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 ABSTRACT

This thesis describes the development of a computer
program to accuratcly simulate the performance and
detailed behaviour of Stirling cycle machines. The
_program can be used both as a development tool to
predict the performance characteristics of particular
machines, as well as a research tool to study the
inter-relatcd gas dynanmic, thermodynamic and heat
transfer behaviour of such machines.

Other simulation methods published to date arc bascd
on oversimplified pressure drop, friction and hcat
transfer rclationships.

The approach adopted in the present study was‘to sub-
divide the machine into a finite number of one-dimen-
- sional cells. Complete differential equations of
f~Continuity, momentum and energy of the working gas,.
' as well as energy of the regencrator matrix and heat
‘cxchangcf wdlls, are developed. In particular the
‘encrgy equation of the working gas also includes kinetic
energy terms whilst the momentum equation includes the
‘cffccts of working gas accelcration.

-

The resulting set of non-linear paitial differential

- equations is solved numerically by the 'method of lines',

due regard being taken of the local instantanceous values
of dynamic viscosity, Reynolds number, friction factor
and heat transfer coefficient, which are all non-linear
cmpirical functions of the system geometry and fluid
properties. |
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A unique method of accelerating convergence of the
solution to cyclic steady state is used. The effect
of the number of cells of the system subdivision on
the accuiracy and consistency of the results has also
heen investigated.

Simulation results of a hypothetical test engine arc
presented. These include, inter alia, eifficiency and
indicated powér versus rotational speed using air,

helium and hydrogen as the working gas. Threce-dimecu-
sional plots showing incremental temperature, flow

and pressurc profiles through a complete cycle are
presentced. The results show the detailed behaviour

of the working fluid as influenced by the various machine
parameters and working fluid properties, and as such

help to provide a new insight into the complex bechaviour

of Stirling cycle machines.

(iii)



ACKNOWi EDGEHENTS

I would like to cxpress my particular appreciation to
the fellowing:

Costa J Rallis, mny supervisor, for his unfailing
éncouragement and active support throughout all phases
of the projecct. Ilis spontaneous assistance and gui-
dance has contributed substantially to the successful

conclusion of this work, for which 1 an deeply grateful.

Dave M Berkowitz, a postgraduate student in Mechanical
Engineering who has worked with me on ihis resecarch
topic and who many times has helped me to clarify
various salient topics.

Jim Archbold, of the NITR, who continually provided the
important liaison with the (SIR cemputing center.  The
staff of the CSIR Computer Centye, without w) osc help

I could not have been able to do the quite considerable
computer runs rcquired in this work. In particular I
wish to thank Francois van der Mcrwe, Normu Whiteley,

and Ann Hulme for their cheerful assistance.

The members of staff of the NITR, who encouraged me
throughout this study.

Fernanda Andrade, who had the unenviable task of typing
this Thesis. :

Finally, to Nili ~ Thank you.

(iv)



TABLE OF CONTENTS

DECLARATION

ABSTRACT

ACKNOWLEDGEMENTS

TABLE OF CONTENTS

LIST OF FIGURES

LIST OF TABLES

NOTATION

1. INTRODUCTION

1.1
1.2
1.3
1.4
1.5
1.6
1.7

General
The Stirling Cycle
Problem Areas

Computer Simulation

‘Purpose of this Study

Equations
References

2. REVIEW OF STIRLING CYCLE MACHINE ANALYS31S

2.1
2.2
2.3
2.4

2.5

Introduction

Schmidt Cycle Analysis

Basic Analysis

Non-Isothermal Compression and Expansion
Processes

Comprehensive Analysis including Pressure
Drop

Discussion

Statement of the problem

(v)

(1)
(ii)
(iv)
(v)
(ix)
(xii)

(xiii)

12

12
12
16

17

18
30

34



SYSTEM MODEL

3.1
3.2
3.3
3.4

3.5

3.6
3.7
3.8

General

The In-Line Configuration

The Fundamental Equations

The Cellular Model

The Variable Volume Working Spaces
System Algorithms

Method of Solution

Conclusion

AN _APPLICATION EXAMPLE

4.1
4'2

4.3 Organization of the Computer Experiments

Introduction

Description of the Engine

DISCUSSION OF THE MODEL

5.1
5.2

5.3

5.4

Introduction

Definition of the Model

Accuracy of the Model

5.3.1 General

5.3.2 Time discrctization

5.3.3 Space discretization

Summary and Ccnclusions

DISCUSSION OF THE RESULTS

6.1
6.2
6.3
6.4

Introduction

Performance Characteristics

Incremental Characteristics
Summary and Conclusions

CONCLUSIONS AND RECOMMENDATIONS

7.1

7.2 Major Advances Attained in the Present

General

Investigation

Fari} .

39
39
42
44
48
53
57
58

60

60
62
67

71
71
72
85
85
85
88
91

94

94
94
101
118

119
119

119



7.3

Recommendations for Future Work

APPENDICES -

AL

PARAMETERS AND SYMBOLS

A.1
A.2
A.3
A.4
A.S
A.6

General

Normalized Parameters
Prefix Set

Suffix Set

Subscript Set
Dimensionless groups

SCHMIDT CYCLE ANALYSIS

' BASIC IDEAL CYCLE ANALYSIS

C.1
c.2
C.3
C.4

C.5

THE FUNDAMENTAL LEQUATIONS -

Introduction
The Ideal Stirling Cycie

The Ideal Pseudo-Stirling Cycle

The Ideal Ported Regencrative Constoat

Volume Cycle

Concliusions

ENERGY

D.1 Introduction

D.2 Continuity

D.3 Mcmentumn

D.4 Energy

D.5 The Fundamental Systems of Equations

TRANSPORT PROPERTIES - VISTOSITY, THERMAL

CONDUCT:VITY
E.1 Introduction
E.2 Dynamic Viscosity

E.3

Thermal Conductivity

(vii)

CONTINUITY, MOMENTUM,

122

126

127
128
133
134
137
139

140

147

147
152

155
158

1606

160
162
163
165
170



" F. FRICTION FACTOR AND HEAT TRANSFER COEFFICIENT

F.2

F,-s

F.4

Introduction
The Reynolds Friction Factor
Friction Factor for Circular Pipes

Heat Transfer Coefficient fcr Circular S

- Pipes

_I-‘.’S‘
F.6

Regenerator Matrices

~Conclusions

G. . METHOD OF SOLUTION

"Gyl
G.2
’G,s

The Method of Lines
Approach to Solution
The Algorithm of Solution

H. SYSTEM ALGORITHMS

H.1 .
H.2
~H.3
- H.4
H.S
e
H.7
H.8
"H<9
" H.10

General
Continuity
Momentum

~Energy Balance of the Working Gas .

Energy Balance of the Cooler (Heater)‘Wa}l

Energy Balance of the Regenerator Matrix

Viscosity
Reynolds Friction Factor and Flow Tag

" The Heat Transfer Coefficient

Volume Variation

1. COMPUTER PROGRAM

I.1.
1.2
I.3

General
Subroutine DERIV
Main Program

J. SELECTED COMPUTER OUTPUT AND RESULTS

J.1

General

 REFERENCES

o (viid)

176
176
176

179

184

186

192

193

193
194
196

199

199

- 201

203

214
220

224
227
228
231
232

234

234
235
238
245
245

273



LIST OF FIGURES

FIGURE TITLE FAGE
1.1 Carnot and Stirling cycles 3
i.2 The Stirling cycle v 4
2.1 Schmidt cycle 14
2.2 Equivalent flow system (After Ki63) id
2.3 Temperature profile for heat transier

calculations (After Ki6H3) 20
2.4 Stirling engine model (After Fi62) 21
2.5 © Stirling engine model (After Fif4) i3
2.6 Stirling engine model (After Fid7.1) 24
2.7 Generalized working fluid node {(Alter Fi175) 27
2.8 Basic ideal system (After (JSG8) 28
2.9 The ported regenerative engine {(After Fi53) 32
3.1 Classification of Stirling cycle c¢ngines 40
3.2 Generalized elemental control volune 44
3.3 The ne-cell model _ 48
3.4 The generalized Z'th ¢lemental cell 49
3.5 ‘The generalized compression space 54
4.1 The test engine 62
5.1 -The ©'th cell 7%
5.2 A hypothetical pressure distribution 74
5.3 The Z'th cell 75
5.4 The Stirling cycle engine cellular model 76
5.5 Temperature profiles (mean node temperatures) 79
5.6 Temperature profiles (conditional node

temperatures) _ 81
5.7 The Z<'th node B2

Efficiency versus number of cells 84
5.9 Energy error factor versus operating

frequency 88
5.10 Thermal efficiency and power output versus

operating frequency v G0

(ix)



FIGURE

TITLE

5.11

6.4

6.5

6.16

Thermal efficiency and power output versus
operating frequency '
Thermal efficiéncy versus power output

+ Comparative performance using different

working fluids (After Meijer Me70)
Efficiency and power versus speed (After
Meijer Me70)

Temperature and flow profiles versus crank-~
angle

JTurbulent flow from the expansion space to

the compression space

Turbulent flow from the compression space
to the expansion space

Flow reversal transition

Flow reversal transition

Pressure profiles versus crankangle
Pressure profiles versus crankangle
Pressure profiles versus crankangle
Pressure versus crankangle diagrams
Pressure versus crankangle diagrams
Farnboro indicator diagrams of a Stirling
engine (After Meijer Me6l)

Experimental pfessure versus crankangle
diagrams (After Kirkley Ki63)
Experimental p6 diagrams of a Stirling
cycle cooling machine (After Walker Wa62.1)
The ideal Stirling cycle

The pseudo-Stirling cyéle

The ported regenerative constant volume
cycle

Control volume V

Fanning friction factor diagram (After Pipe
Friction Manual, 3rd Edition, Hydraulic
Institute, 1961)

(x)

PAGE

92
95

96

100

102

103

104
106
107
109
110
111
113
114

115

116

117

148
153

180



FIGURE

TITLE

F.2
F.3

F.4

G.1
H.1
H.2
H.3
H.4
H.5
H.6
i. 7
H.8

H.9

H.10
H.11
H.12

Approximace friction factor diagram
Approximate Reynolds friction factor
diagram

Flow Friction and heat zransfer characte-
ristics for flow through stacked shpere
matrices (After Kays and lLondon FLG4)

‘Flow Friction and heat transfer characte-

ristics for flow through infinitc ryandowly
stacked woven screen matrix {(Afte: Kays
and London KL64)

The algorithm of solution

1

o

The generalizcd £'th elemental
The generalized compression space
The <'th cell

The compressicn space

The Z'th node

The 2'th node - uncqgual aljacent cells
Node 1

Abrupt expansion and contraction pressure
coefficients (After Kavys and Londnn KLGA)
The <7'th cell

The compression space

The cooler (heuter) wall

The regenerator matrix and enciocsing wall

o
=
‘FJ .

S

197
197
199
200
201
202
204
237

AR
Low



LIST OF TABLES

- TABLE -

4.1
A
A.2
- E.1
J.1
J.2
J:3

TITLE

Properties of air, helium and hydrogen
Normalized and actual parameters

- Dimensionless groups

Values of the viscosities of gascs (Ir71)

Power and.efficiency for air

Power and efficiency for air

Energy error factor and number 0L incroments
per cycle for air

Power and efficiency for helium

Energy error factor and number .ncrements
per cycle for helium

Power and ecfficiency for hydrogen

Energy error factor and number of increments

‘per cycle for hydrogen

(xii) .

PAGE

65

131
139
174
246
247

248
249



e

NOTATION

The parameter notation is made up of the basic parameter

‘symbols augmented by prefixes, suffices and subscripts.

The philosiphy behind the choice of the notation is given
in Appendix A. In the notation which follows the diffe-
rent types of parentheses have different usage. Normal

curved parentheses () have either normal usage or enclose

the equivalent éombuter program symbol to a text symbol.
Square’parenthqses enclose the dimensions of a parameter
in SI units, where applicable. Various dummy variables
used in the computer program in order to avoid repeated
evaluation of factors have not been defined in this
section, eg, GTN(I) = G(I) * TN(I).

Latin symbols denoting parameters in the text are iteli-

cized, however the computer program equivalent forms
are typed in regular format. All operators and Greek

symbols are typed in regular format. In general dimen-

~ sioned parameters in the text are supercripted by a

tilde(”). Exceptions t¢o this rule are the buase parameters
M, Vs, Tk, R (Refer to Appendix A). In the computer
program, all dimensioned parameters are prefixed by E.

(xiii)



g

A (A)  area: v
free flow area;
control surface area.

i

Aé (A(I)) free flow area at rnode 7.
Af ' frontal area.

Ami effective cross section area of regenerator matrix
a for longitudinal heat conduction calculations at
node <. y

Amgiv(AMG(I)) matrix surface area in cell 7 wetted by
the working gas. '

Awi (AW(I)) cross section area of heat exchanger wall
for longitudinal heat conduction calculations
at node 7.

Awg (AWG(I)) heat exchanger wall surface area in cell
7 wetted by the working gas.

+

Awmi effective area of contact between regenerator matrix

in cell < and enclosing wall for axial heat con-
duction calculations.

Awoi external wall surface area of cell ¢ wetted by the
external heat exchange medium.

BO constant term of a Fourier series expansion (Appendix B).

Bei 1'th cosine term of a Fourier series expansion
(Appendix B).

(xiv)



Bs7 . ©'th sine term of a Fourier series expansion
- (Appendix B).

Bl, B2, ‘B are constants defined and used only in

Appendix B.

B prefix used in the computer program only in order to
denote a term made up of a combination of various
constants anc parameters. It is used cxclusively

to avoid repeated evaluation of the same term.

>

¢ defines the compression space location - usually as
a suffix to a parameter. |

Cmi heat capacity of the matrix material in the Z'th cell.
cv (CVS) specific heat capacity at constant volume.
ep (CPS) specific heat capacity at constant pressure.

¢w (ECSW) [J/kg.K] actuai specific heat capacity of the
heat exchanger wall material.

cw (CSW) specific heat capacity of the heat exchanger
wall material.

Cw (CW) heat capacity of the heat exchanger wall material
contained in a single cell.

d (D) hydraulic diameter of the heat exchanger pipes.

di (D(I)) minimum hydraulic diameter of the two cells
adjacent to the <'th node.

dia (DIA) external to internal heat exchanger pipe
diameter ratio.

(xv)



dm matrix mesh wire diameter

3 (BD)[m] actual internal diameter of heat exchanger

pipes.

A0 (DO) external diameter of heat exchanger pipes.

do (EDO)[m] actual external diameter of heat exchanger

pipes.

D (D) prefix used to denote the total time derivative
differential operator d/dt.

DTIME time increment for numerical integration (Appendix I).

DYDT dummy variable increment (Appendix TI).
e specific enthalpy;
defines expansion space location - usually as a. <uff1x

to a paramcter

E prefix used in the computer program only in order to
denote an actual (dimensioned) parameter or a
normalizing factor (Appendix A).

EX[m] length normalizing factor.

'EA[m?] area normalizing factor.

EU[m/s] velocity normalizing factor.

ETIME[s] time normalizing factor.

EMU[kg/m.s] dynamic viscosity normalizing factor.

(xvi)



EK[J/m.c.K] thermal cénductivity normaliiing fa¢for;ff ;x  
ENRGY[J] energy normalizing factor.

ERO[kg/m3] density n;rmalizing facuor.

EVS[m?] volume'normalizing factor.

ETK[K]’ temperature normalizing factor.

EM[kg]r'.ﬁass normalizing factor.

ER[J/kg.K] specific heat capacity normalizing fact0rg‘&

¥ (EFREQ) [Hz] cyc}ic operating frequency.k

Fi frictionai drag force at node <.

Ff Fanning friction factor (Table A.2, Appcndi# A)‘ 

Fr (FR) Reynolds friction factor (Table A.Z, Appgﬁdixlﬁ};

¥

momentum per unit volume or mass flux density -
(superscripted bar indicates a vector quantity).

Qj

g; (G(I)) mass flux density at node <.
¢i mass flux at defined location 7.
Gi mass flux at node <.

h denotes the heater location ~ usually as a suffix
to a parameter

(xvii)



hi (H(I)) heat transfer coefficient at node <.

Iflo;. (IFLO(I)) signed integer indicating the direction
"~ and condition of flow (ie laminar, turbulent,

sohic, etc) at node <.

JCYCL two valued integer {1,2} specifying if the cycle is
an initial cycle or a continuation cycle, used
in the compuier program only.

JPRNT two valued integer {0,1} specifying if a partial or
full printout is required, used in the computer

program only.

kw (EKW)[J/m.s.K] actual thermal conductivity of the
wall material.

kw (RKW) thermal conductivity of the wall material.

km (RKM) thermal conductivity of the regenerator matrix

material.

k denotes the cooler location - usually as a suffix to
a parameter,;
working gas thermal conductivity.

ki flow resistance constant at defined location <.

Ke (RKC) contraction pressure loss coefficient.

Ke (RKE) expansion pressure loss coefficient.

M (EM) [kg] actual total mass of working gas in the systém.

(xviii)



mm - matrix matcrial mass

m-.working gas mass.

me (RMC) mass of working gas in the compression space.
imé (RME)  mass of working gas in the expansion space.
mi m;ss of working gas at defined 1o¢ation z.
m, (RM(I)) ma;E of working gasrin cell Z.
nc‘(NCj total numbei of cells‘in the system model.
nk (NK) number of cells in the cooler section.
nh (NH) number of cells in the heater section.

nr (NR) number of cells in the regenerator section.

nine (NINC) number of integration time increments per
cycle.

NPRNT number of increments per printout, computer program
only.

nkr (NKR) A nk+nr.
np (NP) number of heat exchanger pipes
Nu Nusselt number (Table A.2, Appendix A).

o denotes the external environment - usually as a suffix
~ to a parameter.

P working gas pressure.

(xix)



B
i
%,
i

,piu ﬁorking gas pressure at defined location Or[state £; g 

P; (P(I))'working gas’pressue in cecll <.

pe (PC) working gas pressure in the compression spaée.f |

- pe (PE) working gas pressure in the expansibn space. 'fﬂ

~

pk (EPK) Pa  nominal actual charge pressure.

>

Pr (PR) Prandtl number (Table A.l,yAppéndix A}.’  !‘£§; ‘,

P[W] - actual power.

ph work}ng gas pressure in the heater spacefv 
pk working gas ﬁressure in the cooler space.

pr working gas pressure in the regenerator spacé.
pe pressure of thc éurrounding environment.

pn; working gas pressure at node .

@ heat transferred to working gas by convection; heat
generation or absorption.

z

state 7 to state j.

@; (Q(I)) heat transferred to working gas by convection
in cell Z. 3

@ axial conductive heat flow.

Ox) -

Q. heat transferred to working gas during pracésS'fromf7



Qm.'aXial conductive heat flow in the regererator matrix

.Qwi (QW(I)) axial conductive heat flow in the wall across

the i'th node.

Qmi axial conductive heat flow in the regenerator matrix
across the 7'th node.

x ,

Qum radial conductive heat flow between the enclosing
wall and the regenerator matrix of the <'th
regenerator cell.

Qwoﬁ heat flow from the external environment to the wall
at the 7'th cell.

@k {QK) heat flow from the external environment to the
cooler wall in order to maintain it at a constant
temperature,

@h (QH) heat flow from the external environment to the
heater wall in order to maintain it at a constant

temperature.

Qri (QR(I)) heat flow from the regenerator matrix to the
working gas in the Z'th regenerator cell.

Qwri (QWR(I)) axial conductive heat flow in the wall of
the #'th regenerator node.

r volume compression ratio (Appendix C);
defines the regenerator space - usually as a suffix

to a parameter.

R a préfix to a real mode parameter having an integer
mode symbol, used in the computer program only,
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where a distinction between real ard integer
parameters exists (Appendix A).

K (ER)[J/kg.K] the gas constant.

| He ERE) - Reynolds number (Table A.2, Appendix A).

Ro (RC) relatiye roughnéss factor (Table A.2, Appendix A).
RMSQR root meag square net fcgenerator heat.

s specific entropy.

St Stanton number (Table A.2, Appendix A).

t (TIME) time.

T absolute temperature.

Tk (ETK) [K] actual cold sink temperaturc.

Tk cold sink temperature (Tk = 1);

temperature of the working gas in the cooler space.
Th (ETH) [K] actual hot source temperature.

Th hot source temperature;

temperature of the working gas in the heater space.

Twk (TWK) temperature of the cooler wall.
Twh (TWH) temperature of the heater wall.

Tr temperature of the working gas in the regenerator space.
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Te temperature of the working gas in the compression
A space.

Te temperature of the working gas in the expansicn space.
Twe ' temperature of the compression cylinder wall.
Twe temperature of the expansion cyclinder wall.

T temperature of the working gas at defined location
or state <.

T; (T(I)) temperature of the working gas in cell <.
Tn, (TN(I)) temperature of the working gas at node Z.
Tw, (TW(I)) temperature of the wall enclosing cell <.

For, (TWR(1}) temperature of the wall enclosing regenerator
cell z.

Tm (TM(1)) temperature of the matrix in regenerator cell

il-
Tsu (ETSU)[K] actual Sutherland constant (Appendix E).
Tsu (TSU) Sutherland constant.

70 (ETO) [K] temperature at which the dynamic viscosity
of the working gas is defined.

U velocity.

# specific internal energy



v specific volume of the working gas
v, (VS(1;) specific volume of the working gas in cell <.
bni'(VSN(I)), specific volume of the working gas at node <.

ve (VSC) svecific volume of the working gas in the
compression space.

- ve (VSE) specific volume of the working gas in the
‘ expanysion space. ‘

Vv control volume;
volume of the cell void space.

Vm volume of the matrix material.
vd (VD) dead volume.

Vel (VCL) clearance volume of the compression or'expansion
space. ‘ |

vs (EVS)[m®] total power stroke volume.
Vi vélumefrat defined location or state <.
V. (V(I)) void volume of cell <.

Ve (VC) compression space volume.

Ve (VE) expansion space volume.

VT total working gas volume.

W (W) mechanical work done.

We (WC) mechanical work done in the compression space.
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We (WE) mechanical work done in the expansion space.

'x tX) length;

longitudinaigheat exchanger length variable.
%p»(EXP)[ﬁ] actual length of heat exchanger pipe bundle.
xp (XP) llength of heat exchanger pipe bundle.
xm total effective length of the wire in the regenerator
matrix (number of wires times the length of each
wire), where applicable.

Y(I) variable vector, used in the computer program only.

z transverse or radial length variable;

height of protrusions
heat exchanger pipes,

tive roughness factor

o (ALPHA) phase angle advance

on the inside surface of the
in order to define the rela-
Ro.

of the expansion space to the

compression space volume variations.

g angle defined and used in Appendix B only.

v (GAMMA) ratio of specific heat capuacities of the working

gas (y A ep/ev).

§ difference operator;.

phase shift of the pressure peak of the expansion

space with respect to the compression space, in

degrees of crankangle.

(xxv)



-

A (DEL, DL) difference operator. DEL denotes a spacial
difference and DL (used only in the Runge-Kutta

integration routine) denotes a time incremental

difference.

Ape (DELPC) pressure drop across the enirance to the
compression space due to contraction or c¢xpansion

entrance effects,
pressure drop across the entrance to the

Ape (DELPE)
expansion space due to contraction or expansion

entrance effects.

