EPC). The

timescale associated with this relaxation from occupation-induced changes are short (e.g.

a few phonon periods), which can be exploited to develop novel applications in solids

involving ultrafast processes [140].

6.3 Results

In the following, we present results from molecular dynamics simulations of a-Si,

a-Se, and a-GaN to link the thermal variation of Kohn-Sham eigenvalues to temperatures

and static properties of the eigenfunctions like inverse participation ratio (IPR). The first

two materials are covalent, and the third is significantly ionic. Amorphous selenium has
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the feature that the states near the Fermi level are built from p-orbitals with associated

phenomena like valence alternation [141, 142, 138]. Amorphous silicon has band tails

built from linear combinations of valence s and p states of bonding and anti-bonding

form. On the other hand, a-GaN is partly ionic semiconductor in which the valence and

conduction states involve quite different hybridizations, with the conduction edge

consisting primarily of mixtures of both Ga and N s-states. The conduction states of

a-GaN are less localized than the valence states, presumably because these states exhibit

little dependence on local bond-angle disorder – because of the isotropy of the s-orbitals

from which the eigenstates are built. Surprisingly, a-GaN also displays an essentially

extended midgap state.

Figure 6.2: Electronic density of states (EDOS) and inverse participation ratio (IPR) for
a-Si, a-Se and a-GaN. The black curves represent the EDOS and the orange drop lines
represent IPR. The dotted lines represent the position of Fermi level for each model.The
models being represented in the figure are described in the sections to follow.

6.3.1 Amorphous Silicon

Here, we employ a 216-atom continuous random network (CRN, [9]) model of a-Si

due to Djordjevic et al [11, 57]. We’ll refer to it as ‘WWW model’ throughout the chapter.
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band edge states). We find that thermal fluctuation modulates the bond lengths and bond

angles, resulting in a reshuffling of the atomic contributions to electronic states. If these

states are already localized, such reshuffling can induce dramatic changes to the extent of

localization. Inspection of figure 6.3 suggests that at a time near 100 fs, the conduction tail

states become momentarily very localized. As an illustrative tale of variation in electronic

structure induced by thermal disorder, we find that at this instant, the states are localized

around long bonds or around broken bonds. We find that a pair of defects consisting of one

dangling bond (a broken bond) and one floating bond (a five-fold bond) that are adjacent

to each other are formed around this time. In figure 6.4, we show the charge density of the

three lowest conduction tail states for this particular short-lived conformation. We note

that these three states are largely localized around the newly formed defect pair, and also

around long bonds in the network. Figure 6.4 shows the bonds longer than 2.5 Å and its

evident that these conduction tail states have large projections onto these sites. Note that

the long bonds in the cell show a spatial correlation among themselves forming a filament

like pattern [143, 144]. It is notable that this defect is thermally induced and transient.

After 200 fs, we see short-lived surges in the extent of localization of tail states and these

surges correspond to various thermally induced defects and bond length fluctuations.

In figure 6.5, we see that there is a linear correlation between the RMS fluctuation of

the eigenvalues and the the IPR (localization), confirming equation 6.9. To get a sense for

the role of temperature dependence and a broader sense of the spectral dependence (of the

general linkage between fluctuation and localization), see figure 6.6. Its is observed that

the band tail states fluctuate far more than the deep states and that the spectral fluctuation

increase with increase in temperature as is also clear from the discussion.

In a-Si:H, there is an extensively studied process of light-induced photo-degradation:

the Staebler-Wronski effect, in which light exposure leads to the creation of charge carrier

traps, presumably from defects created by the light exposure. This has been atomistically
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Figure 6.4: The combined charge density of lower three conduction states when these states
are most localized. This corresponds to t = 100 fs in 6.3. Figure shows these states are
most localized around the defect atoms (represented in color, purple: 5-fold, red: 3-fold)
and around long bonds (bonds longer than 2.5 Å are shown as red sticks in the figure).

modeled by Fedders and coworkers [145]. The idea was to mimic photo-excitation by

creating an electron-hole pair and tracking the creation and annihilation of structural

defects. The scheme can be understood to be a sophisticated local heating approach, with

the feature that the intensity of the local heating is critically determined by the

electron-phonon coupling and the Hellmann-Feynman forces (equation 6.3) associated

with the occupation change. Here, we have have conducted constant temperature MD

using VASP [22, 23] and promoted an electron to the bottom of the conduction states. The

LUMO drops precipitously into the gap, nearly closing the gap momentarily near t = 600

fs (see figure 6.7). This change is accompanied by creation and annihilation of short-lived

geometrical defects in the network. We have empirically observed that there tends to be a
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Figure 6.5: The correlation between RMS fluctuation of eigenvalues around the gap and
corresponding inverse participation ratio (IPR) at 300 K for the electronic ground state in
a-Si (Eq. 6.9). The bold red line is the linear fit of the plotted values. The fitted value of α
(Eq. 6.9) for the linear fit is 0.26.

net increase in number of geometrical defects as a result of occupying a conduction state.

Figure 6.8 shows the thermal fluctuation of number of defects at 300 K for the time

interval that corresponds to the energy fluctuations in figure 6.7. A plausible explanation

of this observation is that the lowest conduction state is already localized around

coordination defects and long bonds. Occupying that state with an electron causes these

atoms to feel the Hellmann-Feynman force coming from the newly occupied state and
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Figure 6.6: Temperature dependence of mean squared fluctuation of eigenvalues. The
fluctuation is calculated over constant temperature MD at 300 K and 700 K. Symbol εF

represents the position of Fermi energy. Note that the band edge states fluctuate more than
the deep states. Also, the temperature modulation of the energy is higher for the tail states
than for the deeper states.

hence these atoms become much more active. We observe that the states in excited system

are much more localized than those in the unexcited system.

6.3.2 Amorphous Selenium

Amorphous selenium is different from a-Si in that its network is less constrained,

which may be expected to play out in electron-phonon couplings of localized states. We

make use of a 216-atom model of Zhang and Drabold [138] and relax it using LDA in

plane wave basis. The model represents the material reasonably well as reported in earlier

work [138, 140]. It is notable from figure 6.2 that the density of levels is higher near the
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Figure 6.8: Thermally induced geometrical defects in excited and unexcited a-Si. (a) and
(c) are the evolution of defects under constant temperature MD at 300 K in unexcited 216-
atom a-Si. (b) and (d) are those for an excited system. Coordination is defined by a radius
rc = 2.7Å

In figure 6.10, we examine the correlation between the RMS variation of the

eigenvalues and the thermally averaged IPR as in Eq. 6.9. Here, we see a strong

correlation between the fluctuation of energy and the spatial localization of the state. We

observe separate correlation for conduction states and the valence states. In relation to Eq.

6.9, we note that the ‘amplification’ factor α for conduction states is twice as big as for

valence states. Figure 6.11 indicates once again that there is an unmistakeable connection

between localization and electronic response to phonons. We note, as in figure 6.6, that

the fluctuation of localized tail states is significantly higher than that of the extended

valence and conduction states.

In figure 6.12, we consider the non-equilibrium (adiabatic) time development of the

system – the response to adding a carrier to the LUMO state. We note that the LUMO

plunges nearly 1 eV across the gap in a time of about 400 fs (see figure 6.13 to follow the
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Figure 6.10: The correlation between RMS fluctuation of eigenvalues around the gap
and corresponding inverse participation ratio (IPR) in a-Se (Eq. 6.9). The fluctuation is
calculated over constant temperature MD at 300 K. Note that the fluctuation is higher for
conduction states than for valence states. The correlation breaks neatly into two “branches”,
one for valence and one for conduction tail states. The green and blue lines represent the
linear fit of the plotted values. The fitted value of α for the linear fits are 0.15 for valence
states and 0.30 for conduction states.

is that the valence tail is more localized than the conduction tail. The reason for this is that

the valence tail is susceptible to bond angle disorder whereas the conduction tail is more

sensitive to bond length disorder (which is comparatively mild) [146]. In figure 6.14, we

note that the valence states are densely packed together with notable fluctuations right at

the band edge. Remarkably, a-GaN displays an essentially extended mid-gap state (see

figure 6.2). This is of significant interest, since such states are unknown in covalent
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Figure 6.11: Temperature dependence of mean squared fluctuation of eigenvalues in a-Se.
The fluctuation is calculated over constant temperature MD at 300 K. and 700 K. Symbol
εF represents the position of Fermi energy. Note, in addition to the observations in Fig. 6.6,
that deep states are virtually unaffected by temperature whereas the edge states see strong
modulation.

systems like those discussed earlier. As we have suggested elsewhere, these distinctive

extended states must yield better electronic conduction than in covalent systems [78, 146].

What is also of interest is the meandering conduction state (starting at near 4.5 eV at

t=0), which shows a thermal dispersion of nearly 1 eV, the largest we have noted in any of

these systems. In this case, we see a first example contradicting the general rule “more

localized implies more fluctuation”, clearly seen in figure 6.15. The linear correlation is

remarkably well maintained, but again split into different branches for valence and

conduction edges. Within a given band – conduction or valence, the rule of linear

correlation between IPR and RMS fluctuation is preserved. The partitioning into two

branches isn’t surprising since hybridization of the eigenstates near the two band edges is

quite different for GaN, suggesting that in general the two edges need to be treated
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Figure 6.13: The evolution of HOMO and LUMO states of a-Se. The ground state
represents the constant temperature MD at 300 K whereas the excited state refers to similar
MD run when an electron is promoted to conduction band.

estimate for the fluctuation of an ideally extended (I=0) state always of order or a bit

smaller than kT .