Ap pressure drop acress cell length Azx.

Az (DELX) 1longitudinal cell length.
bz, (DELX(1)) length of the i'th cell.
€ regeneraior effectiveness (Appendix C).
‘c energy error facter (Chapter 5).

n (EFF) thermal efficiency.

8 crankangle.

swept volume ratio (Appéndix B).

K
actual dynamic viscosity of the working

{i0 (EMUO) [kg/m.s]
gas at defined temperature 70.
dynamic viscosity of the working gas at base

pk (RMUK)
temperature Tk.

(xxvi)
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Bt

u (RMU) dynamic viscosity of the working gas at the

local cperating node temperature Tni;

pw (EROW) ikg/m?)} actual density of the wall material.

i

pw (ROW) density of the wall material.

pm density of the matrix material.:

p

y

oA

density of the working gas.
shear stress (Appendices E, F).
~angle defined and used in Appendix B only.

porosity of the matrix (Appendix F);

ratio of free flow to total cross-sectional area.

(OMEGA) angular cyclic operating frequency.
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1. INTRODUCTION

1.1 GENERAL

'"“"Economy of fuel" is the cry of the day. The sudden
rise in the price of coal seems to have done at once
what'scientific engineers have been trying for years

- oﬁly with mederate success - to do: - awakened users
of steam power to a consciousness of the terribly
wasteful manner in which they are so often worklng, and
of the value of the fuel which they are persistently
thrOW1ng away.' '

The abcve paragraph forms the opening statement in a
series of articles on air englnes in anzneerzng of
March 12, 1875.

The world oil crisis of October 1973 was the main trigger

which stimulated this research.

Significantly, the word research can be resolved into
its components 're-search' -- another way of expressing
the well known adage -- that history repeats itself.

Each time a subject is 're-searched’, however, it is
done so with the advantage of an updated technological

development. The Stirling cycle engine is no exception.

It has in the past given way to other forms of prime
mover, even those that are theoretically inferior to
it, mainly because its peak performance was restricted
by technological limitations.



This is aptly stated in the words of Robert Stirling,
in 1876, shortly before his death (Zi71):

'These imperfcctions have been in great measure remo-

ved by time, and especially by the genius of the dis-
tinguished Bessemer. If Besscmer iron or steel had
been known 35 or 40 years ago, there is scarce a
doubt that the\air engine would have bcen a great
success. It temains for some skilled and ambitious
mechanist in a future age to repeat it under more

favourable circumstances and with complete success.'

1.2 THE STIRLING CYCLE

The well-known Carnot theorem in thermodynamics states
that no heat engihc can be more efficicnt than a rcver-
sible heat engine which i» operating between the same
temperature limits. Reversible cycles are defined by
two isothermal processes bounded by any two processes
which tzken together are externally adiabatic. This
class of cycle was analysed by Reitlinger in 1873 (Ko68).
The Carnot cycle is a particular case of a reversible
cycle in which the two isothermals are joined by two
reversible adiabatics. It is generally rccognized that
the Carnot cycle is impractical, giving an extremely
low value of specific work done per cycle.

Under imposed constraints: of pressure, volume and tempe-
rature limits, the reversible cycle yielding maximum
work done per cycle is the Stirling cycle, which is
defined by two isotherms bounded by two isochors

(figure 1.1).
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Figure 1.1 CARNOT AND STIRLING CYCLES

Figure 1.1 depicts'the Carnot and Stirling cycles

on pV and Ts coordinates respectively. Here the

Carnot cycle is comprised of the processes linking

the state points 1-2-3-4-1 and the Stirling cycle
1-2'-3-4'-1. A necessary condition for reversibility
is that all the heat is transferred to the surroundings
during isothermal processes at the hot source and cold

cink temperatures respectively. In the Stirling cycle

however, the isochoric processes require the transfer
of heat for their execution at varying temperatures --
as is apparent from the Ts diagram of figure 1.1.
However, since in each case the quantities of héat' 
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rejected and supplied are equal, ie, 4}Q1

then provided such heat is reversibly transferred

internally the cycle is reversible.

This internal transfer of heat is done by means of

a reversible regnerator in which the heat rejected

during the process 4'-1 is stored, and subscquently

recovered during the process 2'-3.

3
\ .

Mechanically there are two main classes of configura-

tion which yield practical Stirling cycle machines.

These are referred to as the dual-piston and piston-

displacer arrangements.
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Figure 1.2(a) and 1.2(b) show the positions of the
pistons for these two configurations at each state

- point of the cycle. The dual-piston arrangement
‘(figure 1.2(a)) consists of separate compression and

expansion pistons operating (in this case) in the same
cylinder The regenerator, usually consisting of a
matrix of fine wires which allows free¢ passage of the
working fluid, is interposed between the cooled com-
pression space\and the heated expansion space. Cons-
tant volume dJsplacemcnts (2-3 and 4-1, figure 1. 2(C,)
of the working fluid are achieved by synchronously
moving the two pistons, thus transferring the fluid
through the regenerator.

In the piston displacer arrangement (figure 1.2(b))
both the compression and expansion processes are
brought about by the same piston. The displacer, as
its name implies, simply shuttles the working fluid,
at the appropriate ﬁoints in the cycle, between the

compression and expansion spaces. As shown in

figure 1.2(b) the rcgencrator forms part of the displacer,

however it could form part of the stationary . cylinder

kwall.

The ideal constant volume transfcr processes required
in figure 1.2 are incapable of practical realization
by any mechanisms operating at finite accelerations.
At best, crank and connecting rod devices coupled to
a rotating output shaft can be expected to produce
volume variations in both hot and cold spaces which
vary in a sinusoidalufashion with crank angle, rather

than in a discontinuous fashion as called for in these -

ideal cycles. With such mechanical limitations it
is then no longer possible to clearly distinguish the



various separate processes since they tend to overlap.

1.3 PROBLEM AREAS

The Stirling engine, although available since 1816, is
still in the process of research and development. The
ambitious research program of the Philips Company, |
Holland, since the late 1930's, has pulled Stirling
engines out of obsolcsccnce and developed them to a

stage where they have impressive characteristics dnd
performance. What is surprising is that although

reports of many of these developments have been availa-
ble in the literature for over thirty years, no engines
are currently being built for purposes other than research

and development.

The problem arecas in the development of Stirling engines
may be divided into practical and theoretical branches.

On the practical side, it is found that in order to

obtain a high specific performance, the working fluid
(usually helium or hydrogen) must be operated at high
mean pressure and at large differences in teaperature.
This poses formidable problems in heat traensier and
sealing. Heat exchangers are required to operate conti~
nuously at high pressures close to their wmetallurgical
temperature limits. The closed cycle nature of the

engine requires a high cooling effectiveness and precludes
the use of large heat cxchangers ' 1

On the theoretical side it is found that practical
machines cannot be analysed by ideal cycle analysis.
Not only must the practical effects of fluid leCtlDH
and heat transfer be considered, but also the fact thdt
not all the particles of working gas in the system
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undergo the same cvycle (Wa73, Or75, 0Or76). The
temperature variation of the working gas is so large
that the nonlinear variation of its propertics with
temperature must be considered. The complexity ond
noniinéar nature of the behaviour of the working
fluid has thus preciuded any form of mathematical
analysis.

\

1.4 COMPUTE] SIMULATION

The advent of high speed digital computers has intro-
duced a new dimension into the 're-search' of Stirling
cycle engines. It allows numerical simulation of the
complex behaviour of such machines to a controllable
degree of zccuracy, the limitations being only the size,
speed and availability of the computer. This is impor-
tant since unlike other prime movers, which can rely

on a history of expcrimental experience upon which to
guide their development, the Stirling cngine presents

unique requirements for the coopcraticn of computational

‘analysis and design in its development (Za73).

Prior to the advent of the computer, analysis could be
divided into theoretical and experimental branches. The
question now arises, where does computational analysis
fit into these branches? The answer is that it is
separate from each, although it has aspects of both,

and that it supplements rather than replaces them (Ro72).

Computational analysis does not have the rigour of

mathematical analysis; however it relies upon fundamental

mathematical analysis in order to set up the equations

for solution. It is much closer to experimental analysis



and retains many »f its disadvantages. The analyst
"turns on' the computer and waits to see what happens,
just as the experimenter does. He can run the
‘expefiment' with a particular configuration of the
machine and can only determire the effect of variation
of the various parametcrs on the performance after an
exhaustive set of experiments. He has the advantage
over the expcr;men1er that he can vary the configura-
tion of the system without recourse to the workshop

(a trying experience); he can test the effects of
replacing the working gas, say air, with helium or
hydrogen without involving additional cxpensive equip-
ment and safety mecasures; he can cven define some
hypothetical working gas (Secction 6.2), and test the
sensitivity of the performance to independant theore-
tical approximations; he is not concerned with the
accuracy of various test instruments, or whether or
not they interferce with or modify the parameter that
he is measuring; he has continuous access to all the
parameters at even the most inaccessible locations

in the machine. The 1list is extensive.

On the other hand his modecl will always be an approxi-
mation of reality, and in no sense can computer
experimentation ever replace physical cxperimentation,
or, for that matter theoretical analysis. At some
stage or another the computer model must be validated
against experimental experience. |

-

1.5 PURPOSE OF THIS STUDY

It was the purpose of this study to develop a comprehen~
sive computer inodel for the thermodynamic, fluid dynamic
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ahd heat transfer ochaviour of Stirling cycle type
machines, and to validate it against current know-
1edge>in the field. It is hoped that this work will
serve as ‘refercnce material for a2 continuing program
of Stirling cycle macﬁine developmeirt, and as such it
has been presented in a tutérial'type of format.

In particular it has been attempted to make the com-
puter techniques and programs as readable unified
parts of this work. Wherever possible, the computer
program symbols have been made identical to the text
symbols. An algorithmic approach has been used in
order to define specific parameters so as to render
it unnecessary to»continually cross reference the
text (Appendix A).

Rather than intersperse comments throughout the com-
puter program, it has been considered preferable to
introduce the computer program with the text. Thus
each algorithm developed is followed by its FORTRAN
equivalent statement (Appendix H). 1In consequence an
approach and technique for modelling this class cof
systems has been provided rather than a program which
is installed in somc computer center. As new inter-
connections of the basic components are devised, or

new experimental back up data becomes available, so the

program can be easily modified and, hopefully, saved
from obsolescence. '

It is noted that although this whole study has been
directed towards prime movers, this has been done
mainly for the sake of clarity, and it can be applied
to Stirling cycle type refrigerators or heat pumps
as well.
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1.6 EQUATIONS

In order to render the equations in the text less

cumbersone, in particdlar with respect to the usc
of brackets, the following rules of usage are
defined: '

(1) Multiplication and division are done before
\ .
addition and subtraction, eg, z+y/z = z+(y/z).

(1i) Factors are evaluated from right to left. Thus
all parameters to the right of a division sign
are evaluated beforec division tokes place, eg,
x/y.2 = x/(y.z).

(iii) Functions of a variable operate only on the varia-
ble immediately tollowing, unless the group of
variables following are enclosed by brackets, eg,
sin®/4Th = sin(8)/(47Th).

1.7 REFERENCES

The system of reference designation has been proposed

by Rallis, and is considered to provide a better means
of information retrievel than the usual numerical
sequencing of articles. Hence each publication 1is
referred to by two letters followed by two numerals.
The latter refer to the year of publication. Where the
publication has a single author the first two letters
of the surname appear, the second in lower case. Where
there is more than one author the initial letters of
the surnames of the first two, both in upper case, are
used. Exceptions to this is that if the reference is
prior to 1900, then four numerals denoting the yeaf

appear, and if the name of the author is unknown, then



three letters
~used instead.
betical order

denoting the name of the journal are
The references are listed in alpha-
according to the names of the avthors.

11
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2. REVIEW OF STIRLING CYCLE MACHINE ANALYSIS

2.1 INTRODUCTION

In this chapter an attempt is made to review the
various forms of Stirling cycle machinc analysis
that have appeared in the literature, rather than
the historical development of such machincs.
Excellent reviéWs'of the historical development

of Stirling cycle engines have been given in
Finkclstcin (Fi59) and Flynn et al (FP60). In the
concluding section a 'statement of the problem! is
also presented.

Patents for the first Stirling engine were taken

out by Robert Stirling in 1816. This is undoubtedly
one of the most amazing inventions of its kind,

being well in advance of all pertinent scientific
knowledge of the time. 1In this connection it is
worth recalling that Sadi Carnot published his
'Reflections on the motive power of fire' in 1824;
whilst Joule established the mechanical equivalent of
heat, and thus laid the foundations for the first law
of thermodynamics, in -1849. Like many others of his
time, Stirling (and 1ikéwise Ericsson) firmly believed
in perpetual motion of the second kind. One could
not expect theréfore, that any rational analysis of
the Stirling cycle machine would be produced until
some considerable time thereafter.

2.2  SCHMIDT CYCLE ANALYSIS

In conventional, mechanically realizable Stirling

cycle machines the volumes of the hot and cold spaces

12
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vary in an approxi.ately sinusoidal fashion with
crank angle. With such mechanical limitations

the various separate processes cannot be clearly
distinguished. In particular expansion does not

take place completely in the hot space, nor
compression completely in the cold space. However
with suitably selected phasing of the volume varia-
tions, such that the volume variation of the hot
space leads that of the cold space by about 900,

it is possible to arrange that expansion takes

place mainly in the hot space and compression mainly
in the cold space. with a net positive work output
per cycle. The analysis of such a cycle with sinu-
soidal piston displacements and isothermal compres-
sion and expansion was first carried out by Schmidt
in 1871 (Sci871). Most published Stirling cycle
analyses to date essentialiy follow Schmidt's original
analysis, and it has gencrally become known as the
Schmidt cycle analysis. The ideal nature of the
cycle is still retained in that perfect heat transfer
and regeneration is assumed to occur, and the pressure
throughout the system is assumed constant at any
instant. However the systcm is now a multicomponent
one, and finite spaces account for the heat exchanger,
clearance and regenerator volumes. The Schmidt cycle
analysis has becen generally accepted as an ideal
standard against which to comparc actual Stirling
cycle machine performance. It has a closed form
solution giving the variation of pressure with crank

angle, and the work done and heat transferred externally

per cycle as functions of the geometric and operating
parameters of the machine.
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The original paper by Schmidt is not generally availa-
ble, however his analysis has been rcproduced in many |
available publications (RD46, Fis3, Deb53, KJ54, Fi@C.l,
K660, Ki62, Wa62.1, Ki63, Me68, UR76). It is presented
in non-dimensional form in Appendix B, for convenience.
Typical pV diagrams obtained using the Schmidt cycle

analysis are shown in figure 2.1.
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Figure 2.1 SCHMIDT CYCLE

The Schmidt cycle analysis involves four independently
chosen dimensionless design parameters:

(i) The temperature ratio Th (refer to the section
entitled 'NOTATION' in the frontispiece).
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(ii) The ratio of the expansion space to the compression

spacc swept volumes (This ratio is usually chosen
to be unity).

(iii) The dead volume ratio vd

(iv) The phase angle o by which the volume variations

in the expansion space lead those in the compression

space.

Various papers have becn presented in which the Schmidt
cycle analysis has been extended to include optimization

with respect to variations in the above design paramecters.

(Fi60.1, Wa62.1, Wa62.2, Ki62, Wa73).

Walker and Agbi (WA73) have extended the Schmidt cycle
analysis to include the use of two-phase two-component
working fluids.

Walker has stated 'It cannot be over-emphasized that the
predictions of Schmidt~cycle calculations are highly
optimistic., Experience suggests that it is unwise to
expect from a practical engine more than 30 to 40 per
cent of the power and efficiency predicted by Schmidt-
type analyses' (Wa73). Unfortunately, if an attempt is
made to depart from any of the idealizations imposed by
Schmidt, then the closed form equations break down and
the system can only be solved by means of a differential
equation analysis. If Schmidt's restrictive assumptions
are retained then the results of analysis (in particular

in optimisation studies) may result in misleading
conclusions.
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2.3 BASIC ANALYSIS

Rallis and Urieli (RU76, Appendix C}, in an attempt to
establish basic trénds, presented a simplified closed
form analysis-based on idealized cycles but without the
mechanical or thermodyncmic restrictions imposed by

- Schmidt. In particularvthey examined the effects of

non-isothermal compression and expansion as well as.
imperfect fegene?ation.. The major assumption made was
that all particles of working fluid undergo the same
processes throughout the cycie. The tesults of this
analysis are summarized in figures C.1 and C.2 (Appendix
C). From figure C.1 for the ideal Stirling cycle it
appears advantageous to operate such cycles at as high

a value of volume compression ratio as possible, from
both power output and efficiency points of view,
independant of the value of regenerator effectiveness.

‘Apparently, however, actual machines are restricted

to compression ratios not exceeding 2.5 to 1, suggesting
a discrepency between the theoretical ideal Stirling
cycle and its practical realization. This lead to

the postulation of the ideal pseudo-Stirling cycle,

as defined in figure C.2, having non-isothermal expan-
sion and compression processes. From figure C.2 it is
seen that both the thermal efficiency and specific '
work curves exhibit maxima at finite, and low, values of
volume compression ratio. Thus, in contradistinction

to the ideal Stirling cycle, it appears detrimental to
operate the pseudo-Stirling cycle at large voluue
compression ratios. As far as is known, no other publi-

cation provides guidance of the criteria leading to

an optimum choice of volume compression ratio.
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Various papers have been written on the differ entldl
equation approach to ideal Schmidt cycle analysis.
Karavanski .and Meltzer (KM59) examined the ‘per secéndf
rates of heat flow throughout the cycle. Creswick
(Cr65) presented a differential equation analysis of
the Schmidt cycle in order to determine heat transfer
coefficients from the resultant differential mass flow
rates, and thus undertake a thermal design of the heat
exchanger componeqts. ‘Urieli and Rallis (UR76) presented
a differential équation analysis of the Schmidt cycile
in order to validate the differential equation solution
technique for more complex models.

Simplifiéd Stirling cycle analysis methods have been
presented by Cooke-Yarborough (Co74) and Martini (MJGS).
Kolin (Ko68) illustrated a graphical procedurc for
analysing the Schmidt cycle.

2.4 NON-TSOTHERMAL COMPRESSION AND EXPANSION PLOCESSES

Finkelstein (Fi60.2) presented a differential equation
analysis of the ideal Schmidt type cycle having non-
isothermal compression and expansion processes. In

this paper he first introduced the concept of a 'condi-
tional enthalpy', in which working fluid flowing in or
out of the heat exchanger spaces always took on théir
upstream values of temperature, He presented a procedure
for numerically integrating the equations noting that
'One single solution corresponds to about six weeks work
on an electric desk machine, which warr anta,the uae of an
electronic computer’. ' ”

The theory presented by Finkelstein waskexplored h?
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Walker and Kahn (WK65) with particular emphasis on

the limitihg case of adiabatic compression and ex-
pansion processes. A study of the effect of the four
principal design parametcrs (temperature ratio, phase
angle, swept volume ratio, and dead volume ratio) on
thé performance of the engine was made. Some design
charts and three-dimensional performance diagrams were
presented, however the theory has not yei been fuliy

A
3

exploited. \

2.5 ’COMPREHENS]VE ANALYSES INCLUDING PRESSURE DROP

Kirkley (Ki63, Ki66) analysed the Stirling cycle engine
in which allowance was made for non-isothermal prccesses
in the compression and expansion spaces, pressure drop
due to aerodynamic friction, and imperfect regeneration.
He evaluated the work done and the heat supplied exter-
nally per cycle in an uncoupled manner using two

differcent models:

a) Work done per cycle - he defined an 'equivalent flow

system', as in figure 2.2.
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Figure 2.2 EQUIVALENT FLOW SYSTEM (After Ki63)
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In the equivalent [flow system there is a single pressure
discontinuity in the middle of the regenerator space.
The temperature of the cooler and its adjacent half of
the regenerator is at,a constant value 72, and that of
the heater and its adjacent half of the regencrater at

a constant value T1. The compression and expansion

space temperatures vary due to the non-iscthermal processes.
This system is des$cribed in terms of differential equations
governing the mass accumulation in the compression space

pius half of

(Dme), the expansion space (Dme), the cooler
the regenerator (Dm2) and the heater plus Lal!l of the

regenerator (Dml). The pressure drop Ap = pl-pZ2 13
described by the conditional equation.

bp = K(Dm) p _ | (z.1)
where

Dml+Dme > 0 = Dm « Dml+Dme, p «~ -p2

Dml+Dme < 0 = Dm « Dm2+Dme, p +« pl

K is a flow resistance constant

n is an index greater than 1

Eight sets of differential equations in Dml, [m2, Dme

and Dme are integrated in a conditicnal‘manner, using
successive approximation technigues until cyclic steady

state conditions are attained.

b) Heat supplied externally per cycle - the effect of
imperfect regeneration is included by defining a ‘rege-
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nerator cffeciveness' as in figure 2.3.

| !ﬁl- H 1)
|

| [
; |

| | N
Temperaturef | NJ;::::::}- “““1

Figure 2.3 TEMPERATURE PROFILE TOR HEAT TRANSFER

CALCULATIONS (After KiG3)

Thus when flow is from the compression space to - the
expansion space then the working gas leaves the
regenerator at a temperature which 1s lower than that

of the heater 71, and when the flow is from the expansion

space to the compression space, then the working gas

leaves the regenerator at temperature which is higher
than that of the cooler 72.

Using experimentally determined values of X and n the
performance of the theoretical model was far more opti~
mistic than that of the equivalent experimental enging
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performance. Impvcoved correlation was attained
after allowance was made for an increase of friction
factor which apparently occurs in fluctuating flow

conditions. ,

Finkelstein (Fi62, Fi64, Fi67.1, Fi67.2, TI'i75) has
presented five papers on the analysis of Stirling
cycle machines in which allowance was made for non-
isothermal proéesses in the expansion and compression
spaces, pressure drop duc to flow friction, and
imperfect heat transfer and regeneration.

In his first paper (Fi62) Finkelstein proposed a model

as in figure 2.4.
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Figure 2.4  STIRLING ENGINE MODEL (After Fi62)

The system was represented by seven reference points

in which:

1 refers to conditions in the expansion space

2 refers to conditions at the expansion space/heater
interface

3 refers to conditions at the hcater/regenerator

interface

]



4 refers to ccaditions at the central c¢ross section

of the regenerator

L

rvrefers to conditions

o]
(s

the regenerator/cooler

interface

6 refers to conditions at the cooler/compression

space interfacc

7 refers to conditions in the compression space.

The fundamental equations derived for anulysis were

energy equations at the expansion and compressicn spaces,

heat transfcr equations in the heater, cooler, and
b

regenerator, flow loss in the heat exchanger ducts, and

continuity of mass flow.

were

(1)

(ii)

(iii)

made:

In determining heat transfer in the heat exchan-

ger ducts, the net enthalpy was cquated to the

net heat transferred.

Pressure was defined ouly at stations 1, 4 and

7. The pressure drops were detormined by the
following:

p4-pl = K1.Dml/p4 (2.2)
pd-p7 = K2.Dm7/p4 (2.3)
where K1 is the combined friction factor

between stations 1 and 4 and k2 is that between
stations 4 and 7.

Conditional temperatures were defined for

enthalpy flow across stations 2, 3, 5 and 6.

The following major assumptions
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Thus the temperatures crossing these stations

always took on their upstream values.

The system of eleven simultaneous equations dpr'ved
was programmed on a digital comput01 simulating a
digital differential analyser and one theoretlcal
example was evaluated.

In his second paper (Fi64) Finkelstein proposed a model
as in figure 2.5.

— A=k = e

QY

Figure 2.5 STIRLING ENGINE MODEL (After Fi64)

In this model the station numbers referred to the end
planes of the five main spaces.
were derived for all five spaces, and heat transfer to
the environment was considered, the major assumptions
being as follows: ‘

(1) The resistances to flow were treated as lumped
resistances, or leakage factors %, placed at the
dividing planes between the main space
have the following:

Energy balance equations

Thus wé
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Gl = Kl(po-pe) (2.5)

"where G1 is the leakage mass flux past the
piston in the expansion space.

G2 = K2(pe-ph)

\

\ i

where G2 is the mass flux across station 2 etc,

.(ii) . In determining the heat transferred to the main

spaces, mixed mean temperatures were assumed iﬁ
each space. Thus conditional tenpcrdturu% wcrv
defined for enthalpy flow across the stations é
such that the upstream values of temperature wére

ks
3
A

used.

Twenty eight simultanecous equations were developed for
solution. It was stated that computation results wore
in excellent agreement with expevimental vesults, how-
ever no rcesults were presented.

In his third paper (Fi67.1), Finkelstein proposcd a
model as in figure 2.6.

sf'\f‘v

DOWAR W’Tfé

=)
Expansion Heater Regenerator Cooler Compression
space ' space

Figure 2.6 STIRLING ENGINE MODEL (After Fi67.1)



The machine was subdivided into thirteen spaces in
seriest one expansion space, three heater sections,

. five regenerator sections, threc cooler scctions and
one compression space. This was an arbitrary sub-
division, and any other subdivision could have been
chosen. Significant tempetratures were shown in the
form of nodes of a thermal network, with id@ntifying
subscripts and connecting admittances. Nodes 1 to

13 corresponded to the respective mixed mean working
fluid temperatures, nodes 14 to 28 to the metal :
surface temperatures in contact with the workzng f1u1d
~and nodes 25 to 33 to the environmental temperatures.
Thus the whole system was reduced to the time variable
thermal nodal nectwork. As in the previous model
(figure 2.5), working gas flow resistance was accounted
for by lumped leakage factors ¥ at the dividing planes
between the main stations. Results for an isothermal

machine only were presented in a parametric manner.

In his fourth paper (Fi67.2), Finkelstein presented
the same model as previously (figure 2:0), however the
relation between mass {lux and pressure drop was
changed to the following:

Gi,’1:+l = 'K’I:_,i'l'l(p‘i—pi"l) ‘\! (p’l:‘e'lui-p’ﬂ-'].)/ip?:'*l”p'l:“l}

where the subscript 7,4+1 refers to the plane inter-
facing node space ¢ and node space Z+1.

Results were given for an isothermal analysis only.

In his fifth paper (Fi75), Finkelstein presented a
sophisticated generalization of his nodal type thermal

(2.7)



analysis program. He retained a rather simplistic
approach on the pressure drop by restricting flow

resistances at the inlet to the expansion space and

- the inlet to the compression space only. However,

this was not a fundamental limitation of the method.
All of the system equations at the various nodes
were reduced to the cquivalent form given by the

following: \

C.DT = Lh(Tw-T)+Q

where

¢ is thermal capacity

h is thermal conductance

¢ is heat generation or absorption

could be directly recduced to the equivalent form, how-
ever the energy equations for the working filuid TDQUITOdk
additional nonlinear terms in order to account fo1 the
conditional ¢nthalpy terms. A generalized working gas

node was thus proposed, as in figure 2.7.

26

The equations of mass distribution and wall heat balance

From figure 2.7 it is seen that the gas nodes are linked

by unidirectional conditional enthalpy eonductanées,
conditional on the direction of working gas flow.
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The computer program developed was used to simulate a
cryogenic cooler and recults of this simulation were
presented. Being a cleose analog of the actual machine
the program solution went through the same process'uf
'warm-up' requiring some several hundred crankshaft
revolutions. In order to speed up the atteinment of
cyclic steady state a method was proposed whereby the
large wall thermal capacitances were reduced to zero

for a partial cycle, and then reinstated.

Gvale and Smith (QS68) analysed the Stirling cycle engine
in a manner which allowed decoupling of the irreversibi-
lities from the basic performance of the system. The
basic system considered was one having®adiabatic com-

pression and expansion processes, ideal heat exchange,




and no pressure drop (figure 2.8).
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Figure 2.8 BASIC IDEAL SYSTEM (After QS68)

The heat exchanger gas temperatures were cons
constant at Tk, Tr and Th respectively.

idered
Working
Space temperature Te and Te varied according to the

adiabatic processes in these spaces. Conditional

temperatures were defined for enthalpy fiux
the wor

4CToss
king space/heat exchanger interfaces such th
the temperatures Crossing these interfaces always
took on their upstream values. Sinusoidal variation
in system pressure and the mass of g
and compression spaces was assumed.
equations were integrated numerically

at

as in the expansion
The system

in order to
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obtain the work donc per cycle as well as deteormine
the volume variations, which were not sinusoidal.

The equivalent sinusoidal volume variations were
determined to give the same work done per cycle.

It i3 noted that the work done per cycle for each
‘working space must equal the heat transferred to

each of their respective adjacent heat exchangers.
The various loss terms were then considered and their
effect on the basic work done and heat transferrecd
per cycle evaluated, as follows:

(i) Frictional flow losses -- the momentum equation
was reduced to equating the pressure drop to the
frictional drag, and the effect of this pressure
drop on the cyclic work done ecvaluated.

(ii) Heat transfer -- the effcct of imperfect heat
transfer in the heater and cooler was considered
to require a correction on the average tempera-
ture entering the adjacent respective working
cylinder only. However, in order to examine
the effect of imperfect heat transfer in the
regenerator the concept of net enthalpy flux was
introduced. The temperature of the gas moving
towards the warm end is lower than that of the
gas moving towards the cold end. The effect of
this is to induce a net enthalpy flux per cycle
in which heat is removed at the heater and added
at the cooler.

A method of computing this net enthalpy flux was
presented in a companion paper by Qvale and Smith

i
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(QS69). In this paper approximate closed form solutions
to the net enthalpy flux were derivéd, the major assump-
tion being that there is no pressure drop across the
regenerator. Sinusoidal mass flux and pressure
variation, with a phase ahgle difference between thenm
was used. '

Rios and Smith (RS70) extended and refined the approach
adopted by Qvale and Smith. The relative effects of
decoupling the syétem from the various component
irreversibilities were examined in depth, in particular
the losses due to pressure drop. The results were
verified by experiment and found to be in excellent

agreement.

Kim (Ki70) developed the concept of enthalpy flux
introduced by Qvale and Smith (QS68) in order to expe-
rimentally determine the heat transfer and friction
factor correlations for reversing fiow. He evaluated
these for a regenerator consisting of a randomly
packed sphere matrix and obtained results which were
about 20% higher than the steady flow correlations
given by Kays and London (XKL64, Appendix ).

2.6 DISCUSSION

The advanced analyses of Stirling cycle machines have
developed into two main streams. Qvale, Rios, Smith,
and others at MIT and Purdue University have attempted

to decouple the Stirling engine into its major components;

separating out the regenerator, heater and cooler from
the working spaces. In this way the various components
can be independantly analysed and optimised. Thus the
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 concept of net enthalpy flux, being a measurec of
the regenerator effectiveness, has been developed.

This approach has obvious adﬁantages, however, the
important question to ask is 'to what extent can

the system be decoupled without departing from
reality?' One can only validate the theory against
experiment. Uqfortunately, the only exicting
documented experimental results are those of the
General Motors PD-67 engine (ASD63). These results
are for a single specific engine prototype developed
for space applications, and 1eavé,much to be desired.
Qvale and Smith have validated their,thedry against
the PD-67 results and have obtained reasonable agree-
ment as to work output and thermal efficiency. How-
ever, these are gross parameters and the,agrécment
may be fortuitously close bccause of 'fudge factois'
both in experimental error and in the model limita-

tions.

' The concept of net enthalpy flux is also limited to
the particular configuration of a series connection
of the various elements. However, this may not .
necessarily be the optimum or even the most practical
configuration of Stirling cycle engine. As early
as 1953, Finkelstein (Fi53) proposed an enginc in
which the heater and cooler were vespectively by-
passed in the two flow directions by means of simple
flap valves, and heuristically proposed that the
performance of this engine would be superior to the
standard series connected sytem (figuré 2.9).
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Figure 2.9 THE PORTED REGENERATIVE ENGINE_(After Fis3)

As far as is known the potential of this simple modifi-
cation to the basic Stirling cycle machine was never
exploited or analysed in the open press. Rallis and
Urieli analysed such a system using simplified ideal

cycle analysis (to be published, refer Appendix C).
Their results are shown in figure C.3 and should be
compared with the pseudo-Stirling cycle of figure C.2.
It is seen that under all conditions of regenerator
effectiveness and volume compression ratio the so-called
'ported regenerative constant volume cycle' gives higher




thermal efficiency than the pseudo-Stirling cycle.

In bypassing the heater it is noted that the working
fluid is cooled by adiabatic expansion before entering
the regenerator in the Qne flow direction, and heated

by adiabatic compression before entering the regene-
rator in the other flow direction. Thus from figure

C.3 it is scen that the same regenerator can be

extremely beneficial at low values of volume compression
ratio, and altefnativcly it can be extremely detrimental
at high values of volume compression ratio. The
regenerator thus cannot be treated as a separate entity
in this system configuration and the concept of net

enthalpy flux is not relevant.

The other stream has been successively developed by
Finkelstein. The Stirling cycle machine has been
retained as a unified complex entity, in which the
describing mathematical model has evolved in a progressive
attempt to simulate this entity. The main disadvantage
of this technique is that as the model becomes more
sophisticated, so it requires more computcr time for
solution. The principal simpiification of Finkelstein's
models has been his method of accounting for working
fluid momentum losses. Leach and Fryer (LF68) in
attempting to develop a comprehensive model for the
Stirling engine using the method of characteristics have
stated: 'The large scale digital computer is not yet
ready for this problem in conjunction with the compli-
cated thermodynamics of the irreversible Stirling cycle'.
However, computer power is a relative term, and it is
found that order of magnitude changes arec possible in
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‘less than a decade. During the course of this

study, three very different computers were compared
on the identical Stirling cycle simulation problem:
an IBM 1330 (which came out in about 1960), a HP

2100 minicomputer and an IBM 370/158. It was found
that the IBM 1130 is ten times slower than the HP
2100, which in turn is ten times slower than the IBM
370/158. Also, minicomputers are relatively in-
expensive, exfrémely powerful and sophisticated devices,
and it is not uncommon for a minicomputer to be
dedicated to a specific problem.

2.7 STATEMENT OF THE PROBLEM

It is seen from the above review that in the open
literature there does not exist a completc unsimplified
model for the computer simulation of Stirling cycle type
machines. In assessing the requirement of such a

model, Walker has stated (Wa73): 'The principal v
difficulty is that much of the information on heat -
transfer and {luid {low, required for the data input,
is not known. Thus it is not possible to assess the
accuracy of the simulation without experimental results,
and when the experimental machine 1s available the need
for computer simulation largely disappears. Of course,
it can be argued that, once the program is validated

by comparison and adjustment of the predicted values

to close agreement with the experimental values, it can
be used to optimize the design of the experimental unit,
This is partially true, but the order of uncertainty
increases as conditions depart from those of the
experimental machine, because the "fudge' factors used

- to validate the model do not remain constant.’
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liowever, the comp:ter model is not necessarily
required in order to replace the need for experimen-
tation, but rather tc supplcment it. One cannot in
the real world, for example, arbitrarily define pro-
perties of a working fluid in order to detcrmine the
vrelative cffect of the various properties on the
performance of a machine. It is impractical to
measure the instantaneous values of all the variables
in all locations of the machine, or arbitrarily vary
the operating conditions and geometry of a machine
required in an optimization study. The effect of
the so~-called 'fudge’ faﬁtors depénds upon the
sophistication of the mo}el, and the accuracy of the

experimental results, und cannot be determined a priori.

Experimental effort can oe directzd in order to obtain
the required heat transfer and fluid flow information,
as for example the initial work by Kim (Ki70) for

packed spherical beds. x

In the most sophisticated models that have been

presented the following is noted:

(i) The momentum equation has been reduced to the
steady flow momentum equation, ie, equating
the pressure drop to friction forces, either
by implied assumption or by order of magnitude

analysis.

(ii) Kinetic energy terms have been discarded from
the energy equation, either by assumption or
order of magnitude analysis.

——

]
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(iii) In the cellular approach, no guidance has
been given as to the minimum number of cells
required for accurate representation.

Order of magnitude analyses in order to reduce the

complexity of the governing equations should be trcated
warily. They are based on intuitive reasoning as to

the order of magnitude of the parameters and their first
derivatives. This intuitive reasoning can be subjective,
influenced by the degree of simplification which can be
attained, and may thus be prone to error. A better
approach would be to develop and solve the complete :
governing equations, thereby laying a basis with respect
to which the simplified approaches can be compared.

The problem formulation is thus as follows:

{1) Develop from first principles the comprehensive

' governing equations of the working gas, ie,
continuity, momentum and energy. Because of
axial symmetry normally found in Stirling
cycle type machines, the one dimensional formu-
lation of these equations is considered. |

(ii) Develop a model which can apply the above equations
to the simulation of Stirling cycle type machines.
The model should be adaptive in that it can be
reduced or increased in complexity in accordance
with experience; that any realistic sygtem confi-
guration and interconnection of the basic components
can be simulated; and that the algorithms for
evaluating the empirical correlations of fluid
friction and heat transfer coefficients can be
updated, in accordance with current knowledge in the
field. |




iii)

Validate the model. This validation can be
divided into consistency requirements and
experimental verification. Consistency
requirements;include the non-violation of

the fundamental laws of nature, numerical
stability and accuracy, and determining i{ the
performance trends indicated by the model on
specific configurations of machine are in
accordance with current knowledge in the field.

As far as experimental verification is concerned,
the only documented experimental results availuble
in the open press are those of the General Motors
Allison Division PD-67 engine (ASDG3). The réport
in which they are published is not widely availa-
ble, and a cépy was obtained only recently ~-- too
late to include it in this work. ‘tThe PD-67

engine was not designed as a research tcool in
order to make available fundamental experimental
information, but rather as a prototype machine

in order to asscss its applicability to a specific
single-purposc space application. As such the
results relate to some tens of hours of running
experience on the prototype machine and leave

much to be desired. The development and testing
of research machines is currently being undertaken
by a number of institutions specifically for the
purpose of providing fundamental data. The effort
required is at least as large as this work, and

as such no experimental validation of the model

developed in-this study has been possible. Rallis,

et al, of the University of the Witwatersrand,
have begun an experimental program based on the
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two-piston configuration. Buckingham, Rice
and Dunn of Reading Uﬁiversity in England are
involved in an experimental program based ou

a piston-displacer type engine. Vote, Hoehn
and Finegold oé the Jet Propulsion Laboratory
in California are developing an opposed dual-
piston engine specifically in order to produce
fundamental data. It is hoped that these
efforts will begin to produce results within
the next year and enable validation of this

~work.
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3. SYSTEM MODEL

3.1 GENERAL

In this chapter the {undamental equations, SYStem model
and method of solution are treated. The system 1is basi-
cally divided into so- called variable working 3paces,

heat exchanger spaces and interconnecting spaces. These
spaces are not necessarily mutually exc1u51vc and it may
ve found that working gas in a working space may be under-
going heat exchange with the bounding surfaces. Most
practical machines, however, have separate heaters,
regenerators and coolers, and the model will be restricted
to systems having adiabatic working spaces. The funda-
mental analysis is however sufficiently f{lexible to allow
the inclusion of heat exchange in the working spaces
should it be found necessary. The three Configufations
into which it is possible to classify all known designs
of reciprocating Stirling engines are now considered,
after Kirkley (Ki62).

Alpha engines (figure 3.la ) are the dual piston engines
and include V-engines (CL75, Wed7), Swash plate cr Rider
type engines (Bal885; We47), and opposed piston engines
(We47, Wa62.1). The working spaces are the swept
compression and expansion spaces, and their respective
clearance spaces. The two working spaces are separated
by the series connection of the heat.exchange spaces --

being the cooler, regenerator and heater respectively.

Beta engines (figure 3.1b) are single cyllnder piston-
displacer engines and include thombic drive engines
(Me59), Beale type free piston Stirling engines (8869}
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and the Harwell thermomechanical generator (CF74). The
working spaces are the swept spaces on either side of
the displacer piston, including their respective clear-
ance spaces. The compression spaée volume variation is
controlled by the combined movement of the displacer

and power pistons, and the two working spaces are
separated by‘the series connection of the heat eichanger
spaces.

A
\

Gamma engines (figure 3.1c) have a power piston and

a displacer piston as in Beta engines, however they are
housed in different cylinders, thus defiring the so-
called ‘'output' space, being a third working space. These
engines include Robinson and Heinrici engines (Wa73) and
Martini type free piston Stirling engines (MW74). The
compression and expansion spaces are scparated by the
series connection of the heat exchanger spaces.

Finkelstein (Fi76) has stated that he does not agree
with the separate classification of the Gamma engine,
and that it is just a subclass of Beta type engincs.
However, the output space need not be connccted dirvectly
to the compression space, as is normally done, but may
be advantageously connected to (say) the interface
between the regenerator and the cooler, or the regene-
rator and the heater. As far as is known, these non-
standard configurations have never been exploited or
analysed. -

Thus it is seen that the Alpha and Beta engines arve
thermodynamically eqﬁivalent, however, the Gamma engine
can operate on a different thermodynamic cycle. More
complete classifications of the various known configu-
rations are given in Walker (Wa73)and Kolin (Ko68).



The ensuing analysis is restricted to Alpha typc
machines, however the analysis can be adapted to
include standard or non-standard Gamma type engines,
or in fact any conceiyatle valved or unvalvcd confi-
guration snd inter-connection of the basic components,
providéd that the working fluid operates in a singie

phase throughout the cycle.

3.2 THE IN-LINE CONFIGURATION

The in-line Alpha‘configuration shown in figure 3.l1la

is considered. The compressian and expansion spaccs

are treated as adiabatic spaces having respectively
uniformly distributed thermodynamic properties. The

heat exchanger space consists of the heater, cooler

and .regenerator. The heater and cooler normally consists
of banks of pipes containing the working gas and immersed

within the heating medium and cooling fluid respectively.

The regenerator usually consists ol a poious solid,
called the matrix, the void volume of which is open to
flow of the working gas. The matrix is made of heat
storage material and is usually in the form of wire wool,
wire gauze screens, a packed bed of particles such as
spheres, or ceramics. However in some instonces the
regeneratoy matrix reduces to the walls of an ammular
space or simple pipes. '

The interconnecting spaces are usually included in the
clearance volume of one of the working spaces, however they
can be included in the analysis as separate entities 1if
required. '



The analysis of ithe heat exchanger spaces in a Stirling

cycle machine is extremely complex, even though the

geometric structure of these spaces are usually simply

defined, for the following 1easons:

(1)

(i)

(iii)

(iv)

]

The thermodynamic state varies continuously both
in timc during the cycle and with position along

the heat exchanger spaces.
The temperature of the gas varies with position
and temperature dependencies of the physical

properties have to be considered.

The mass flow rate along the heat cxchangers varics
considerably with time and position. At some
instances of time simultancous laminar-and turbulent
flow can occur in hoth directions thiough the heut
exchanger spaces. Thus the heat transfer and flow
friction parameters which are noniinear functions
of thermodynamic state, physical properties and
mass flow rate of the working gas will not be

constant.

The heater and cooler walls are usually maintained
at a constant éemperature, however the matrix tewm-
perature (and enclosing walls) fluctuate both in
time during the cycle and with position. The matrix
heat capacity is much higher than that of the gas,
however, and the time fluctuations of the matrix

temperature is usually relatively small.

The complextity and nonlinear nature of the behaviour of

the working gas in the heat exchanger spaces precludes
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any closed form analytical solution, thus the system

can only be described by partial differential equations.

3.3 THE_FUNDAMENTAL EQUATIONS

In Appendix D the fundamental equations of continuilty,
momentum and energy are derived for fluid flowing
through a generalized elemental control volume V

A

(figure 3.2) \
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Figure 3.2 GENERALIZED ELEMENTAL CONTRO], VOLUME

It is assumed that the control volume is chosen such
that either all the fluid properties are uniform and
constant in space throughout the control volume, or
that it is small enough such that all the fluid
properties can be adequately represented throughout
the control volume by their mean values. The fluid
properties are represented by the specific volume v




(or density p), pressurc p, temperature T, and
momentum per unit volume g (refer to Appendix A

and the section entitled 'NOTATION' in the frontis-
piecé). The control volume is in an Eulerian frame-
work, but wmay vary in magnitude with time. Thus

the momentum per unit volume g assumes the role of

a mass flux density while it is crossing the

Lounding control surface 4, transporting matter,
energy and momentum flux into and out of the control
volume V. Energy in the Torm of heat § crosses the
control surface 4, and mechanical work W is donc by
the control volume V on the surrounding environment
by virtue of its volume variation with tiwme. Shaft
work done by virtue of a rotating shaft crossing

the bounding control surface 4 is ignored. The

fluid is Newtonian, and the nonlinear variation of
i1s dynamic viscosity with temperature is considered.
¢ is assumed that the fluid behaves as a porfect
gas, ond that its dynomic viscosity does not vary with
pressure. This is not, however, a fundamental Timi-
tation of the method of analysis or sclution, and the
nonlinear behaviour of any of the parametcrs can bLe
included if required.

Because of the axial.symmetry normally found in

Stirling engine heat exchangers, the equations developed

in Appendix D are reduced to the one-dimensional case.
In order to include the strictly three-dimensiconal
effects of turbulence in the one-dimensional system
empirical correlations are invoked to determine the
heat transfer and friction behaviour of the working

gas with respect to its surroundings.

,_..l—t



In the momentum equation the effects of momentum
flux and the acceleration of the working gas are
teken into account. In the energy equation, the
stored working gas energy is assumed to consist
of internal emergy and kinetic enexrgy. All other
forms of stored energy have been ignored as being
irrelevant to the class of systems that will be

considered.

5

v v . . - . V-
The fundamental equations derived in Appendix D ior

the above arguments and assumptions are given in
equations (D.5),(D.9) and (D.18) below:

Continuity:
am, 99
FEAE I

Momentum:

(g, V) V5 (g2 0) +VEEE = 0

Energy:
d 3 2
99 - 2D ek g v (v3Ber)

The mechanical work ¥ is considered to be done
reversibly, thus, since shaft work is ignored,
it can be related directly to the volume variation

with time of the control volume.
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(D.5)

(D.9)

(D.18)

(H.20)



dw/dt = pdv/d¢
In order to complete the basic system of equations,
the various heat flows, by convection betwecn the
working gas and the matrix or the heat exchanger
wall, and by conduction within the wall, are
considered. ’

\
d@/dt = h.Awg (Tw-T7)
3Qw/ 9t = kw.Aw.3Tw/ox

where

Tw is the temperaturc of the wall forming one of

the bounding surfaces of the cpntrol volume V

Awg 1is thé wall area wetted by the working gas in V
ow is the axial conductive heat flow in the wall

Aw is the wall cross sectional area

h and kw are respectively the heat transfer coeffi-

cient and thermal conductivity of the wall.