6.4 Conclusions

We discussed the electronic response to atomic motion (by treating the latter

classically) and the structural response of a system to an electronic modification. In a

topologically-disordered semiconductor, we find that the EPC is strongly

energy-dependent, and significantly larger for localized states than extended states. This

energy dependence can lead to useful anomalies in transport (e.g. high Temperature

Coefficient of Resistivity (TCR) behavior in doped a-Si:H) and at least a partial

explanation for the Meyer-Neldel rule or compensation law [147]. It also explains the

strong photo-response of amorphous semiconductors and glasses (e.g. photo-induced

defect creation in a-Si:H or Staebler-Wronski effect [148]).
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Figure 6.14: Thermal fluctuations of Kohn-Sham eigenvalues near the gap in GaN. The
eigenvalues are evolving under constant temperature at 300 K. Note the energetically

itinerant conduction state level near 4.5 eV at t=0 and the extended mid-gap state near

3.5eV at t=0. The Fermi level at t=0 is at 3.13 eV

In conclusion, we have carried out an array of accurate thermal MD simulations of

realistic models of a-Si, a-Se and a-GaN. We have demonstrated a strong correlation

between localization and thermally-induced modulation of Kohn-Sham eigenvalues. We

report a new correlation (Eq. 6.9) that works for all three highly distinct materials. The

value of this observation lies in its generality across systems with dramatically different

chemistry and short-range order. We reveal the effects of changes in cell charge states, as a

necessary ingredient to model light-induced changes in such materials.
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Figure 6.15: The correlation of RMS fluctuation of eigenvalues around the gap and
corresponding inverse participation ratio (IPR) in GaN, as described by Eq. 6.9. The
fluctuation is calculated over constant temperature MD at 300 K. Note that the fluctuation
is higher for conduction states than for valence states. As was the case in Se, the correlation
is observed in two separate branches for the conduction and valence edge states. The green
and blue lines represent the linear fit of the plotted values. The observed value of α for the
linear fits are 0.11 for valence states and 0.25 for conduction states.
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7 Conclusions

We developed a novel method of incorporating a priori knowledge of electronic band

gap into molecular dynamics simulations. The method involves computation of Hellmann

Feynman forces associated with the electronic states near to the Fermi energy and since

these forces are already computed as parts of the total force, the method doesn’t incur

significant computational cost. Using tight-binding MD simulation, we showed that

models of amorphous silicon (a-Si) produced using this method show no mid-gap states

that are typical of models with conventional melt quench methods. In addition, we showed

that such electronic information purges structural defects (dangling and floating bonds,

broad distribution bond lengths and bond angles) in the model a-Si. This is the first use of

electronic structure constraints in to eliminate structural defects. We also showed, in the

tight binding framework, band gap information can be used to tune sp2/sp3 ratio in

amorphous carbon, allowing us to choose the character of the amorphous network while

using the same tight-binding parametrization.

The method is then developed to engineer the band gap using ab initio molecular

dynamics (AIMD) simulations. Using this method, we successfully modeled

insulator-metal transition glass GeSe3Ag. From a modeling point of view, this shows that

such method can sample the energy landscape in a way to arrive at structural solutions

with metal-like density of states (DOS). From a materials point of view, we show that the

electronically conducting phase of a-GeSe3Ag consists of an enhanced Ag-Se phase and a

diminished Ge-Se phase. Furthermore, we investigate the electronic transport in GeSe3Ag

using more conventional tools of quantum chemistry and show that the non-bridging and

terminating Se atoms play a significant role in DC conductivity. By explicitly modeling

Ag-nanowires in a glassy host, we show that Ag-nanowires of at least 2-3 atom thickness

do not take part in electronic conduction. We used an empirical two-body potential to

model GeSe3Ag glass and the recovery of the system after an impact. We showed, with in
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the limit of the accuracy of the potential, that the system recovers its pre-impact structural

features in less than a nanosecond time making the material suitable for use as radiation

dosimeter.

We investigated the coupling between lattice vibrations and electrons within the

framework of state-of-the-art ab initio calculations and showed that there exists an strong

correlation between localization of electronic states and the thermal modulation of the

energies of these states. It is shown that this gives rise to drastically different thermal

modulation of electron energies for crystalline and disordered solids and we discussed

interesting new correlations between localized band edge states and thermal fluctuation.

7.1 Future Work

Gap sculpting is useful to solve modeling problems where conventional melt-quench

MD produces defect states in the band gap. It can be further extended to incorporate

hybrid functionals and GW methods where the size of band gap is closer to

experimentally measured values. Gap sculpting provides us ways to explore doped

structures, mid-gap defects or meta-stable configurations with interesting properties. Wide

band-gap semi-conductors like TiO2 are ideal candidates for this type of pursuit. Band

tuning using Hellmann-Feynman forces can be further extended to spin polarized

calculations to explore interesting spin arrangements of useful systems, e.g. maximally

polarized structures, half metals or spin filtering systems.

The channels of electronic conduction in CBRAM materials should be further

explored using more advanced tools. More rigorous formalisms should be developed to

project the conductivity in real space and highlight the parts that serve as channels of

electron conduction.
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