Finally the energy balance of the wall is considercd:

CwdTw/dt = ﬁ(dei/dt)‘
1
where

¢w is the heat capacity of the wall

Qwi‘ are all/the heat flows intc the wall

47

(3.3)
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It is noted that equations (3.1) through (3.3) apply
to the matrix as well, by replacing the suffix w by

the suffix m.
{

Equations (D.5) through (3.3) above form the complete
system of basic equations which apply to the elemental
control volume V. In the following section the system

is subdivided into elemental control volumes in order

to anply the basic equations.

3.4 THE CELLULAR MODEL

The usual method of solving partial diffevential equations

jtal computer consists of approximating the

on a dig
211 the independant

partial derivatives with respect to

variables by finite difference expressions. The resul-

ting algebraic relationships are then solved at the grid

Jiscretized region of intevest. The

puints of tho
approach that has been sdopted here is to
partial differential equations to a system of ordinary

convert the

differential equations by discretizing the spacial c¢oor-
dinate only (Appendix G). This is done by subdividing
the machine into a finite number of thermodynamic entitles,
or cells (figure 3.3).
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Figure 3.3 THE ne-CELL MODEL
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The working gas in this void space is in intimate
open communication with the porous cell matrix.
The matrix presents a wetted area Amg., to the wovrk -
ing gas, allowing heat @; to be transferrved by
convection from the matrix to the working gas. The
cell axial length is Ax.. Cell 2 is bounded by node
7 being the interface to adjacent cell Z-1, and node
i+1 being the interface to adjacent cell <+1. Mass
flux density g; flows across node < through the free
flow area Ai giving a total mass flux Gi‘ The various
working gas propertics arc defined as beiang constant
throughout the cell and discontinuous at the nedes.
Thus the node temperature Tn, and the nede specific
volume vn, are conditional variables, taking on their
respective upstream adjacent cell values, conditional
on the direction of mass flux density gi, Thus
referring to the arbitrarily defined positive direction
Al

of Flow piven in figure 3.4 (which has becn adhered

wd

to throughout) one obtains:

g; 2 0 = Tni T qs Vny * Vi-1

i~1

g. < => Tn, « T 1. D
g; 0 n: y VR

2
where the symbols = and <« take on their usual mathe-
matical connotations of 'leads to' ond 'is replaced by’
respectively.

The above definition of conditional node temperatures
has been introduced by Finkelstein (¥i606.2). The cell
model having mixed mean properties (in particular tem-
perature) in the cell and conditional upstream proper-
ties at the nedes has been criticized during private



communications by many researchers in the ficld,

for two reasons. Fokker of Philips, Holland;

Bratt and Sjdholm of United Stirling, Sweden; and
Gedeon of Sunpower, USA have stated that in the

real system the temperature distribution is conti-
nuous; thus the model may lead to péssimistic

sytem performance owing to thermodynamic lrrever-
sibilities associated with finite temperature
diScontinuitiesl ’Urgaﬁ of London University and

Van Eekelen of Philips, Holland have stated that
mixed mean properties in a cell having a finite

axial length implies instantaneous propagation of
information, being in vioclation of the laws of nature.
Variants of the above system model were thus considered
in which the various properties are continuously dis-
tributed axially across the system in a piececwise
iinear manner. In this case the node properties were
defined as the arithmetic means of the adjagent cell
properties, and invariant with the direction of mass
flux density. The results of analysis using these
variants are discussed in Chapter § in the light of

the above criticisms.

The cell matrix pfopcrties ave defined in terms of

its overall volume (being the void volunc v, plus

the volume occupied by the matrix material Vmi)’
porosity V., density of the matrix material pm, MASS
mn_ 5 heat capacity Cm, thermal conductivity kmi and
temperature Tm, (Refer to figure 3.4). Illeat transfer
by conduction between adjacent cell matrices Qm takes
place atnode £ through’ the matrix effective Ccross
sectional area Am,. Heat transfer by conduction Qum
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takes place between the matrix and containing wall
fol

through the effective arca of contact Awmi,

The containing wall associated with the Z'th cell has
its properties defined in terms of its volume Vwi,
density pw ., MASS mw ., heat capacity Cwi, thermgl
conductivity kwi and temperature Twi. Heat transfer
by conduction between adjacent cell walls Qwi OCCurs
at node £ through the wall cross sectional area Awﬁ.
Heat transfer with the external environment adjacent
to the wall of the Z'th cell, Quo ;» takes place

through the external wall area Awo ;.

In the case of a regenerator cell it is usually
assumed that the regenerator is externally adiabatic
(no heat transfer takes place betwecn the containing
wall and the surrounding environment, ic, Qwai = 0).
It is also usually assumed that the axial thermal
conduction lecakage path 1s predominantly in the con-
taining wall (Qmi = () and that there is no thermal
conduction between the containing wall and the regene-
rator matrix (mei = (). These are not fundamental
limitations of the model, however, and all of the above
heat flows can easily be included if necessary. It is also
noticed from figure 3.4 that no heat transfer occurs
between the containing'wall and the working gas., In

the special case in which there is no regenerator matrix,

ie, that the wall acts as the regenerator (for example
the application example in Chapter 4) then the heat
transfer to the working gas Qi takes place between

the working gas and the cell wall.



In the case of a heater or cooler cell no matrix is _
present, and convective heat transfer 2 takes place

between the working ga§ and the cell wall. It is -
usually assumed that the wall temperature Tw, is

constant, and heat flow Qwoi is exactly metere@ out 5 —
in order to maintain this constant value of wall tem-
perature. The mpdel can easily be adapted to allow

a varying wall temperature Iw, if it is found necessary.

3.5 THE VARIABLE VOLUME WORKING SPACES

The boundary conditions for the serics connected heat
exchanger cells are the compression and expansion spaces
respectively. The compression space is adjaccht to

the first cell (figure 3.5) and the expansion space is

adjacent te the ne'th cell. . _

The compression spacc consists of variablc volume Ve _
containing working gas cf mass me having temperature

Te, pressure pe and specific volume ve (or density pe). , _
The working fluid is contained in a wall having a tem-

perature Twe. The actual value of Twe cannot be deter- -
mined theoretically and depends inter alla upon the
nature of the environment, the cylinder cmnfiguration,
the mechanical friction heat generated by the piston
seals and the heat transfer to the working fluid. Heat
conduction Quy takes place between the cylinder wall
and the wall of cell 1. It is usually assumed that

the cylinder wall is adiabatic (le = () unless
experimental values of Twe are available, which can
then be included in the model. Heat transfer between St B



~ the cylinder wall and the working fluid is not
normally considered, but can be included in the
model if found necessary.

f

\
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Figure 3.5 THE GENERALIZED COMPRESSION SPACE
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The compression space interfaces with the first

-cell vja node 1. Mass flux density g, flows across
node 1 through free flow area Aq giving a total

mass flux Gl. Conditional node temperature Tny and
specific volume vng are defined at node 1 as in
equation (3.4). A pressure drop Apc due to contraction
(expansion) loss exists across node 1. In determining
the momentum balance it is assumed that a zeroth cell
is projected into the compression space, in which the
working fluid has the same propertics as that in the
compressiqn space. It is assumed that the working
fluid in the compression space is stationary and thus

has no momentum.
Mechanical work We is done on the extcrnal environment
by virtue of the change in volume of the compression

space. It is assumed that this work is done reversibly.

All the ubove arguments and assumptions for the compress-

ion space apply to the expansion space as well.

3.6 SYSTEM ALGORITHMS

The fundamental equations cf section 3.3 are applied to
the system model defined in secctions 3.4 and 3.5 in
order to obtain the system of simultaneous first ordevr
ordinary differential equations for solution. It is
found that a distinction is made between cell parameters
and node parameters. The working gas energy equation
(D.18), work done equation (H.19), convection heat
transfer equation (3.1), and wall (or matrix) heat
balance equation (3.3) are applied to the cells and
variable working spaces only. However, it is scen that
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" the mass flux density is defined only at the nodes,
‘thus the momentum equation (D.9) is applied at the
nodes. Also, since the wall temperature Tw is cong-
tant throughout the cell wall, the heat conductimn
equation (3.2) can onl& apply to heat flow across

- the nodes between adjacent cell walls. The continui-
ty equation (D.5) relates the mass accumulation of
working gas in the cells to the mass flux density

across the adjacent nodes.

In Appendix H the fundamental equations are applied
~to the complete system model in order to cbtain the
system algorithms suitable for solution. Together
with every derived algorithm the FORTRAN equivalent
statements are given, in keeping with the aim not to
divorce the computer program from the text. It is
found that in order to obtain the fricticonal drag force
F in equation (D.9) and the heat transfer coefficient
A in equation ( 3.1 ) it 1s necessary to determine the
local value of dynamic viscosity y and thermal con-
ductivity k of the working gas, as well as invoke

the empirical correlations for the specific system

configuration.

The determination of u and &k is given in Appendix E,
and the empirical correlations for ¥ and h are given
in'Appendix F. Tt %s found from Appendix F that very
little experimentally validated information on the
matrix surfaces used in Stirling cycle type machines 1is
available to date. However, the nature of the modelling
approach is such as to allow updating of the various
algorithms in keeping with current knowledge.
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3.7 METHOD OF SOLUTION

At this stage, the complete system of algorithms hos
been derived, taking the form of a system of first

order total differentiél gguations which are required

to be integrated simultaneously. The method of

solution of the system of equations 1s given in Appendix

G'

Systems of total diffcrential cquations can be solved
as initial value problems using well established nume-
rical methods, eg, Runge-Kutta methods. However, in
the case of-a Stirling cyclie machine the initial
conditions of all the relevant parvamecters at some arbi-
trary initial refevence point in the cycle are not
known. The system is thus converted into an initial

value problem by starting the engine at a stationary

initial condition with the working gas in temperature
equilibrium with the survoundings. Thus since the
engine is stationary, ali the valuos of mass flux
density are zcro, and there 1s N0 pressurc drop axially
along the machine. This is suf{ficient information to
enable a consistent set of initial conditions to be

defined in order to begin the integration routine.

The system then goes through a 'warmup' period by
integrating the equations through several complete
cycles until cyclic steady state has been attained.

This is the equivalent of the ‘warmup' operation of

an actual machine in which the machine starts from

some initial state and goes through successive transient
cycles until the values of all the variables at the end

of each cycle are equal to those at the beginning of



that cycle. The time needed until cyclic steady

state is reached is dependant mainly upon the thermal
capacitance of the sSystem -- in particular that of

the regenerator matrix and wall -- and can require some

several hundred crankshaft revolutions (Fi75).

A technique for accelerating COnvergence to cyclic
steady state was developed, and is presented in Appendix
G. 1t is based .upon the principle that when cyclic
steady state has been attained then through each cycle
the net transfer of hcat between the working fluid

and the regenerator mMatrix is zero. Thus the a poste-
riori value of residual regenerator heat is used in

a simple feedback loop in order to alter the regene-
rator matvrix temperature distribution. The root mean
square of the residual regenevator heat is used as a
measure of the degrec of departure of the machine

{rom cyclic steody state.

3.8 CONCLUSION

The actual form of the cellular model given above was
arrived at after quite considerable trial and error,
some of which is discussed in Chapter 5. The evaluation
of this model was mainly infiluenced by the threefold
requirement of solubility, aumerical stability, and

accuracy.

The solubilitytrequirement was met by reducing the set
of partial differential fundamental equations to a set
of first order total differential equations. This is
done by discretizing the partial differential equations

in the spacial coordinate only and retaining the time



derivative. This approach of discretizing a partial
differential equation in all but one coordinate 15
Ynown as the 'method of lines', and 1s discussed in
Appendix G. Rather than discretize the continuous

witions, it was decided to discretize the

continuous model and convert it to @ finite celiular

form.

only the time increment for integration, but also

the form of the model and the wethod of integration.

DSV R o b g e ST Y T .
The reguivement of accuracy goOverns the choice of

Yo number of cells as well as the time increment

ration.

foth of these latter reguirements will be discussced



60

4, AN APPLICATION EXAMPLE

4.1 INTRODUCTION

The major aim of this work is to present a technique
of modelling and solution such as to c¢nable any
configuration of single component single phase thermal
machine to be evaluated. As such the model needs to
be validated agaihst current knowledge in the field.
This validation can be resolved into streams, as

follows:

(i) The model must be numerically stuble. In this

context it was found necessary in this study

“to differentiate between so-called dynamic

and static instability. Dynamic instability

is a positive feedback effect which manifests
itscif in the solution variables tending to
infinity. As such it is casily detected and
overcome by simply decreasing the integration

time interval. Static instability is much

more difficult to detect since it can have a
limiting restraining effect and can pass comple-
tely unnoticed if only the gross computational
parameters, such as efficiency or work done per
cycle, are presented. It manifests itself in
introducing spacial oscillations in the parameters,
where such oscillations do not exist in the actual

“machine. Thus in validating the model for numeri-
cal stability both static and dynamic instability
must be considered. '

(i1) The model must be consistent. The consistency

conditions require that the fundamental laws of
continuity, momentum and energy must not be



(iii)

(iv)

Gl

violated, from the basic defining cquations

through to the system algorithms and numerical
solution. Thus for cxample, if leakage is not
allowed for then the toual mass of working gas

must always be a constant.

The model must be accurate. The real machine
parameters vary continuously in both time and
space, however, thc model is discretized in
both time and space. This discretization is
necessary in order to make the model soluble
on a digital computer in a finite time. 1t is
obviously advantageous that this solution time
be winimized. This can be done by reducing the
number of cells (spacewise discretization) or
increasing the integration time interval. low-
ever, the effect of these on the accuracy of the
solution must be evaluated, and cither corrected
for, or contained within reasonable limits.

>
The model must be realistic - it must reflect the
behaviour of the rezal machine, preferably in accor-
dance with acutal cxperimental observation on a
prototype machine, or if a prototype machine is
not available, then in accordance with current

experience and knowledge in the field.

In this chapter an application example test engine which

is used in order to validate the model is defined. 1In

validating the model, a considerable computational effort

is required in order to obtain an exhaustive set of

results. The test engine configuration has been chosen

to be both a practically feasable system, as well as to

minimize the computational effort.



4.2 DESCRIPTION OF THE ENGINE

)
o]

The hypothetical test engine is shown in figure 4.1,

It consists of an adiabatic expansion space and an
i

adiabatic compression space interconnected by 4

homogencous bundle of heat exchanger pipes.

Compression Expansion
space ¢ . space e
)1 l Heat exchanger section I —
=] ] ) ==
) 1
1
( | ! ;
! | 1 ,1
— : % | -’
1
! {
C | e ]
. 1 i
[ ] - J
o Cooler k lRogancrataf » ! Heater 7
|

Fipure 4.1 THE TEST ENGINE

1

The bundle of pipes are divided

into three sections,

the cooler, regenerator, and heater respectively.

The pipes in the cooler section are maintainced at a

constant wall temperature Twk, and the pipes in the

heater section are maintained at a constant wall

temperature Twh. The pipes in the regenerator section

attain their own specific temperature distribution in

accordance with the governing heat flow equations and
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the requirements for cyclic steady state.

There is no regenerator matrix in the pipes of the
regenerator section, ﬁegenerative action taking

place in the walls of the pipes.

The reasons for the choice of a bundle of pipes for

the heat exchanger section are as follows:

(1) The flow friction and heat transfer behaviour
of circular pipes has been well documented
over the past three decades (Appendix F). Truc,
this documentation is valid for steady flow only,
and there is evidence to show that the fluctuating
flow conditions encountered in Stirling cycle type
machines give rise to higher values of friction
factor and Nusselt number for the same conditions
of Reynolds number (Ki70]). However, it has been
found that the flow conditions in the test
engitnes that have been examined are mainly turbu-
lent with laminar flow reversal being propagated
through the sysem over only a small fraction of
the cycle. Thus it is believed that steady flow

data in this case 1s realistic.

(ii) The homogeneocus geometry of the pipes allows for
extremely simplified'pragramming, and corresponding
computer run time reduction. The only difference
between the three heat exchanger sections is the
wall temperature. The form of regenerator section
chosen is considered quite practical, and is
reminiscent of the annular gap type regenerators
of the Harwell thermomechanical generator (CF74)



or the Beule frece piston Stirling enginc (Be69).
The homogencous pipe regenerator has a larger
wall/gas wetted surface areca than the equivalent
annular gap and would thus be applicable to
higher performahce machines, with the advantage
of being less complicated to manufacture than
systems having standard porous rcgenerator

matrices.

The volume variation of the adiabatic compression and

expansion spaces are sinusoidal, in accordance with the

Schmidt cycle analysis (Appendix B).

A specific system within the framework of the above test

engine is defined by five scts of parameters (the square

brackets enclose parameter dimensions in SI units, whercver

applicable).

(1)

Size and configuration
Vsim®] - The total stroke volume, being the sum of
the swept volumes of the compression and expansion

spaces.

Vd - The fractional dcad volume, defined as the sum
of the void volume in the bundle of pipes, the
clearance volume of the compression space and the
clearance volume of the expansion space, normalized

with respect to the stroke volume Vs.

Vel - The fractional clearance volume of ecither
the expansion space or the compression space
(both are assumed identical) normalized with respect

to the total stroke volume Vs.



(i1)

(iii)

Zp[m] - The length of heat cxchanger bundle of
pipes.

np - The number of heat cxchanger pipes in
the bundle.

dia - The ratio of external to intcrnal diameter

of the heat exchanger pipes.

Ro - The relative roughness factor on the inter-

nal surfacc of the pipes.

Working gas propervties

y - The ratio of specific hcat capacities ep/ev.
R[J/kg.K] - The gas constant.

+

n0[kg/m.s] - The dynamic viscosity at tempcrature

70 .
70 [K] - The temperature at which [0 is defined,

7su|K] - The Sutherland constant for the gas
(refer to Appendix EJ.

Pr - The Prandtl number of the gas,

Pipe wall material properties

kw[J/m.s.K] - The thermal conductivity of the wall

material.

sw[J/kg.X] - The specific heat capacity of the
wall material.
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5w[kg/m3} -~ The density of the wall material.

(iv) Operational paramcters
Tk [K] - The ccld sink temperature.
Th[K] - The hot source temperature.
ﬁk[Pa] - ' The equivalent charge pressure when the
whole system is at a constant (cold sink) tempe-
rature Tk, is stationary, and at a volume Vs.
FiHz] - The system cyclic operating frequency.
o[rad] - The angular phase lead of the expansion
space volume variation to the compression space

volume variation. The volume variations are

assumed to be sinusoidal.

(v) Numerical parameters

nk

The number of cooler cells.

£

np The number of regenerator cells.

nh - The number of heater cells.
nine - The number of integration increments per
cycle.

The size of all the cells are assumed to be identical,
thus the relative size of the cooler, regenerator and
heater sections are determined by the number of cells

in each section.
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’

4.3 ORGAI\IIZA‘TTON OF THE COMPUTER DXPERIMINTS

In section 4.2 above it is noted that there are twenty
four paramecters that define a specific system. Some
of these parameters afc, however, interrelated | ie, the
six gas properties and the threc heat exchanger pipe
wall material properties. Thus given a choice of gas
and hecat exchanger pipe material there arc fifteen
main paramecters that can be independantly varicd. An
attempt was made to reduce the number of paramcters

by introducing dimensionless parameter groups. Unfor-

tunately the physical naturce of the system does not allow

of this approach, mainly because of the nonlinear naturc

of the dynamic viscosity of the working gas. A form of
normalization of all the parameters has been done with

respect to a base parameter set which does allow of a

restricted form of dimensionless extension of the results

(Refer to Appendix A). From tablie A.1 it is seon that the

normalizing factor for dynamic viscosity is

MYETTR/ (Vs)* . Thus machines having the same valuc of
this normalizing factor will behave in a similar manner.
Because of the restricted nature of this extension this

approcach has not been exploited.

No attempt has been made to opiimize the system based
on a variation of the parameters. Rather a specific
system has been chosen and the intimate behaviour of
the various variables over a cycle has been examined

in order to validate conditions (i) and (ii) of section
4.1. The number of cells in the heat exchanger space
has been varied in order to validate condition (iii)

of section 4.1. The frequency ?, gas properties and
diameter ratio dZa has been varvied in order to validate
condition (iv) of section 4.1.



686

The specific coniiguration chosen as well as the
range of parameters varicd arc given as follows
(the computer equivalent symbol tc¢ the paramecter
is given in curved brackets - refer to Appendix

A):

(i) Specific configuration of test engine

Styoke volume Ve(EVS) = 0,000216[m?]
Fractional dead volume Vd(VD) = 0,32
Fractional clearance volume Vel(VCL) = 0,01
Length of pipes 2p(LXP) = 0,5 {m]

Pipe diameter ratio dia(DIA) = 1,5

Number of pipes np(NP) = 100

Relative roughness factor Ro (RO} = 0,01
Expansion space volume phase advance o(ALPHA)

= 7/2[{rad]

(ii) Operating conditions

Charge pressurc pk(EPK) = 200 000([Pa]

Cold sink tempecrature Tk(LTK) = 350 1K
L

Hot source temperaturc TA(ETH) = 1000 [K]

(iii) Heat exchanger wall properiies

The properties chosen are those of stainless steel.
Specific heat capacity &w(ECSW) = 461,0[J/kg.K]
Thermal conductivity Kw(EKW) = 25,0 [W/m.X]

Density @w (EROW) = 7690 [kg/m?]

(iv) Working fluid properties

Air, helium and hydrogen have been chosen as alter-

native choices of working fluid, in accordance with




current practice.
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Their respective properties

are given in table 4.1.

Table 4.1

PROPERTIES OF AIR, HELTUM AND HYDROGEN

Ratio of specific | Gus constant Prandtl Sutherland Dynamic Viscosity
. heat capacities 3/ke K] Nusber constant at 70 = 350 K
o \ LI [xp/m.s]
Y (GRS R(ER) Pr(PR) Tow (E15U) WO (U0)
R . T _ . R e
Air 1,4 287,0 0,71 112,0 20,66 x 10
S Helium 1,67 2078,6 0,71 80,0 22,60 x 107°
fe. o 2.7 Hydrogen 1,4 4157,2 0,71 84,4 9,97 x 10°¢
(v)  Vardatien of pavans

In all the experiments the number of time increments per

1 5

The heat cexchanpger is divided egqually in length

between the heater, regene: utor, aad ceoler

(nk = nr = wnia). The total number of celis usced

the experiments vary between ne = 3 and ne = 45.

The frequency of operation f used in the experiments

depends on the working fluid, varying between 1 liz

for air and 140 Hz for hydrogen.

The diameter ratio dza affects the heat loss due to
axial thermal conductivity along the heat enchanger

pipes, and is varied in some experiments betwecn

1,5 and 5,0.

cycle nine has been chosen such as to ensure dynamic

stability of the numerical solution.
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results of experiments are tabulated in

Appendix

vy
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5. DISCUSSION COF THE MODEL

5.1 INTRODUCTION

In this chapter the cellular model 1is discussed from
the point of view of stability and accuracy. Variants
on the model are considered, but it is found that all

such variants lead to some form of static instability.

Ruache (Ro72) gives an extremely good overview of
computational fluid dynamics and includes stability
criteria. He finds that cven in linear incompressible
fluid dynamics problems the various stability criteria
are not defined with universal applicability. The
source of perturbation originates from machine round-
off error, and is propagated advectively through the
system. 1f the numcrical scheme 1s unstable, then two
forms of error growth having a spacial period cquiva-
lent to the mesh size are scen. The first 1s an
oscillating error growth in which the error at each
mesh nodc changos sign after each time incremont. This
is the so-called 'dynamic instability' and can generally
be completely eliminated by decreasing the solution

time increment. The second is a monotonic error growth
and is unaffected by the magnitude of the solution time
increment. This is the so-called 'static instability',
and Roache attributes it to the centered advective

differencing technique.

In this study the system partial differential equations
have been reduced to ordinary differential equations
via a finite element type technique, rather than to

difference eauations via some specific differencing



technique. Thus the phenomenon of static stability
is due to the specific definition of the cellular
mdodel. Tt has been one of the most important cri-
teria in defining the model, resulting in quite
COﬂGldLr'b]C "trial and error' until the curront
definition of the model was decided upon. Unfortu-
nately, the complexity and nonlinecar nature of the
system precluded the application of any form of
stability criteria and the various nodels were

cvaluated on a trial and error hasis.

S.2 DEFINITION OF THE MODEL

In Chapter 3 a model of the <'th clemental cell (fi-

~

gure 3.4) is presented In which a distinction is made
between cell parvamcters and node parameters.  The
fundamental equations of continuity, wmomentun, and
cnerey of the working gas have, however, been derived
Loy poavameters within the control volume, or cell.
(Refer to Appendix D). Why then has it been found
necessary to distinguish between cell and node variable
Why for exsmple is the mass flux density g defined

cm"ium‘vviv as a node parvameter, whereas Draessure is

defined exclusively as a cell varameter?

Consider the momentum equation {D.9) as applied to a

constant volume cell:

g 2.y4 0P F
Bt ax( v+ 3x+V 0

One method of modelling equation {5.1) would be to
define node and cell values of each parameter as in
figure (5.1).

es?
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Figure 5.1 THE <'TH CELL

The node paramecters are used fo discretize the spacial
i

partial derivatives and are defined as the arithmetic

mean values of the adjacent cell parvometers.  Thus if

P o Py - Ay o 1y PT 5oy T 3o S 3. oy
only the term 9p/%x in cquation (5.1} 3% cons idered,

one obtains:

pn,

i [pi~1+p£}lz

pn..

g+1 = (PyrPs) /2

Iz , - YA
(ap,dm)i « (pni+l pni,/aw

The purpose of the momentum equaticn i1s to sense a

pressure difference between adjacent cells {(or nodes),
compare it to the frictional drag force ¥ and momen-
tum flux 23(g?v)/%z, and allow any unbalance ol forces
to accelerate working gas, finally causing a redistri-

bution of the working gas.



A possible hypothetical cellular pressure distribution

is considered in figure 5.2.

A .
I
|
Pressure Py
p
pnﬁ_ 17

i-1 i i+l i+2

Figure 5.2 A HYPOTHETICAL PRESSURIL DISTRIBUTION

It is seen that equations (5.2) and (5.3) are satisfied,

in that the nodec pressures are in fact the arithmetic

means of the adjacent cell pressures. From equution

'(5.4) it is noted that only the node pressure distribution
determines the change of momentum of the working gas.
Figure 5.2 shows a linear monotonic incrcasing node
pressure distribution - typical of flow from right to

left in figure 5.2, even though the cell pressure has an
oscillatory spacewise distribution. Furthermore the model
does not have any compensating means by which i1t can affect
the cell pressure distribution, and the system can achieve
steady state, independant of the integration time interval,

with an oscillatory spacewise pressure distribution.



This is the phenomenon that has been referred to
as 'static instability'. It is caused cntirely by
the use of cquations (5.2) and (5.3) in defining

a node pressure as the arithmetic mean of the

adjacent cell pressures.
(5.2),(5.3) < (5.4):

, , (L a y)
(Bp/ax)i < {rya piul)/MAm

From eQuation (5.5) it is seen that the above model
is in fact equivalent to the central difference
technique, to which Roach attributes the cause of
static instability.

Another method of modelling equation (5.1) which is

equivalent to a backward difference techmique is shown

in fieure 5.35.
[
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Figure 5.3 THE <'TH CELL

In figure 5.3 no node parameters have becn defined

and the term 3p/dxz in equation (5.1) is defined by

(5.5)
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the backward difference technique as follows:

(op /22 ; * f?i-p;_'la'/zsx

This mcthod is stable as long as the dlrectlon of
flow is constant. However, the Stirling cycle

engine 1is a reversing flow type system, and when

g; becomes negatlvc then the technique reverts

to a forward differcncing type technique which is
unstable. In order to walntaln stablllty in the
reversing flow 51tuat10n, a so-called 'upstream
difference' technique can be used, in which the
parameters chosen for differencing are conditional

on the direction of flow as follows:

g, > 0 = (3p/dzx); < (p’i-pi_,l)/Aa:'

g; <0 = (p/3z); + (pyy P 0e

Thus in equation (5. 7) onliy upstreém and local values

of pressure are used
Con51der, however, the situation when applylng this

model to the Stirling cycle machine in flgure 5.4.

, “and the system should be stablc.

- (54.6)

(5.7)
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~Figure 5.4 THE STIRLING CYCLE ENGINE CELLULAR MODEL
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In figure 5.4, cell s is considered. The flow in
cell ne is positive and from equation (5.7) it is :
seen that (3p/3z), , is given in'terms/of‘pncfandz
Poo-1 However, at some stage during the cycle, the
volume variations are such that ‘both the compression
space pressure pe and the expan31on space pressure
pe are increasing. As long as the system senses an
increase in pe it will contlnue to show a negatlve
pressure gradient in cell ne glvcn by’ pne Ppo-1 even
if pe becomes much greater than p c' Thus the model
bréaks down, not because of stability problems, but

because it is unrealistic.

A plethora of variants of models of the above forms
were attempted during this study all of them d1sp1ay~

ing their own specific pitfalls.

The problem was solved by defining the model shown
in Chapter 3, in which the mass flux density, and v
hence the momentum cquatlon is defined to apply exclu-v
sively at the nodes (interfaces between adjacent cells)
of the syqtem model. Thus discretizing the term
d9p/dx in equation (5.1) at the 2'th. node, one obtains:

(3p/32); « (pypy)/b2 N O

where the pressures p,, P, l'are exclusively cell
pressures of the cells ad;acent to the Z'th node.

Since only cell pressures are defined as applying
to both the momentum equation and the working gas'
_energy equation, the situation cannot exist as in
figure 5.2 where two different pressure dlstrlbutlons

exist simultaneously.

R



78

From equation (5.1) it is noted that the derivative

3g/3x is required to be evaluated as well. Since

only nodal values of g have been defined, the up-
stream differcnce technique is used in order to eva-
luate 3g/dx, always in terms 'of upstream and iocal

values of g.

The node temperatures Tn, are now considered. The
node temperaturés define the enthalpy transport
thvoughvadjacent cells, being the predominant energy
carrier through the system. In view of the various
cr1t1c1sms of the use of the conditional tcmpcrature
definition of node temperature referred to in Chaptcr
3, a variant on the model was analysed in which a
continuous, piecewise lincar, working gas temperature
profllc was defined through the system. Thus the
node tempcratures were defined as the arithmetic means.
of their respective adjacent cell tcemperatures.

(7;.1%7;)/2

Results of a computer experiment using air as the
working gas at a cyclic operating frequency of 20 Hz
are shown in figure 5.5. The temperature profile

of the working gas through the systeﬁ is shown at
every ten degrees of crank angle through a complete
cycle, after cyclic steady state has been attained.
For clarity of presehtgtibn, the temperature ordinate
has been offset by a fixed amount for each successive
profile, so as not to allow overlap of the profiles.
Superimposed on the temperature profiles are arrows
indicating the direction of flow, with short vertical
lines indicating the flow reversal point. The solid
lines indicate turbulent flow and the dotted lines
indicate laminar flow.

(5.9)
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It is seen from figure 5.5 that the temperature pro-

B {11es tend to be oscillatory, with a spacew1se perlod
of oscillation equal to the cell length =- another

typlcal example of static instability. Slgnlflcantly

it is seen that this 1nstab111ty is of an advective

form in that it bu11dq up in the direction of flow

At each change of boundary condition (eg, at the exit

from the heater ‘and entrance to the regenerator, the
d1regt10n of heat flow is reversed) then the osc111at1on5 
is completcly damped out and beglns to- bu11d up aga‘n
advectlvely As with the pressure type of static
instability, the temperaturc profiles are unaffected
by the integration time interval. In the experiment

‘shown in figure 5.5, “reducing the integration time
“interval by a factor of f1ve produced no observable

change.

Without examihing‘the temperature profiles, this static:
instability‘can go completely unnoticed, since all the
gross parameters ~-'beihg work done per cycle, heat ;
supplied and rejected per cycle, and net‘regenerator
heat flow -- are perfectly feasable, but nevertheless

lwrong.e

The various forms of static instability can exist
independantly. In the experiment shown in figure 5. S
the equivalent pressure profiles gave no indication

of static instability, since the momentum equation was
evaluated at the nodes. In an experiment in which |
the momentum equation was evaluated at the cells, as
in figure 5.1, and the node temperatures were defined
by the conditional temperature method, then static
~instability.was,indicated in the pressure profiles,
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but not in the temperature profiles.

In figure 5.6 the temperaturc profiles arc shown
resulting from a computcr experiment on the iden-
tical example as in figure 5.5, however using the
node temperaturec defined as conditional tempera-
tures, as in equation (3.4). It is seen in figure
5.6 that the temperature profiles are devoid of all
oscillatory tendencies, and that the shape of the

profiles are as expected.

The cellular model implying mixed mean properties
within esch cell has been criticized on a fundamen-
tal basis by Organ of London University, and Van
Eckelen of the Philips Co, Holland, during separate
private communications. Their criticism can be

summarized with reference to figure 5.7 as follows.

node node
1 7+
cell z-1 E : cell <
! [
Ti-1 | 6m , Tz
— I ——~§—> | o
: £ ot :
l |
' 1
1 1

Figure 5.7 THE <'TH NODE

The adjacent cells (£-1) and ¢ are considered. Because
of the mass flux G an elemental mass &m is.transported
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across node 4 during the time interval §t, along
with its associated temperaturc 7. - Since
perfect mixing has bcen sssumed it is found that
this enthalpy input hae affected the internal
energy of the entire cecll £ in a uniform manner,
by changing the cell tomperature r.. Thus it

is found that close to the next node (#z+1) the
cffect of this enthalpy input has been fclt before
the element of gas &m which 18 transporting that
enthalpy has physically becen abiec to cross the
finite cell lengih. Information on the ocnergy
transport has been anticipated at the far end of

the cell befor

md
~
[
lod

has had the time TO arvive there.

This is a gross approximution of veality which
cannot be rationuiized by the statement fhaloin the
Jimiting casc ol a4 vaniohiong Coal o sizo Lod wainel

iperement the approcimadion balls o awar since that

Timit do nover s ioincd.  Bowevern, A
continuous systom is discreuizeo in Godes to operform
numerical intepraiion, then thi Tocm ol pross

approximation s mado. Tac only raLicasiiLation

of this method 15

a limiting performance in

on well behaved phenomena, which oXpooeoi @

tends to agree with the rheoretical continuum. In

the case of the model defined in Chapter 5, the number
. -

of cells was varied from ne = 5 fone cetl oodh for

the cooler, vegenervator and heator pectively) to

ne = 45. The performance index chosen was thermal
efficiency, being a gross parameter which includes
all of the work done ({(pressure, flow friction) and

heat transfer (temperature, enthalpy) effects. The



results using air as the working gas are shown in

figure 5.8, for varying cyclic operating frequencies.

I

25‘-—-—;\”/0"“'”3‘;,(1!(; -~ air

.
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Figure 5.8 EFFICIENCY VERSUS NUMBER OF CELLS

From figure 5.8 it is seen that the model secms
extremely well behaved, all the thermal efficiency
curves monotonically tending to an asymptote as the
number of cells is increased. Computer time limi-
tations did not allow more than 45 cells to be
tested, however it is seen that in all cases the
difference in thermal efficiency for ne = 39 and
ne = 45 is only 0,1%.



5.3 ACCURACY OF THE MODEL

§.3.1 ggneral

Both the space (celluldr) and- timé discretization impese
inaccuracies of different types oOn the model which can be
examined separately. Because of the qulte cons1dexablg
computer time requzrcd in analysing the canplete model it
is obviously required to reduce both the- number of cells

and the number of time intervals per cycle to a minamum.

5.%3,2  Time discretization

The RungeFKutta integrating routine is thc most w:de]y

used mainly becausc of its ease of plogldmming and good

stability properties. Opponents of the technique cmpha31fe
its inability to indicate the extent of the errors arising
from discretization and thus that it does not allow the
adaptive time interval variation that is available in the
predictor - corrector type technlquc However, there are
two modifying factors which jead to the choice of the

Runge-Kutta routine for the Stirlingvcycle model.

(i) There is a maximum time increment which cannot be

exceeded.

This 1imit is imposed by the use of th
in its complete form, allowing acceleratilo
gas. Acceleration introduces a second order ty
rential equation which is oscillatory in natuxe., If a

pe diffe-

time increment is chosen which is larger thdn this maximum,

then dynamic instability results and the solution breaks
down. It was found that not much could be gained from an

adaptive time interval varlatlon 1n reducing computer

e momcntum equaflon
n cf the workzng,



time because of this stability imposed limit.

(ii) The cyclic nature of the system allows of a

pesteriori error evaluation.

This evaluation is done via the first law of thermo-
dynamics which states that if the system has attained

cyclic steady state then the nct heat supplied cxter-

nally per cycle must be cqu

al to the net work donc per

cycle. Cyclic steady state 1s determined by examining

the root mean squared net heat T

nerator at the end of the cycle, which must be zcro.

Thus the 'encrgy error factor', ¢,

externally per cycle per LY&lc

ransf{erred in the rege-

ijs defined as follows:

(ﬁet heat supplied ) _ ( Net work ddné)"” o
A B

/HCJL supplicd Cxtornal?}\
\at the heater per x}(}C ‘

r = (Qh+Qr+Qk-W)/Qh

where all the encrgy quantitics are taken at the end
of the cycle, after cyclic steady state has been

attained.

The use of the energy error factor ¢ is extremely
representative of all the accumulated errovs in the
system, since both heat and work terms are involved.

(5.10)

Thus in a typical computer experiment, the procedure

adopted is to choose the integration time interval
empirically to ensure dynamic stability, hen, on
attainment of cyclic steady state the resultant

energy error factor is evaluated.
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in figure 5.9 a plot of the cnergy error factor ¢
versus the cyclic operating frequency f is shown

for all experiments using air as the working gas.

It is seen that the curye4is exponential in form.
From f = 1 Hz to F = 20 Hz (peak power), the eunergy
crror factor ¢ is less thaﬁ 1,8%. Thereafter ¢

rises exponentially until at f = 35 Hz (cut off
power), L becomes 4,5%. It was found that the energy

error factor ¢ is almost independent of the number of

cells used, and does not scem to be affected by the
number of time increments chosen per cycle. A
possible reason for this behaviour of the energy
error factor ¢ is as follows. The criterion for
attaining cyclic stcady state is when the root mean
squarc net rcgenerator heat transferred 1is less

than a certain value, nominally chosen to be 0,01
normalized cnergy nnits. However, at operating
frequencices above that of pecak power, less heat is
transferred between the working gas and the regenc-
rator matrix than at operating frequencies below
that of pcak power. Thus using the same criterion
of net root mean square regenerator heat would
result in differing degrees of attainment of cyclic
steady statc, as a function of the cperating
frcquenCy. The energy error factor ¢ can be consi-
dered as a mecasure of the system net stored encrgy
per cycle, and should asymptotically tend to zero as
the system reaches cyclic steady state.

The fact that varying the number of time increments
per cycle does not seem to affect the value of the
energy error factor ¢ indicates that the stability
imposed maximum time interval limit satisfies the
accuracy requirements of the solution as wecll.
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5.3.3 Space discretization

One of the most important parameters contributing to

the amount of computer time used is the number of cel’s
in the system model. Each additional regenevator cc.
adds five differential equations to the system, and

each additional heater or cooler cell adds three
differential equations to the system. However, not ouly
are there additional differential equations, but adding

more cells requires an incrcase in the number of timc



intervals per cycle for stability. Thus, for example,
with air as the working gas, at pcak power (} = 20 Hz)
for ne = 3, 360 time incrcments were required per_'
cycle, and for ne = 45, 1980 time increments‘were TC~
quired per cycle to ensure stability. Thus it is
important to know what the cffect of the number cf

cells is on the system.

Figure 5.10 shows a plot of thermal efficiency and powef”

output versus operating frequency for varying number of
cells between ne = 3 to ne = 45, using air as the work-

ing gas.

It is seen that at me = 33 the svstem has cssentially

converged. The power error at } = 20 Hz Letween ne = 33

and ne = 45 is 0,47%. It is als> noted tiat for all
values of ne, the efficiency cy.ves are:gsscntiallyf3g“

parallcl. This surprising resalt can be used in order

to predict the performance curves at (s$y) ne = 33 with

high accuracy, even with only onc experiment at ne = 33.

A set of experiments covering the [requency range
through to cutoff power is plotted using (say) ne = 15
(or even ne = 3). A single experimental point usingv
ne = 33 is then plotted.ﬁ“The efficiency curve 1is
drawn through this point parallel to the efficiency

curve for ne = 15. Enough ;nformation,iﬂ now available

to plot the entire power versus frequency curve for

ne = 33.

On figure 5.10 the performance curves for nec = 3 have
been extended down to f = 1 Hz, in order to examine

the effect of varying heat leakage due to conduction
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Hdirectly through the walls of the heat'exchangér
pipes. Ixternal to internal pipe diametey ratios

of 1,5, 3,0 and 5,0 were chosen and the results

are as expected. Because of the well behaved nature
of the performance cu}ves, these thrce efficiency
curves could be directly translated onto the ne = 33
efficiency curve -- resulting in a considerable

saving of computer time.

Figure 5.11 shows a plot of thermal efficicency and
power output versus operating frequency for ne =15
and ne = 33, using air, helium and hydrogen as the
working gases. It is found that for each of the"
three working gases the efficiency curve for ne = 15

is parallel to that for ne = 33. Another intereStingﬂ

observation is that the differcnce of efficicncy
between the curves for ne = 15 and ne = 33 is appro-
ximately constant at 1.8%, independant of the warkiﬁg

gas used.

It is thus found that using the mdédel defined in
Chapter 3, it is feasible with as few as 3 cells to
do a large number of computer cxperiments required
in a parameter optimisation study. Thereafter, on
obtaining a single result using (say) thirty three
cells it is possible to predict with high accuracy
the entire performance characteristics of the proto-
type machine. '

5.4 SUMMARY AND CONCLUSIONS

In this chapter the concepts of dynamic and static

instability were introduced. Various cellular models
were evaluated and only the present model defined in
Chapter 3 was found to be free of all forms of static
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instability. This required that all the working gas
variables be considered as constant thrcughout cach
cell and discontinuous at the nodes excepting for the
mass flux density g, which is defined and continuous
across the nodes and undefined within the cells. Node
temperatures and speciiic volumes are definecd as
conditional variables, taking on their upstream adja-
cent cell values.

Bynaﬁic stability was climinated semi—empirically by
simply féducing the integration time interval. b

The accuracy of the modecl was considered with respect

to time and space discretization. 1t was found that

the dynamic stability imposed time interval limit 1is
sufficiently small to ensure accuracy with respect to
time discretization. The energy error factor g was
defined, and it was scen that the method of convergence
to cyclic stecady statc based upon the net residnal
regenerator ccll heat transfer gave {inite values of

r which were functions of the cyclic operating frequency.

Spacewise discretization cffects werc such that as the
number of cells was increased, the performance characte-
ristics tended to asymptote to a limit. It was found
that about 33 cells gave results sufficently close to
that asymptotc, but required excessive computer time
for solution. Fortunately it was noted that all the
efficiency versus operating frequendy profiles were
parallel, independant of the number of cells used, thus
allowing an accurate extension of the results using

as few as 3 cells to those using (say) 33 cells, with

only one result at 33 cells.
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6. DISCUSSION OF THE RESULTS

6.1 INTRODUCTION

In this chapter the,results obtained using the
application example test engine defined in Chapter
4 are discussed, from the viewpoint of Stirling
cycle engine performance, in the light of openly
available current knowledge in the field . Two
types of resuits are presented; gross pcrformance
characteristics which are available a posteriori
and include net work and heat flows per cycle, and
the intimate incremental behaviour of the various
variables throughout the cycle. Typical detailed
printouts are presented in Appendix J using air

as the working fluid at an operating f{requency of
20 Hz (peak power).

6.2 PIRFORMANCE CHARACTERISTICS

Figure 6.1 shows a plot of thermal efficiency versus
power for the test engine using three different
working gases; air, helium and hydrogen. These
curves have been based on the experimental results
for ne = 15 and ne = 33 given in figure 5.11, and
represent actual and predicted performance for

ne = 33. On each curve various discretc values of
operating frequency }[Hz] are indicated. This method
of presenting the performance characteristics was
introduced by researchers at the Philips Co, Holland,
as exemplified in the much quoted performance curves
shown in figure 6.2 (Me70). Comparing figures 6.1
and 6.2 it is seen that the curves are similar in that
for all three working gases peak power is attained

at approximately the same efficiency, and the curves
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for air and helium are of simiiar scaled form.

60I% '
500
B0 =750 ]
e 00T <1250 ——
TNJ000 | TN {500
air ~LO00rpm H;}\“ | H,

225hp[eylinder
heater: 700°C

101 cocdling water 25°C
GUS pressure 7?"’@,5«{5;,?’1”'/5";;‘;3

0 o Lo
0 20 40 60hp/l
: Efficiency n tot VeTsus specific output hip

Figure 6.2 COMPARATIVE PERFORMANCE USING DIFTLRENT
WORKING FLUIDS (After Meijer Me70)

However, at operating frequencies below that of peak
power the relative performance using hydrogen is
completely different in the two figures. Very little
information is available from the Philips Co, Holland,
who maintain much of their research as closely guarded
secrets. It has been stated that the porformance
characteristics (figure 6.2) are the results of
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advanced simulation calculations (Wa73, Mi70), however
the basic assumptions and model upon which these cal-

culations are based have never been disclosed.

In attempting to explain both the nature of the curves,
and the discrepancy between their form in figures 6.1
and 6.2, it is postulated here that two of the most
important characteristics defining a working gas in the
context of its suitability for use in Stirling cycle |
machines are the gas constant R and the dynamic visco-

sity Y.

The speed of propagation of pressure information in the
working gas is proportional to the square root of the
gas constant R, and this defincs the operating frequency
at which a specific éerformance level can be attained.
Tt is 2 well known experimentally observed fact that the
peaks of the pressure waveforms in the expansion and
compression spaces of a Stirling cycle machine are sepa-
rated by a phase difference § with respect to the cycle
(Wa73). The value of § depends upon the operating

frequency.

Berchowitz et al (BR77) calculated the phase angle §

on a simplified Schmidt cycle, with no friction, based
purely on the velocity of propagation of pressure
information between the compression ahd expansioh space
along the length of the heat exchanger pipes. Using
the application example test engine specifications of
Chapter 4 with air as the working gas at an operating
frequency of 20 Hz, they obtained a value of § = 7,10
The actual value of & obtained from the computer simu-
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lation (refer to Appendix J) is 6 = 60. The close-

ness of these results suggests that the major con-
tribution to the phase angle & is the finite time
required for pressure  information to propagate bctween

the two working spuacces.

If this is in fact correct, then if in a hypothetical
situation, the only parameter differentiating between
the various workiﬁg gases was the gas constant R,

and if there were no heat leakage paths due to conduction,
then it should be possible to scale the performance
curves for different working gases at (say) peak power
in the ratioc of the square roots of the respective gas
constants. The ratio of the square roots of the gas
constants for air, helium and hydrogen are respectively
1:2,69:3,81. From figure 6.1, it is found that the
ratios of the operating frequencies at peak power

(which all ¢ w1 at approximately the same thermal
efficicncy) arc 20:55:80, ie, 1:2,75:4,0. Thus

even though all the actual gas properties have been used
in each case, and heat leakage paths exist in the test

engine, the results are remarkably close.

The same comparison could not be made on the curves of
figure 6.2 because of lack of background information.
However it is noted that the forms of the curves are
similar, as the above simplified theory predicts.

Why then, the discrepency in the form of the hydrogen
curve of figure 6.1? It is postulated here that this
is due to the effect of the second important working
gas characteristic, ie, the dynamic viscosity ii. The
reason for its importance is that both the friction
factor and the heat transfer coefficient are functions

of §i. From table E.1 in Appendix E it is seen that

[ —————e
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at a temperature of 273 K, the values of dynamic
viscosity §i for air and helium are respectively
17,08 x 10" ¢[kg/m.s] and 18,85 x 10 ¢[kg/m.s], ie,
almost identical. Aiso, notwithstanding the
difference in Sutherliand constant %éu, the norma-
lized variation of ji with temperature is approxi-
mately the same for both gases. The eqviValent
value of dynamic viscosity {§i for hydrogen is, how-
ever, 8,35 x lb‘e[kg/m.s]. In order to validate

the above hypothesis threce experiments were run
using a 'hypothetical hydrogen' working gas, having
the gas constant R of hydrogen, and the dynamic vis-
cosity i of helium. The results of these three
experiments are plotted on figure 6.1. It is
observed that the 'hypothetical hydrogen' points do
in fact lie on a scaled up curve, similar in form to
both the helium and air curves, and similar in form

to the curves of figure 6.2.

In another graph from the Philips Co, Hollend, (Me70)
curves of efficiehcy and power output versus operating
frequency have been plotted for a heat pipe operated
swashplate type Stirlihg cycle engine (figure 6.3).

In comparing figures 6.3 and 5.11, it is seen that in
both figures the efficiency curve ior hydrogen crosses
the efficiency curve for helium. The conditions of
operation are similar in that the walls of the test
engine heater are at a constant temperature -- typical
of heat pipe operation. |
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Figure 6.3 EFI'ICIENCY AND POWER VS SPEED (After Meijer

Me70)

All the performance curves from the Philips Co, Holland
(figures 6.2 and 6.3) show a higher thermal efficiency
than has been obtained on the test engine (figure 6.1).
However, no attempt has been made in this study to
optimise on thermal efficiency, the test engine being
chosen mainly on the basis of computational ease and

simplicity.

In the test engine defined in Chapter 4, abrupt expansion
and contraction pressure drop losses are assumed to
occur at the working space/heat exchanger interfaces
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(Refer to Appendix H). Experiménts’were done using
air as the working gas in which the heat exchanger
pipes were well rounded -- exhibiting no entrance or
exit pressure drop losses. The results arc plotted

cn figure 6.1, and it is seen that both the power
output and efficiencyéﬂc increased. Significantly,
peak power occurs at the same thermal efficiency as

in the case of abrupt expansion and contraction losses,
however at a higher operating frequency.

6.3 INCREMENTAL CHARACTERISTICS

Each computer experimental run at cyclic steady state
results in a wealth of information, and it is'extremély
difficult to decide in which way to present this infor-
mation. Quantitative information is available from the
computer output (Refer to Appendix J), however a quali-
tative overview as to the behaviour of the various para-
meters can only be obtained graphically. Figure 6.4 is
a three-dimensional plot of the temperature profiles
shown in figure 5.6. Superimposed on the temperature
profiles arc arrows showing the direction of fluid flow,
the solid lines indicating turbulent flow and the

dotted lines indicating laminar flow. It is not possible
on the three-dimensional plot to show the wall tempera-

ture as well, since that would make the plot totally
unreadable. However, several of the profiles, including
the wall temperature, are shown singly in figures 6.5
through to 6.8.

In figure 6.4 it is seen that the working gas spends a
larger part of the cycle flowing from the expansion
space to the compression space than it does in the
reverse direction. A little reflection shows why this
must be so, since during the time when flow is from the
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expansion space (o the compression space the pressure,

and thus the density of the working fluid is lower.

This flow is typified

0° crank angle, given in figufe 6.5.

TEMFERATURE*—*

by the temperature profile at

0 = 0°

-3 Working gas - air
Frequency = 2011z
—2
_M/k////
|— | /“—""""“/
[ :
c COOLER k

REGENERATOR r

L HEATER

[

Figure 6;5 TURBULENT FLOW FROM THE EXPANSION SPACE TO
THE COMPRLSSION SPACE ‘

From figure 6.5 it is seen that in the regenerator section
the temperature of the working fluid T is higher than the
temperature of the heat exchanger wall Tw. 1In this section

the gas and wall temperature profiles areJéssentially

parallel resulting in a large wall temperature difference

at the regenerator/cooler and regenerator/heater inter-
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faces. This is because the heater and cooler walls
are maintained at a constant temperature,and the
convective heat flow in the regenerator is apparantly
predominantly greater than the conductive heat leakage
axially along the heat exchanger walls. There has
been a tendency in the past to choose much fewer cells
in the heater and cooler sections than in the regene-
rator section (Fi67). However, in figure 6.5 it is
scen that inr the heater and cooler sections the
variation in working gas temperature and likewise in
the working gas/wall temperature difference is signi-
ficant, warranting the choice in this study of equal
size cells throughout the heat exchanger section.

The portion of the cyvcle in which the working gas flows
from the compression space to the expansion space is
typified by the tempcrature profile at 150° crank

angle given in figure 6.6.

6 = 150°
—3| Working gas - air

Frequency = 20Hz / T

-2 pes
] Te
b T
D
= ‘
(
L \\‘ﬁz -
Ly
Q.
b
L
- .
c Coo0LER K REGENERATOR r HEATER h e

Figure 6.6 TURBULENT FLOW FROM THE COMPRESSION SPACE
TO THE EXPANSION SPACE
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A comparison of figures 6.6 and 6.5 shows that the
regenerator wall tempcrature profile remains
essentially constant throughout the cycle due to‘the
large thermal capacitance of the wall material. It
is seen that for floﬁ from the compression space

to the expansion space the working gas temperature
is lower than the wall temperature in the regenerator
section (figure 6.6), and for flow in the reversec
diréction the working gas tempefature_ﬁs higher than
the wall temperature (figure 6.5). 1In both flow
directions the regencrator scction acts as a contra-
flow type heat exchanger, the temperature difference
between the working gas and the wall remaining
approximately constant throughout. '

It is of interest to cxamine the transition region,
where the flow reverses, as typefied by the tempe-
rature profiles at 700, 80° and 90° crank angle
(figure 6.7) and at 2200, 230% and 240° crank anglc
(figurc 6.8) Figure 6.7 shows the transition when
flow from the expansion space to the compression
space reversces direction, and figure 6.8 when flow
from the compression space to the expancion space
reverses direction. In figure 6.7, the profile at
70° crank angle shows»that at some instants during
the cycle the flow can be both turbulent (solid line)
and laminar (dotted line) in both directions! The
flow transition occurs during a significant portion
of the cycle beginning at crank angle 6 = 50° and
ending at 6 = 90°. During this transition the tur-
bulent'flow relaminarizes, the flow reverses, there
is buildup of the laminar boundary layer, and finally
the flow becomes turbulent. The complex processes
occurring during this period are not fully understood
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‘that the temperature of the working gas in the cooler

- plots of the pressurc profiles using air as the

overdrive) respectively. In figure 6.9 it is seen

- Detailed examination of the pressure distribution and
~ mass flow rate given in the complete printout of

- 108

and the. use of the steady flow friction factor aad
heat transfer characteristics may be in error. ‘
Fortunately, the important effects of heat transfer
ahd flow friction Qcchr during those portions oi the
cycle when the flow is undirectional and fully tur-

.bulent, thus the error involved may not be signifi-

cant.

In figure 6.7 it is seen that the témp@rature of the

working gas in the heater section rises above that ‘ ’ ‘
of the heater wall. This is due to the compression ' §
of the working gas and poor heat transfer in the ' |

heater section. Similarly in figure 6.8 it is seen

4

section falls below that of the cooler wall, The flow
transition in this casc occurs between crank angle
6 = 190° through to o = 240°.

Figures 6.9, 6.10 and 6.11 show thfee—dimenﬁional

working gas at operating frequencies of 20 Hz
(peak power), 35 Hz (cutoff power) and 60 Iz (excessive

that apart from a pressure drop at the entrance to the
working spaces over portion of the cycle, the pressure
prdfiles are essentially linear throughout the cycle.

This would tend to suggest that a simpiified momentum

equation could be used for operation up tu peak power.’

,  Appendix J reveals, however, that over a significant
- portion of the cycle the fluid flow is in the same

direction as the positive pressure gradient over parts

- of the heat exchanger section. This can only be .
~accounted for by the complete momentum equation in
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which both momentum f{lux aand gas acceleration 1is

considercd.

In figure 6.1C it is seen that the entrance preSsﬁre
drop is accentuated somewhat, and that an irregula-
rity is beginning to appear in the expansion space
section of the profile at a crank aanglc O of between
60° and 100°. This is in phase with the minimum
volume condition of the expansion space. In figure
6.11 an excessive overdrive conditon has been chosen
in order to accemtuate these characteristics. The
irregularity in the expansion space has produced a

shably due to choking  flow.

ropagated to the

i

local pressure poan Pl

e

However, this pressare peak has not

compression spacc.  The catiance pressule drop at the
entrance to ihe o biug oooo o s oiso Lighly

accentuated.

e

Figures 6.12 auo oo 0 oo o0 cvions of fipures

6.9, 6.10 and 6,01 sewieo Ve iy G wihioh the pressure

variation with crant nnpie 0 foo the compression and

expansion space ave shovn. 0 1o opoted that the
phase angle of the comprussing Space pressure peak
remains relatively constant with respect o the volu-
me variation with increase 1o uporating {frequency.
ressuve peak in the

However the phase lag of the

expansion space increases with operating frequency.
Also, the difference in pressuic between the compression
space and the expansion space increases with frequency,

local expansion space

culminating with the choking type

pressure peak which is not propagated through to the
sion space.

compres

Only three experimental pressure p Versus crank angle
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vm'e plots are ava:lable in the onen 11terature Meijer' -
~ (Me61) presented a single figure giving simultaneous
 ?'Farnboro indicator p6 diagrams of the compression and N -
~ expansion space. This figure has been reproduced in
S Q'flgure 6. 14 aud has sxbxlar form to hatvof flgure R -
. 612 for f = 20 Hz. o | ~

pressure p . i Uy
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 Figure 6.14 FARNBORO INDICATOR DIAGRAMS OF A STIRLING -
' ENGINB (After N01Jer Me6l) '

“Jilt is noted partlcularly that the peak expdn31on space
‘ fpressure is less than, and lags, the peak compression
. _ ‘space pressure.‘ Klrkley (K163) presented exper1menta1
- po dzagrams over a range of operat1ng speeds. These
‘ ’diagrams have been reproduced in flgure 6.15, and show
h;_the same choking type phenomenon 1n the expans:on space
7 xf;‘as in fxgure 6.13. Slgnlflcantly it is seen in both
B figures 6.13 and 6. 15 that the lacal pressure peak in
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the expansion space has not propagated through to

the compression space. Walker (Wa62.1) has prescnted
experimental p6 diagrams at two operating speeds for
a Philips Stirling cycle refrigerating machine. These
Cdrves have been repfoduced in figure 6.16, and show
no pressure irregularity at high speed, cven though
the pressure drop is extremely large. In contradis-
tinction to figures 6.12, 6.13 and 6v14 figures 6.15
and 6.16 show the pressure peak of the expansion
space leading that of the compression space. This
dJscrepancy is not understood.
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Figure 6.16 EXPERIMENTAL p6 DIAGRAMS OF A STIRLING
CYCLE COOLING MACHINE (After Walker Wab2.1)
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6.4 SUMMARY AND CONCLUSIONS

Two types of results were presented in this chapter;
gross performance characteristics including thermal
efficiency n and powér P, and the intimate incremen-
tal behaviour of the various variables throughout

the cycle and throughout the machine. The gross
rerformance results are as expected. It was postu-
lated that the two most important properties which
define the applicability of a working gas to Stirling
cycle type machines are its gas constant R and dynamic
viscosity u. It was seen that R affects mainly the
maximum attainable power, whereas §i mainly affects
the form of the perfurmance characteristic at varying

operating frequencies.

The intimate incremental behaviour was shown in the
form of three-dimensional plots, and various cross
sections through these plots. The information presented
herc has been previously unavailable, hence cannct be
compared to current knowledge in the field, however the
results are consistent, well behaved and as expccted.
In particular it was seen that over a significant
portion of the cycle the fluid flow direction was the
same as the positive pressure gradient over parts of
the heat exchanger section. This indicates the impor-
tance of using the complete momentum equation including
the momentum flux and acceleration terms.

“y
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7. CONCLUSIONS AND RECOMMENDATIONS

7.1 GENERAL

The model that has been developed and analysed in this
study gives results that are well behaved, consistent,
and in gencral agree with current available knowledge
in the field. It is realized that a model is not
validated vntil it is compared with results of experi-
mental experience, however an extensive search has
shown that no sufficently documented experimental
results are available in the open press. Notwith-
standing the lack of experimental data available the
computer results contain a wealth of information much
of which has not been available previously. It has

not been the purpose of this study to exploit the
technique fully, which is not restricted to Stirling
cycle machine type applications. For example, a research
program has been started at the University of the Wit-
watersrand, using the modelling technique of this study
in order to determine fundamental friction factor and

heat transfer data for regencrator matrices.

7.2 MAJOR ADVANCES ATTAINED IN THE PRESENT INVESTIGATION

The initial objective of this study was to develop a
comprehensive model for the simulation of Stirling cycle
type machines, and to validate the model against current
knowledge in the field. The work of Finkelstein served
as a starting point for the study. The major advances
attained in the present investigation are summarized
below.

a) In the course of the theoretical study the following
results were obtained:



(1)

(i1)

The complete one-dimentional momentum and energy
equations were derived from first principles.

It was shown theoretically that the inclusion of
the kinetic enérgy term in the energy equation

is consistent with and equivalent to the inclusion
of the momentum flux and acceleration terms in

the momentum equation (Appendix D). As far as is

~known this result has not been available previously.

The impo%tance of the kinetic energy term was
demonstrated in that for peak power using air as
the working fluid, it was seen that for a signi-
ficant portion of the cycle the {fluid flow
direction is the same as that of the positive
pressure gradient over parts of the heat exchanger
section. The use of the simplificd momentum
equation (D.20) implies a priori that the fluid
flow dircction will always be the same as that

of the negative pressure gradient over all of the
cycle, in contradistinction to the observed results
(Chapter 6),

th

friction factor in reversing flow problems were

The limitations of usin

el

o)

> conventional Fanning

determined. A new forw of friction factor, the
so~called Reynolds friction factor was defined
which overcomes these limitations, apart from

~being intuitively more logical to apply (Appendix

F). For example, during the flow reversal the
Reynolds number becomes zero, the equivalent
Fanning friction factor becomes infinite, and the

frictional drag force becomes indeterminate. The

‘Reynolds friction factor, however, maintains a

constant value throughout the laminar flow regime,



(iii)

(iv)

(v)
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including the point at which the Reynolds

number becomes zero.

A cellular model of the Stirling cycle machine
was defined and a system of first order diffe-
rential eaquations developed for this model.

The concept of static instability was introduced
and it was shown that the model was completely
free of all forms of static instabiiity (Chapterv
5). A variant of the model, advocated by
rescarchers who have criticized the present model,
was analysed and found to be subject to static
instability when used in conjunction with the
complete momentum and energy equations.

A unique method of accelerating convergénéé of
the sclution to cyclic steady state was prescnted
which reduced the time to convergence by some '
orders of magnitude (Appendix G).

A unique base parameter set {M,Tk,Vs,R} was pro-
posed in order to normalize all the system dimen~-
sioned parameters (Appendix A). 1In particular,
the choice of the gas constant R as a base
parameter rather than the usual choice of time
arose from the realization that the rate of pro-
pagation of pressure information in the working
gas medium (linearly proportional to VR.Tk) is
more fundamental than an arbitrarily chosen time
parameter (Chapter 5).

b) In the course of the computational study; the

following results were obtained:



(1)

(ii)

It was postulated that two of the most impor-
rant parameters defining the working gas are
the gas constant R and the dynamic viscosity
i1 (Chapter 6)} The speed of propagation of
pressure information working gas is proportio-
nal to the square root of the gas constant R,
and this defines the operating frequency at
which a specific performance level can be
attainéd( it was shown that the value of the
dynamic viscosity §i significantly alters the
form of the performance characteristic. The
reasons for its importance is that both the
friction factor and the heat transfer coeffi-
cient are functions of §i. For the sane
values of §i, it was shown that different
working gases result in scalcd performance
characteristics approximately in accordance
with the ratio of the square roots of the

respective working gas constants.

It was found that at least 33 cells werc
required for reasonable asymptotic convergence
of the performance characteristics to the |
continuous system. It was observed, however,
that the efficiency versus operating frequency
characteristics were essentially parallel,
indepehdent of the number of celis used. This
surprizing result was valid down to the minimum
feasible number of cells (ne = 3), for all the
various working gases evaluated. This lead to
the proposal of a method whereby the perfor-
mance curves at (say) ne = 33 can be predicted;,
with high accuracy even with only one experiment
at ne = 33, based on a set of experiments



(iii)

7.3

(i)

(ii)
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covering che frequency range through to
cutoff power using a small number of cells.
A considerable amount .of computing time is
thus saved, allowing a large number of con-
puter experiments to be done as required

in a parameier optimisation study.

Plots showing the intimate behaviour of the
temperature, flow and pressure profiles
throughout the cycle were presented, giving

a further insight as to the detailed hehaviour
of Stirling cycle machines (Chapter 6). As

far as is known, information of this naturc has

not bheen available previousiy.

RECOMMENDATION FOR FUTURIL WORK

The applicability of the present wodel denends
upen the availability of sccurate rolovan,

heat transfer and friction factor correla. ions
for the heat exchangers -- in parvticular the
regenerator matrix. In this contex:. i: is
necessary to consider the effects of unsteady
reversing flow. From Appendix F it is scen that
there is a dearth of availuble information in
this field and it is recommended that cxperimen-
tal studies be undertaken to fill thiis gap.

It is recommended that simplifications of the
model be developed and the results of their
application be tested against the present com-
prehensive model in order to determine their
range of applicability. For example at ope-
rating frequencies much less than that of peak

power the instantaneous pressure drop is extre-
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mely sme1l. However, use of the ~comprehensive
present model requlres extremely small 1ntegra-
tion t1me 1ntervals and correspondlngly excessive
computer time in order to solve the system at
these low frequenc1es becaase of dynanic stability
conslderatlons.' A 51mp11f1ed model based on the
fundamental equations (D 5) and (D.19) (refer to
secticn D.5), may result 1n sufficient accuracy
for thls case, a110w1ng a coitsiderable saving in
computer time.

(ii1) It is suggested that the system differential
equations be augmented by dlfferentldl equations
descrlblng the mechdnlcal dymmucs of the machine
in order to Lnable an overall solutlon to be
obtained 1nc1ud1ng (say) the determlnatlon ot
the ircquency of operatlon. ~In the case of
the Bealc type free p;ston.,‘Stirling engine,
this requires only foor;additional differential
equations. For more Compiex:mechanical systems,
methods such as those due to Paul and Krd3c1nov1k
(PK70) could be employed

(iv) The formal dlmenslonless exten51on of the results
is extremely. restrlcted 11m1ted to systems in
which the dynamic V1sc051ty normallzlng factor,
ie, M/E“T~/(VS)%Bl'ls identical (Chapter 4). A
dlmen51on1ess exten51on of results can, however,
enable a con51derab1e savlng 1n computer time,
limiting the computer experlments to those of
form only It is recommended therefore that the
accuracy of extendlng the results to systems
having dlfferent dynamlc v1scos1ty normallzlng ‘
factors. be examlned and a range of applicability
of dlmen51on1ess‘ extens;on be determined.



(v)

It is recommended that the present model be
validated against experiment. An experimental'
program is currently in prog'ress at the Univer-
sity of rthe Witwatersrand which should, inter
alia, provide the required data. '



126

APPENDICES







127

A. PARAMETERS AND SYMBOLS

A.1 GENERAL

,This'appendix’is not an'exhaustive list of notation, but

rather a guide‘to‘the philosbphy'behind the choice of the

‘various parameters and symbols. For a complete list of

symbols the reader is referred to the section entitled
"NOTATION' in the f;ontispiece.

The choice of symbols was'gOVerqed by a number of factors:
(i) Compatibility with current usage.

(ii) Non-ambiguity -- prefix, suffix and subscript sets
‘are defined with their relevant rules of usage to
enable an unémbiguous set of symbols to be'generatedg
The rules of usage are such as to permit reading of
the equationsvin the text and the computer program
with a minimum of cross referencing to the list of
notation. :

(iii) Readability of the tomputer program -- most of the
c0mputer program'symbols are identical to those of
the text. In some cases where this has not been
possible, eg, where a tilde (~) has been defined in
the text or where a lower case symbol has a different
meaning to an upper case symbol, then a suitable suffix
or prefix has been added to the computer program
symbol. All Greek letters used in the text have been
spelt out phdnetically in the computer program.

In this appendix, the different types of parentheses have
different usage. Normal curved parentheses () have either
normal usage, or enclose the equivalent computer program



128

symbol to a text symbol. Square parentheses []| always
enclose the dimcnsions of a parametcr in SI units. _
Curiy parentheses {} enclose specific sets of parameters.

A.2 NORMALIZED PARAMETERS

‘All parameters have been normalized with respect to the
so-called base paramcter set {M,Tk,Vs,R}, where:

M[{kg] is the nominal total mass of working gas in the machine
Tk [K] is the cold sink temperagure _

Ve[m®] is the total power stroke volume of the machine
R[J/kg.X] is the gas constant of the working gas |

The nominal totsl mass of working gas in the machine M is
determined from the charge pressure pk on the assumption

that the whole system is at a constant (cold sink) temperature
Tk, is stacionury at the total power stroke volume Vs, and
that there is no leakage between the working spacc and the

surrounding environment (bounce spaces, crankcases, etc).

The cold sink temperature Tk is usually the constant wall
temperature of the cooler, however it can be the coolant
temperature at the inlet to the cooler.

The total power stroke vOlumest is the swept volume of

the power piston only in a piston-displacer type machine,

and the sum of the swept volumes of the two pistons in a
dual-piston type machine (refer to Section 1.2 for a
definition of piston-displacer and dual-piston type machines).
It is noted that a dual-piston type machine will have a
varying effective power stroke volume depending upon the
value of phase angle différence'a between the volume
variation in the expansion space and the volume variation in
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the compression space. The above definiticn of Vs

relates to the (hypothetical) maximum value of total

power stroke volume defined when the phase angle
difference o is zero. ,This is a hvpotheC1cal (but
nevertheless unambiguous) definition of Vs since for
o = 0 the Stirling cycle engine cannot produce a net

‘positive work output per cycle. In the piston-displacer

type machine the power stroke volume Vs is unaffected

by changes in phasée angle difference o.

The above basic parameters form a complete unambiguous
set in that they include the fundamental parvameters of
mass, length, time and temperature. Normalizing masses
with respect to the nominal total mass of working gas in
the system is convenient in that one can obtain by
inspection the mass distribution of the working gas
throughout the machine independant of the mean working
pressurc.  The cold sink temperature has bcen choscn as

a base paramcter since it is approximately constant for
most practical engines, being limited by the environment.
Volume has been chosen as a base parameter rather than
length since from thermodynamic considerations volume 1S’
the more fundamental parameter. The total power stroke
volume of the machine-effectively represents its physical
size. The associated derived length parameter has been
arbitrarily defined as the cube root of the total power
stroke volume Vs. The choice of the gas constant of the
working gas R as a base parameter rather than the usual
choice of time arose from the realization that the rate
of propagation of information in the working gas medium
is more fundamental than an arbitrary time parameter
chosen (say) as the inverse of the operating frequency.
The rate of information propagation in the working gas is
linearly proportional to vE.Tk. One thus finds that
under similar conditions different working gases give
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‘e51m11ar performance at speed ratios equal to the square
‘Toot of the ratio of thelr respectlve gas constants
"(refer to Section 6. 2) '
R !
Thus in Table A.1 the normalized and actual dimensioned
parameters have been defined together with their
- associated normalizing factors and symbols used. For
'the actual parameters, the SI system of units has been
adhered to throughout (NBS72). Except for the base
parameters all actual parameters have been supcrscribed
by a tizlde (7). The computer symbol equivalent to all
dlmen51oned parameters have been prefixed by the symbol
'E. The parameters defined in Table A.1 have been modified
and extended by means of prefixes, suffixes and subscripts.
The complete pfefix, suffix and subscript sets have been
respectively defined in Sections A.3, A.4 and A.5. Computer
symbol equivalents of parameters have only been defined
if they have actually found usage in the computer programs.
The normalized parameters are dimensionless. In order to
obtain the values of the actual parameters, given the
values of the normalized parameters, the following algorithm
 is used:

Actual - Normalizing x [Normalize
parameter \factor : : parameter
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NORMALIZED AND ACTUAL PARAMETERS
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BASE PARAMETERS

NORMALIZED

(EK)

PARAMETER ST UNITS | proaupres | NORMALIZING EACTOR AT
Mass kg m M ’ (M) | m (Rm) .
Temperature K T (ET) Tk (ETK) T (T) |
Volume m? y ve Es) | v - )

Specific heat J/kg.K & (ECS) | =R (ER) | ¢ (CS)

capacity 4 '

DERIVED PARAMETERS

Heat J i M.R.Tk (ENRGY) | @ Q
Work J W M.R.Tk (ENRGY) | W - (W)
Area m2 i (Vs) 3 (BA) | 4 (A)

Length m x (EX) x )

d (ED) (vs)1/? (EX) d (D)
P P

Pressure N/m? p M.R.Tk/Vs (EPX) p (P
Force N F M.R.Tk/(Vs) /3 Y (F)
Density kg/m? o (ERO) M/Vs (ERO) o (RO)

Specific volume m?/kg D Vs/M v - (V8) |
Velocity m/s - U VR.Tk - (BD) U

Time s t (ve)¥® //R.TK (ETIME)| ¢ (TIME)
'| Frequency Hz # (EFREQ) VR Tk/(Ve) Ve 1 r

Angular frequency | rad/s I : JﬁfTE/(Vs)lﬁ . w (OMEGA)

Power W P M(R.TK)32 ] (vg) 1/ P |

Mass flux density | kg/m?.s g M/R.TR/Vs g ‘(G)~

Mass flux kg/s ¢ MR Tk/(Vs)l/3 e .

Dynamic viscosity | kg/m.s G M/R.TR/(Vs) P (EMU) | u  (RMU)

Kinematic ‘

viscosity | m?/s Y - (Ve)V3/R. Tk v

Shear stress N/m? g M.R.Tk/Vs

Thermal _

Conductivity - J/m.s.K k M(R.TK) ¥/ (Vs) Pk | %k (RK)
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NORMALIZED AND ACTUAL PARAMETERS
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!DERIVED PARAMETERS (CONTINUED)

NORMALIZED

NN . ACTUAL , D
PARAMETER SI UNITS _PARAMETER NORMALIZING FACTOR PARAMETER |
Heat transfer v I
coefficient J/m?.s.K h M(R.Tk) ”/’Vs.Tk h R
Heat capacity J/K ¢ (EQ)| M.R C ©
Specific heat '
capacity at cons- , . IR
tant pressure J/kgﬁK ' cp R : ' (BR) | e (CPS) |
Specific heat
capacity at cons-
tant volume J/kg.X cv ‘ R (ER) ev  (CVS)
Ratio of specific
heat capacities - Y = ep/ev 1 Y (GAMMA)
Specific internal ‘
energy J/kg u R.Tx (ERTK) u
Specific enthalpy J/kg e R.Tk (ERTK) e
Specific entropy J/kg.X 8 R (ER) 8
Porosity - (] 1 Y
Thermal
cfficiency - N 1 n (EFF)
Energy error |
factor - z 1 z
Crank angle - ] 1 6  (THETA}
Volume variation :
phase angle o ‘
difference - o 1 o (ALPHA)
Propagation time '
phase angle
difference - § 1
Angles - ¢ 1 ¢
Expansion loss B 1 8
Coefficient - Ke 1 Ke  (RKE)
Contraction loss :
Coefficient - Ke 1 Ke  (RKC)
Convergence
| factor - A 1

A (DELTA)
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A3 PREFIX SET

The prefix set is used to define operators operating

on a parameter or group‘of rarameters, as well as to
extend the computer prcgram symbol set. The prefix

set has been defined as follows, together with examnles
~of usage:

(i) Operators

D(D) is the total time derivative of the parameter,
eg, Dpe(DPC) is the time derivative of the compression
space pressure.

A(DEL,DL) is the difference operator. DEL denotes a
spacial difference and DL (used only in the Runge~Kutta
integration routinc) denotes a time incremental
differcnce, eg, Apc{DELPC) is the pressure drop across
the entrance to the compression space duc to contraction
or expansion entrance effects; DLM(I) is the time
“incremental difference of mass of working gas in the 4'th
cell.

2(8) is the summation operator, eg, L@r(SQR) 1is the
algebraic sum of heat transferred to the working gas
through the regenerator cell void spaces.

V is the divergence or gradient operator, being the vector

partial differential operator with respect to the three
spacial co-ordinates (refer Appendix D).

&
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(ii) General

A.4

B(B) denotes a term -~ usually a combination oi various

constants and parameters, eg, BOMEG =.25* OMEGA —

R denotes a real parameter; used as a prefix to a real —
parameter having an integer symbol. This only applies

to the computer program, where a distinction bctween —
real and integer parameters is made, eg, me(RMC) is the
mass of working gas in the compression space. It is to
be noted that whenever an 6perator prefix is added to a
parameter which has a prefix R, then the prefix R is deleted
cg, Dmc(DMC) is the total time derivative of the mass

of working gas in the compression space.

E denotes a dimensioncd parameter. It is used exclusively
in the computer program, eg, ER[J/kg.K] is the gas constant _

of the working gas.
n(N) denotes 'the number of'; usually relering to cells
or nodes, eg, ne{NC) is the number of cells in the heat —

exchanger section.

SUFFIX SET -

The suffix set is used to define a particular parameter as to

location or type. The suffix set has been defined as follows,

together with examples of usage:

(1)

Location

e¢(C) denotes the compression space. The exception is _
ne(NC), used exclusively for the total number of cells
in the heat exchanger section, eg, Te(TC) is the temperatur<



(ii)

135

of the working gas in the compression space.

k(K) denotes the cooler, eg, Twk(TWK) is the
temperature of the cooler wall.

r(R) denotes the regenerator, eg, Twr, (TWR(I)) is the
temperature of the wall associated with the Z'th
regenerator cell.

h(H) denotes the heater, eg, Twh(TWHl) is the temperature
of the heater wall.

e(E) denotes the expansion space, eg, pe(PE) is the

pressure of the working gas in the cxpansion space.

0(0) denotes the external cnviromment, eg, Qro; is the
heat loss from the <'th regencerator cell to the external

environment.

n(N) denotes a node (interface between adjacent cells),
eg, Tny(TN(1)) is the temperature at the <'th node
(interface between cell (Z-1) and cell ).

d(D) denotes the so-called dead space, being the heat
exchanger void sp;ce and the clearance spaces associated
with the compression and expansion working spaces, eg,
vd(VD) is the volume of the dead space.

p(P) denotes the heat exchanger pipes, eg, xp(XP) is the
length of the heat exchanger pipes.

Medium

g(G) denotes the working gas, eg, Awg(AWG) is the wetted
area of the heat exchanger cell wall (ie, the area wetted
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by the working gas).

m(M) denotes the regenerator matrix, eg, pm 1is

the density of the regenerator matrix material.

w(W) denotes the containing wall, eg, Tw;(TW(I})) is
the temperature of the wall containing the 2'th cell.

(1i1i)Special suffixes

(iv)

f(¥) denotes frontal (used exclusively for area), eg,

Af is the frontal area of the regenerator matrix.

s(S) denotes stroke (used exclusively for the total
power stroke volume), eg, Vs(EVS) is the totai power

stroke volume of the engine.

¢l(CL) denotes clearance (used exclusively for volume),
eg, Vel(VCL) is the clearance volume of the compression

or the cxpansion spaces.

su(SU) denotes the Sutherland constant (refer Appendix L),
eg, Tsu(TSU) denotes the Sutherland constant of the
working gas.

Computer program only

I denotes the inverse of a parameter, eg, CWI = 1./CW is
the inverse of the total heat capacity of the cell wall.

S denotes a specific parameter (with respect to unit mass),
eg, CVS is the specific heat capacity at constant volume.

e
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- In general, the suffix set is used in the following order:

p t . k ERLE ERIOF }{ 9k ".:h: :dJ { . o )
arameter {nl{w,m,g {w,m,gl{c,k,z e p} O}ﬁubmnaptset}

or in the computer program equivalent form:

" Parameter {S}{N}{W,M,G}{W,M,G}{C,K,R,H,E,D,P}{0}{I}

({sub$cript set}).

The use of any of the suffixes is optional and only one
suffix enclosed in each set of&curly parentheses may be

used to define a particular parameter, eg, Awg(AWG), vng
(VSN(I)), Twr;(TWR(I)) are valid suffixed parameters.

Pnck (PNCK) is not a valid suffixed parameter, sincec it is
associated with both the compression space ¢ and the cooler k.

The default definition of any parameter when none of the
medium suffixes {w,n,g} are used is the working gas, hence
a working gas parameter docs not require a suffix g, eg,
Te, p; s vng are working gas paramcters.

Parameters which are exclusively nodal do not require a
suffix »n, eg, the mass flux density g; is defined only at
the <'th node, thus dees not require a suffix n.

When the medium suffix m(matrix) is used, then the location
suffix » (regenerator) is superfluous, since the matrix is
located exclusively in the regenerator section, eg, Imr
(TMR(I)) could be written Tmy(TM(I)) without ambiguity.

A.5 SUBSCRIPT SET

In the context of the system model defined in Chapter 3, the
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cooler, regenerator, and heater of the system are sub-
divided into cells and nodes (interfaces bLetwecen adjacent
cells). Tt is noted that for any number ne of cells

there are (ne+l) nodes.

The following subscript set serves to assign parameters
to particular cells or nodes:

2(1) denotes the running subscript. < can take on any integer
value between 1 and (ne+l). < is never zero or negative. —
It is noted that the value of :a subscript is a function cf

the suffix used. Thus Tw; # Twr; since even though both -
refer to a wall temperature, the <'th cell in the heat

exchanger system is not the ©'th regenerator cell. .

1{1) denotes the node interfacing the compression space and the

cooler. It also denotes the cooler cell adjacent to the

cCompression space.

nk(NK) is the number of cells in the cocler section. It

denotes the cooler cell adjacent to the regencrator section.

nk1(NK1) = nk+1 denotes the node interfacing the cooler and _

the regenerator. It also denotes the regenerator cell adjacent

to the cooler section. -
nr(NR) is the number of cells in the regenerator section —

nkr (NKR) = nk+nr denotes the regenerator cell adjacent to
the heater section.

nkrl(NKR1) = nkr+l denotes the node interfacing the
regenerator and the heater. It also denotes the heater cell

adjacent to the regenerator section.



139

nh(NH) is the number of heater cells.

neiNC) = nk+nr+nh is the total number of cells in the hezt
exchanger system. It denotes the heater cell adiacent to
the expansion space.,

nel(NC1) = ne+l denotes the node interfacing the heater and
expansion space.

A.6 DIMENSIONLESS GROUPS

The table below defines the Various dimensionless groups

which have been used in this work.

Table A.2 DIMENSIONLESS GROUPS

Dimensionless Group Symbol Definition

Reynolds Number ke {(RE) g.d/u

Nusselt Number Nu h.d/k

Stanton Number - St W/ geep (=h{y~-1)/g.Y)
Fanning Friction

Factor Ff 2o0p/g* (=20/p.u?)
Reynolds Friction

Factor Fr (FR) 20.p.d/vg (=Ff.Re)
Prandtl Number - Pr (PR} ep.u/k (=p.v/k(y-1))

Relative Roughness
Factor Ro ({RO) a/d
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B. SCHMIDT CYCLE ANALYSIS e -

The Schmidt cycle analysis is a clcsed form of analysis
of an ideal Stirling cycle machine, based on the following _
assumptions: '
(1) Sinusoidal volume variations in the compression
and cxpansion spaces —

(1i) The working gas in the compression space and cooler
is at a constant temperature Tk = 1

(iii) The working gas in the expansion Space and heater
is at a constant temperature Th

(iv) The regenerative process is perfect

(v) There is no instantancous pressurc drop or leakage
(vi) All processes are reversible

(vii) The perfect gas equation of state applies.

In order to retain continuity with the application example
test engine (Chapter 4) it has been assumed that the compression
and expansion spaces have identical swept and clearance

volumes. In the more complete analysis (eg Wa73) a factor «

is introduced being the ratio of the compression to the

expansion space swept volumes. Normalized parameters (refer

Appendix A) have been used throughout.

Volume of the compression space Ve and the expansion space Ve: _



o
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Ve A Vel+(l+coso)/4 | (B.1)
Ve A Ver+(l+cos[e+a])/4 (B.2)
wherc

8 is the crank angle

)
A

a is the angular phase advance of the expansion space

volume variations with respect to thec compression space
. %

volume variations.

Conservation of mass:

1 = metmk+mr+mh+me (B.3)

Perfect gas cquation of state:

pV = mT , (B.4)
(B.4)>(B.3)
1 = p(Ve+Vk+Vr/Te+Vh/Th+Ve/Th) | (B.5)

where Tr is the mean effective constant temperature
of the regenerator space (Cr66).

(B.1),(B.2)>(B.5):

1/p = [Vel+(1+cos8)/4+Vk+Vr/Tr+Vh/ Th+Vel/Th+(1+cos (0+a))/4TH]



1/p = (1+1/Th)Y(Vei+0,25)+Vk+Vr/Tr+Vh/Th+cosH/4
+{cosf.cosa-sin0.sina)/4.74
1/p = Bz+c036(1+cosu/Th)/4"sina.sin@/dnTh

~where

B2 A (1+1/Th)(Vel+0,25)+Vk+Vr/Tr+Vh/Th
Let

Bl.cos¢ A (Th+cosa)/4.Th

Bl.sin¢g A -sinoa/4.7Th

(B.8)>(B.7):

tang = -sinu/{7htcosa)

B1 :JHTk+G05u)/Q»Th]2+(sina/4,Th)2

Bl = V1+Th?+2.Th.cosu/4.Th

Now | -

Bl.cos(6-¢) = Bl.cosB.cos¢+Bl.sind.sing
(B.7),(B.8),(B.11)+(B.6):

1/p = B2+Bl.cos{0-¢)

p = 1/B2[1+B.cos(6-¢)]

142

(B.6)

(B.7)

(B.S)

(B.9)

(B.10)

(B.11)

(5.12)
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where
B £ B1/B2

From the assumption of reversiblec operation, over a
complete cycle the heat supplied to the compression
(expan€10n) space is equal to the work done by the
compression (gxpan51on) space.

Qe = We = $pdVe

Qe = We = $pdVe

Given any function f(B),R an angle, then by Fourier
series expansion analysis (Ar?O) the following is
obtained:

£(8) = BO+

[BeZ.cos(£B)+Bsi.sin(ZB)]
7

1

8

where

2N
BO A fo f(R)AR/2n

rall
Bei A ﬂ)f(B)cms(iB)dﬁ/ﬂ

2M
Bsi A 4}f(6)sin(£8)d8/w
Let

B A B-¢

(B.16)+(B.12):

p(B) ? 1/B2(1+B.cosR)

(B.15)

(B.16)

(B.17)
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It is noted that between B = 0O and B = 27, the function

p(B) is even, hence it has only a cosine expansicn, thus
all the Bs? terms are zero. It is also noted that in the
integral $pdV, dV js a fundamental sinusoidal function of
B. Thus only the fundamental compouent of the expansion
of p(B) yields a finite value of the integral. All other

components of p are orthogonal to dv and return zero
integral values.

A

Thus only the fundamental component Bel. cose has been
evaluated: ) '

2

Bel = [ [cosB8/B2(1+Bcosg)dp/n ' ' o EE (B.18)

From Dwight (Dw6l), definite integral no. 858§. 5336 one
obtains

w B :

S, [cosp/(1+Beosp)]dp = w(1-1//T-F%) /3 (B.19)
(B.19)~(B.18)

Bel = 2(1-1/VI1-BZ)/B2.5 {(B.20)

Finkelstein (Fi76) has shown that equation (8. ZO) can'
be advantageously rewritten as follows:

Bel = -2B/B2/T<BZ(1+/ITB7) | | . - (B.2D)

Equation (B.21) does not involve the diffefunCing of
two nearly equal quantities as in equation (B.20) and
is thus less sensitive to roundoff error.

Compression space: differentiating equation (B.1)
one obtains
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dVe = -3ind.do6/4 (B.22)

(B.22),(B.21)~(B.13):

[B/2.B2/1-BZ(1+/1-B%)]|$sinb.cos(0-¢)do

e =
. e . 2T '
Qe = [B/4.32/1~32(1+,1n32)]{) [sin(26-¢)+sing]de
Qe = Busind/2.82/1-BZ(1+/1-B?) -~ (B.23)

Expansion space: differentiating equation (B.2) one

obtains
AVe = -sin(0+a)d6/4 , | (B.24)

(B.24), (B.21)+(B.14):

gz = [B/2.02/T-FE(1+/1757) ] fsin(0+a)cos (0-¢)d0
Qe = Busin(¢+e)/2.B2vV1~-B*({1+/1-E2) (B.25)

(B.23)+(B.25)

i

Qe/Qc sin(¢+a)/sind

Qe/Qe = (sing.coso+cosd.sina)/sing

Qe/Qe = cosatsina/tang (B.26)
(B.9)~»(B.26)

Qe/Qe = cosaw{Th+cosdjsina/sina

Qe/Qe = =Th . (B.27)
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Thermal efficiency n:

n A W/Qe = (Qc+Qe)/Qe (B.28)
(B.27)+(B.28)

REREVE (B.29)

which is the Carnot efficiency.

. L
The application example test engine of Chapter 4
analysed by the Schmidt cycle analysis above gives

the following performance:
Efficiency n = 0,65

Heat supplied extcrnally to the expansion space
Qe = 0,854

Heat supplied externally to the compression space
Qe = -0,292

Work done per cycle W = Qe+@e = 0,542

In order to assign dimensions to the above energy units
they are multiplied by the energy normalizing factor
(refer to Appendix A, Chapter 4):

MRTk = 108 Joules
It is noticed from the above that the heater and 6601er

play no active part in the Schmidt'cycle, since their
net heat supplied externally over the cycle 1is zero.
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C. BASIC IDEAL CYCLE ANALYSIS

C.1 INTRODUCTION

The Schmidt cycle analysis (Appendix B) is an ideal cycle
analysis modified by the mechanical restriction of
sinusoidal variations of the expansion and compression space
volumes. On the thermodynamic side it is assumed that the
compression and ‘expansion processes are isothermal, and that
the regenerative process is perfect. Unfortunately, if omne
attempts to depart from any of the idealizations imposed

by Schmidt, then the closed form solutions break down, and
one can only solve the system by numerical integration.
However retaining Schaidt's restrictive assumptions may'result
in mislcading conclusions, in particular with regards to
optimisation studics. '

An alternative approach in order to establish basic trends

is to rveturn to the simple idealizcd,cyclé,analysis? but
without the mechanical or thermodynamic réstrictions imposed

by Schmidt (RU706). 1In particular the effects of non-isothermal
compression and expansion as well as of imperfect regeneration
can be examined.

In the analyses that follow, normalized parameters (refer to
Appendix A) have been used throughout. Various parameters
required only in this appendix are defined in the order of
their first appearance. |

C.2 THE IDEAL STIRLING CYCLE

This cycle is defined by two isotherms bounded by two .
isochors. (Refer to the pV and Ts diagrams of figure C.1).
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THE IDEAL STIRLING CYCLE
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Figure C.1 THE IDEAL STIRLING CYCLE




————— j s R e

B Thé volume compression ratio r is déffn&d aﬁvfélldﬁéz
_ » A VI/V2=Va/VS e (c.1) -
- wherc V7 iz the vol&me of the working gés éf $£afé’¢,
— ‘ Thg regenerator effectiveness € isdefined é$'fo11ow$:
- e A (72'-1)/(135-1) o .2 -
- where‘Ti is the tempefature 4t state i.LVItfis,notiCéd7 
that 71 is unity, being the’éold sink tempera;@re{:' "
) The thermal efficiency n is defined as féiloﬁs:iu
B n A W/ Qext
_ where
_ ' W is the nct external work done per cycle'
—_ Qext 1is the)heat supplied cxternally pef cycle
- For the isothermal compression and expanSion"
- W = 73.1lnr~1nr '
a W = (I3-1)1lnr | Lhn l (C.4)
N Heat is‘suppliéd externally during the‘pypcgssgs 2‘f3~4.
3 Thus
- Qext = cv(T3-T72')+T3.1nr



where cv = 1/(y-1) is the specific heat
constant volume of the working fluid.

, Frdm equation (C.2): ,
r2' = eT3+(1-€)

(C.6)~>(C.5)

il

Qext = cv(l-€)(73-1)+r3.1np

’Qext = (l“E)(fS“l)/(f?l)+T3.lnr
(C.7),(C.4)+(C.3): -

- (y-1)(r3-1)1nr '
N = =) (r3-1)+(y-1)73. Inr
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vcapacitYfat
' L f'"fr‘(C}6)

«©.7)

(C.8)

The specific work output for this cycle may be
“represcnted by the indicated mean effective pressure,

defined by

imep A W/strokefvbiume'

-

1

imeﬁ W/ (v1-v2)
(C.4),(C.l)*(C.9):
imep = (TS-l)lhf/Yl(1~1/r) -

However, from the perfect gas equation

pl.vl = 1

(C.9)

(C.10)
of state

L (C.11)
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(C.11)+(C.10)
imep/pl = (TS—l)r.lnr/(r—l)

where imep/pl is the normalized dimensibnlessyindicated

mean effective pressure.

Figure C.1 shows thermal efficiency n and dimensionless

specific work (lmep/pl) plotted as functlons of the volume

compression ratio r for a ranbe of values of regcnerator
effectiveness ¢ in a typical practlcal case whcre 73 = 2,86

It is noted that for such an ideal Stlrlang cycle both

n and imep/pl increase with increasing compression- ratio r.
Thus it would appear advantagoous to operate such a cycle
at as high a value of r as is practically p0551blc
Apparently however actual machines are rcstrlcted to
compression ratios not cxccedlng 2,5 to 1. It is note-
worthy in this contcxt that spark-ignition and compression-

ignition engines -- with similar ideal nvs r characterlstlcs

-- are advantageously operated in the range of 8:1 to 20:1.

‘Although admittedly oversimplified, such arguments inevitably

suggest that there may be a discrepancy between the
theoretlcal Stlrllng cycle model used in the foregoing

and its practical realization.

Evidently in actual Stirling cyéle machines the rapidity
with which the working medium is shuttled back and forth,

together with the finite heat transfer rates, give rise to a

separating out of the compression, or expansion, and ‘the
heat transfer procesées. it is thus not unreasonable to
suppose that both compression and expansion occur poly-.

tropically and in the limit tend to adiabatic processes.

'(C.lz)
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~This leads to the postulatlon of an 1deal pseudo-:
Stlrllng cycle as defined below.e

C.3. THE IDEAL PSEUDO—STIRLING CYCLE

The processes 1-2 -2"-2' -3-4-4'- -1 in the pV and Ts
diagrams of figure C.2 serve to define the so- called
pseudo- Stlrllng cycle. ThlS idealized cycle follows
as a consequence:of ‘the in- -1line arrangement of the
cooler, rcgencrator, and heater, placcd between the
-compression and etpan51on spaces -- in whlch the
working gas is said to undergo polytroplc proccsses.

In the limiting case where both proceSses 3—4‘and 1-2
are adiabatic ' ’ o

¥ = cv[(73-74)-(T2-1)]
T2 = rY“]
- T3 = rY_1T4

(C.14),(C.15)+(C.13):

n

W= en[r3(1-1/2Y " 1)-r""1e1])
Now
Qext = cv(T3-T2')+cv(T4'-T4)

However T4' = T3

(C.6Y,(C.15)+(C.17):

(C.13)
o (C.14)
(C.15)

~ (C.16)

- (C.17)



153

THE PaFUDﬂ TIRLING CYCLE
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Qext = ev[(T3-1) (i-e)+13(1-1/2Y" 1))

(C.18),(C.16)+(C.3)

T3(1-1/rY'1)-rY'1+i
(r3-1) (1-€)+73(1-1/r""1)

n =

The indicated mean effective pressure is given by
(C.16)>(C.9): | | | |

imep = [T3(1-1/rY;1)—pY“1+1]/(y:1)(v1;vz)‘
(C.1)»(C.20):

imep = (r3(1-1/2""H-r""1a1)/m(v-1) (1-1)
(C.11)+(C.21):

imep/pl = r[T3(1—1/ry-1)~ry—1+l]/(Y"l](r—l)

Figure C.2 shows the thermal efficiency n and
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(c.13j.

(C.19)

- (C.20)

(C.21)

(C.22)

dimensionless specific work imep/pl plottcd as functlons

of the compression ratio r for a range of values of

regenerator effectiveness € and the same typiCal values
of 73 = 2,86 and y= 1,304 as were used in figure C.1.

Unlike the ideal Stirling cycle case, here both the thermal
efficiency and the dimensionless specific work curves |
exhibit maxima at finite, and low values of compression
ratio ». The optimum value of » for max1mum eff1c1ency

is ev1dent1y a function of regenerator effectlveness but,
for all practically realizable values of €, is close to

about 2 to 1.

]

wine]

-

k]
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Thus, in contradistinction to the ideal Stirling cycle;
it is detrimental to operate the pseudo-Stirling cycle
at large compression ratios. This is one of the fcw S
cases of engine optimization in which both the specific
work and thermal efficiency peak at approximately the

same point, thus necessitating little compromise.

C.4 THE IDEAL PORTED REGENERATIVE CONSTANT VOLUME CYCLE

Referring to the ideal pseudo-Stirling cycle (figure C.2)
it seems'intuitively‘wasteful‘to cool the working gas in
the cooler after heating it by compression, and similarly
to heat thc gas, after cooling by expansion. Thus it was
decided to examine the advantages to be gained by porting
the gas in order to bypass these processes. This has been
heuristically discussed by Finkelstein (FiS53) who presented
a design of a ported regenerative constant volume cngine.
However no analysis of the effect of this porting has becen

published.

The ideal ported regenerative constant volume cycle is
defined by the processes 1-2-3-4-1 as shown by the pV

and Ts diagrams in figure C.3. The work done per cycle

W is identical to that of the ideal pseudo-Stirling cycle,
however heat is supplied externally only during process 2'-3.

“Equation (C.2) for regenerator effectiveness € has to be

modified, since the working fluid bypasses the heater and
cooler before entering the regenerator.

Thus

€ A (72'-72)/(T4-T2)

T2' = e(T4-T2)+T2 i (C.23)
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T2 = e(TS/rY—lmrY
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(C.14),(C.15)~>(C.23):
“1y,,v-1
72t = eTS/rY-1+rY—1(1iE)

Now

Qext = ev(72-72")-

(C.24)~>(C.25): X
Qext = cv[TS(i“E/rY_1)+rY—1(1*c)]
(C.26),(C.16)~>{(C.3):

L r3(1-1/Y g

TS(I“G/PY—13+PY_](1‘€)

The expression for imep/pl is identical to that of the
ideal pseudo-Stirling cycle and is given by equation
(C.22).

In figure C.3 the thermal efficiency n and imep/pl are
shown plotted as a function of the compression ratio

r, for a range of values of regenerator effectiveness ¢
and the same typical values of 73 = 2,86 and vy = 1,404
as were used in figure C.2.

It is found that under all conditions the efficiency
for the ideal ported regenerative constant volume cycle
is higher than that of the ideal pseudo-Stirling cycle.
Also it is seen that for high values of regenerator |
effectiveness, low compression ratios give optimum

thermal efficiency.

(C.24)

(C.25)

(C.26)

(C.27)
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However, it is noticed that a crossover value of
compression ratic »r exists, above which it is
detrimental to use a regenerator. This occurs at

the compression ratio at which the inlet temperature
to the regenerator at the cold end 72 is equal to the
inlet temperature to the régcnerator at the hot end
T4.

It is found that in the limit when the regenerator
effectiveness equals zero (ie, no regencrator) then
the system has been reduced to the air standard
constant volume (Otto) cycle, in which the thermal
efficiency increascs monotonically with increasing

compression ratio.

C.5 CONCLUSION
Simplificd analyscs based on the idecal Stirling cycle give
misleading results when applied to the component
configurations generally used in practical machincs. A more
realistic model, bascd on polytropic compression and
expansion of the working medium, leads to a so-calied
pseudo-Stirling cycle which appears to explain the apparent
anomaly of the low -compression ratios used in practice. It
also provides a theoretical basis for choosing the optimum
compression ratio for any specific system. '

It is found that on modifying the ideal pseudo~-Stirling

cycle by the inclusion of valves or ports a distinct

increase in thermal efficiency results. Alsc the relative
reduction in thermal efficiency with reduction in regenerator
effectiveness is not as pronounced as in the ideal pseudo-
Stirling cycle. For high values of regenerator effectiveness
the advantage of obtaining maximum thermal cificiency



together with maximum specific power output at low

values of compression ratio is retained.

The introduction of check valves or ports is not a
major complication since the pressure differences
across the valves are slight, being due entirely to

aerodynamic friction pressure drops.
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D. THE FUNDAMENTAL EQUATIONS - CONTINUITY, MOMENTUM.
ENERGY

D.1 INTRODUCTION

In this appendix the fundamental equations of continuity,
monientum and energy for the working gas are developed
from first principles. Thesc equations are applied to the
cellular modei in Appendix H in order to develop the
system algorithms for solution.

@
An arbitrary control volume ¥V within the flowing working
gas is considered (Figurc D.1).

Figure D.1 CONTROL VOLUME v

Each infinitesimal element in the control volume V

is represented by its density p (or specific volume v},
pressure p, temperature 7 and momentum per unit volume g

(a2 superscripted bar indicates a vector quantity). The
control volume is in an Eulerian framework in that it has
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D.2 CONTINUITY

. The continuity equation is based on the axiom that

matter cannot be cregted or destroyed. 1ts word
formulation as applied to a fluid in an Eulerian
framework is as follows:

rate of decreasc of mass net mass flux convected

in control volume V outwards through control

surface 4

d — = ' '
——a‘gfv pdV = g‘l o(g.v).Nd4 (b.1)

where
p 1s the density, being the major operand

g.v is the velocity U, being the convective factor

=zl

is the normal to the control surface 4.

Invoking Gauss' theorem (Ar70)

9,g.NdA = Sy V.gdv ’ , (D.2)
where V is the divergence operator when the operand

is a vector, and the gradient operator when the operand

is a scalar, being the vector partial differential

operator in the three spacial coordinates. '

(D.2)~(D.1)

3 ~ -
‘ﬁfv pdV = fVV.ng (D.3)

b b 1
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at least one point on the bounding control surface

A which is in a fixed position relative to the
spacial coordinate system, however it may vary in
magnitude with time. Thus the momentum per unit
volume g assumes the role -of a mass flux density
while crossing the bounding control surface 4, trans-
- porting matter, energy and momentum flux into and out
of the control volume V. Energy in the form of hcat
@ crosses thé control surface 4, and mechanical work
W is done by the control volume V on the surrounding
environment by virtue of it$ volume variation with
time or as shaft work.

The working gas is assumed to be Newtonian, and the
nonlinear variation of its dynamic viscosity p with
temperature is considered (refer to Appendix E). It
is assumed that the working gas behaves as a perfect
gas and that its dynamic viscosity does not vary with
pressurce. This is not, however, a fundamental limita-
tion of the method of analysis or solution, and the
nonlinear behaviour of any of the parameters can be
included if required.

The fundamental equations of continuity, momentum and
energy are intially derived in the three spacial co-
ordinates, however they are all subsequently reduced
to the one-dimensional case. In order to account for
the strictly three-dimensional effects of turbulence
in the one-dimensional system, empirical correlations
are invoked to determine the heat transfer and flow
friction behaviour of the working gas with respect to
its surroundings (refer to Appendix F). |
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It is assumed that the control volume is chosen
such that either all the working gas properties
are uniform and constant in space throughout the
control volume, or that it is swall enough such
that all the fluid properties can be adequately
represented throughout the control volume by their
mean values. Thus in equation (D.3) the variables
are independent of the volume integraticn.

a _ —
[pf dv] = V.gl,dv

2 [oV]+1v.5 = 0

d | , \
a’Z+V\7 g =0 - (D.4)

where m is the instantancous total mass of working

gas contained within the control volume V.

Reducing equation (D.4) to the one-dimensional case
onc obtains:

om, g . )
32V L = 0 (n.5)

Equation (D.5) is the final form of the continuity
equation to be used in this work.

D.3 MOMENTUM

The momentum equation is based on Newtons second law
of motion -- that the rate of change of momentum of

a body is proportional to the net applied force. In
an Eulerian framework it is necessary to consider not
only the net applied force but the momentum flux
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convected through the control volumec as well. Its

word formulation is as follows:

rate of change of ’ net nomentum flux convected
momentum within the | + {ouiwards through the control

control volume V surface 4

net force (body and surface)
= lacting on the fluid in the

control volume V

o . — _— — =, = ‘ D
5;&,ng+€1g(g.v).NdA = ~jqudAwF (D.6)

where

7 is the momentum/unit volume, being the major operand
g.v is the velocity U, Leing the convective factér

F is the frictional drag force.

It is noted in equation (D.6) that the only forces that
have been considered are surface forces -- being the
normal pressure force and the shear frictional drag.

Body forces such as gravitational, centripetal, magnetic
and electrical forces have been neglected as irrelevant

to the class of problems that are treated. The frictional
drag force can be determined analytically only for laminar
flow in a known simple geometry (XL64). 1In general
empirical correlations are used for its evaluation (refer

to Appendix F).
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Invoking Gauss' theorem on equation {(D.6)

9 — (s =
’zﬁ‘fvgdv"fv J(gzv)dV+fV,Y{pdV+F =0 (D7)

It has been noted previcusly that the fluid parameters

are considered to be cither constant Or represented by

their mean values throughout the control volume V.

wlw

t(E.V)+VV(§2v)+VVp+F = 0 A (D.8)

%

Reducing equation (D.8) to the one dimensional case

-l 3 (2 P,p =
at(g/.V)+Va:]c(g v)+V3x+F 0 (Bb.9)

Equation (D.9) represents the final form of the
moilentum equation of the working gas to be used in

this work.
D.4 ENERGY

The energy'equation is based upon the first law of
thermodynamics -- that energy cannot be created or
destroyed. In the Eulerian framework the formulation of
the energy equation is as follows:

rate of heat transferred rate of enery

to the working gas from accumulation

the environment through - within the control
control surface 4 , volume V

net energy flux net rate of flow
convected outwards by work in pushing the

the working gas crossing ¥ mass of working gas through
the control surface 4 the control surface 4
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net rate of mechanical work done by
the working gas on the environment by
virtue of the rate of change of the
magnitude of the caontrol volume V

net rate of shaft work done by the
working gas on the enviromnment by
virtue of the rotation of a shaft

crossing the' control surface 4

The shaft work term is neglected as irrelevant to the

class of systems that are to be treated.

d 3 ; DL w+ (3 g N
a% = Ezjv[y+(gnﬂ /2]pdV+€ﬂu+(g.v)2/2]p(9-v)°NdA

ST L A
+9, p(g.v) -Nda+g; - (D.10)

wherce

u is the specific internal energy of the working gas.
(g.v) is the velocity U, being the convective factor.
(g.v)2/2 is the specif&c kinetic energy of the working gas.

[u+(g.v)2/2]p is the energy per unit volume of the working

gas, being the major operand.

It is noted that the working’gas energy is assumed to
consist of internal energy and kinetic energy only. Poten-
tial, chemical, nuclear, and all other possible forms of
fluid energy have been considered as being irrelevant to
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the class of systems that are treated. It is also noted
that the tetal time derivative is taken of the hcat
transferred @ and the mechanical work done W. This is
because @ and ¥ are path functions and not properties of
the working gas, and only their global values crossing

the control surface 4 from the external environmen:i are

“considered.

Collecting tcrﬁs in equation (D.10)

A

[u*(F.0)?/2) pav+d, [(urp.v)+(7.0)?/2)g.Naa+§  (0.11)

P
- 3?&'

Chlf.b
S

Invoking Gauss' theorem on equation (D.11)

V[u+(g v) /210dV+f V.[et(g.v)° /Z]qdv+gz (D.12)

cﬂm
o+ D
]

where e A u+p.v is the specific cnthalp’ of the working

gas.

The fluid parameters are considcred to be either constant

or represented by their mean values throughout the control

volume V.

89 = 2 [uorepv(g.)?/2)+19. [e+(F.v) /2] G+ 37

d — - -

9 = 2w (G.»)2/2]+7. [e+(5.v) 2/ 2]+ 5] - (D.13)
For a perfect gas

w=1/(y-1) (D.14)

e = yI/(y-1) | (D.15)
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‘where

1/(YF1) is the normalized specific heat capacity ofvthe
working gas at constant volume

Y/ (y-1) is the normalized specific'heat capacity of the
-working gas at constant pressure

(D.14), (D.15)~>(D.13)

8 - 2Bt @2 /z] e [a . v)2/z] 4 a0

Reducing equation (D.16) to the one-dimensional case and
expanding

d¢ _ 3 [m.T 3 [¥T. +3¥
& = ge[Benmie- ) v [etyre oo /2]

i ;1 Y- 1)+Vam(yf'f)+§%[m(9'”)?/2]+V;L[g(g'”)2/2}*gg

%% = -%(';';T) ax(;’——ﬁﬁ——[(a V) /2m]+u/-—-[g(g v) /2]+~-

0 - D v D v e - et
+V—595[g(g.v)2/2]+% ; - (D.17)

Substituting for the momentum eQuation (b.9) and the
continuity equation (D.5) into the energy equation
(D.17) and simplifying

dQ _ 3 m 3 '
rl Y= =t Vax(?"“ﬁ) g.m.v *[35(67v) +3E]-g.v.F

eV v lg(o.0)2/2) g
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dQ *‘ ,m T, YZ_Q P - =
I - 3; §—T) ( )-g.v (Vs *F)+dt g.m.v? (g )
g g v 5%4m v a(g v 2y
¢@ . 8 m.Ty,, 9 YT.g _2 ; -_ 297
. de Bt(Y- )+ Vax(Y }~g. v(V +Z)+ g3m.v? Nr
_ 309 q m.v Dn 38v 3m.v 3~~Q
2g*m. v gl . v g T 5
T. L dW ’
%% = _%(_._:3 (Y )-g. ,,(V_E+z)+< (D.18)

Equation (D.18) rcprescnts the final form of the energy
equation of the working gas (o be used in this work.

If the kinetic energy of the working gas is ignored in
the initial formulation of the encrgy equation (D.10)
then equation (D.18) reduces to '

49 _ 3
...a(

. T yf aq. ,dW : }
at Y=tV ( (D.19)

= D+
try- de
Thus the only manifestation of the kinetic energy term
in the energy equation is in the term g.v(Vap/3x+F).
However on examining the momentum equation (D.9) it is
seen that the term (V3p/dx+F) represents the net applied
- force to the working gas in the control volume, Vop/3x
being the normal pressure force and F being the
frictional drag. One thus comes to the important con-
clusion that ignoring the kinetic energy of the fluid
is consistent with reducing the system to a quasi-steady
state, in which the momentum equation (D.9) is reduced
to
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AP = | | '
vE+F = 0 | (D.20)

E.S THE TUNDAMENTAL SYSTEMS OF EQUATIONS

i

From the above arguments three systems of fundamental
equations governing the working gas in the control
" volume V are obtained: '
! ‘
(i) The kinetic energy of the working gas is not
negligible as compared w%th the internal energy of

the working gas:

St - o oo
2 (g.V v ( V+p2Rip = 0 ' D.9

at g.V)- g vl tVgsar = (D.9)

d¢ . 1 |

0 = DD e v (55 (b-18)

(ii) The kinetic energy of the working as can be
ignored with respect to the internal energy of

the working gas:

om, ,9g |

se+vsl = 0 | | (D.5)
d ’

va§+p =0 | (D.20)

49 _ 9 m. y7r.g

dt ot (y ) V ( 1) dt N (D.19)
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(iii) The working gas motion. is 50 siow that there
is a negligible pressure drop throughout the
system. In this case the momentum equation
dirops out altdgether:

am. 3 |
mydg Lo (0.5)
\ '_'
d 3 m. Ty 3 YTP.g\.dW . |
_&% = = ?:T)+V5;(L:—i€)+a-_£ , ’(D.lyg)
. ‘ ’
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E. TRANSPORT PROPERTIES - VISCGSITY, THERMAL
CONDUCTIVITY

E.1 INTRODUCTION

i

The most 1mportant contrlbutlng factors to the non-
ideal performance of Stirling Lycle machines are the

‘ working gas pressure drop due to flow friction and

the limited finite heat exchangc with the external
environment. Both of these phenomena have their

roots in the transport propertles of the fluid,
specifically its internal frlctlon (or viscosity) and
thermal conductivity. Basically each molecule of the
working gas, being in random motion and colliding with
other molecules, transfers its momentum (the phenomenon
of viscosity) and its kinetic energy (the phenomenon of

heat conduction).

E.2 DYNAMIC VISCOSITY

Throughout this work it has been exclusively assumed
that the working gas is Newtonian, ie, the shear stress
between adjacent layers of working gas is proportional
to the velocity gradient in these layers normal to flow
direction. This leads to the definition of the dynamic
viscosity u given by the so-called Newton's law of
viscosity (Br71):

_.au

o= dz

where
o is the shear stress

pu is the dynamic viscosity
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du/dz is the velocity gtadient normal to the directiénf
of flow o

The kinetic theory of gases predicts that the dynamic

- - viscosity is independant of pressure. This rather
‘surprising result is borne out by experiment over a

- . large pressure range. In this pressure range the depen-

dance of the dynamic viscosity on temperature 1is found

to be ‘ Vo ‘

u = K(T)¥2/(P+Tsu) . o (E.2)
lllll where
u is the dynamic viscosity at temperature T

K,Tsu are constants, characteristic of a given gas

- If the value of the viscosity u0 is known at a given
— _ temperature 70, then X can be eliminated as follows:

- W0 = KGO/ (z0smen) S E3)
SR (5;3)+(B.2). s S
| W= w0 (T":f@z)c w S ®e

Teu is the so;called Sutherland constant (Br71) and
is found to be approximately constant at temperatures
far exceeding the critical temperature of the gas.

In the application’example test engine of Chapter 4,
three working gases have been Lon51dered - axr, ‘helium
and hydrogen '
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Table E.1 gives the actual dynamic viscosity {i0 at
a temperature T0 of 273 K as well as the associated
Sutherland constant Tgu for these three gases (a

 superscribed tilde (7) refers to a dimensioned or

actual parameter -- refer to Appendix A for defini-
tions of actual and normalized paramoters) It is

" noted that Tsu has the dimensions of temperature and

is thus nmimallzed with respect to the cold sink
temperature Tk ‘before it can be incorporated 1nto the

normalized system equations.
. _ .

Table E.1 VALUES OF THE VISCOSITIES OF GASES (Br71)

Gas Dynamic Viscosity Sutherland
at 273 K constant
i0x10"° [kg/m.s] Teu [K]

Air - 17,08 ' ‘ 112

Helium - 18,85 80

Hydrogen 8,35 o 84,4

P

'E.3 THERMAL CONDUCTIVITY

‘The kinetic theory of gaSes predicts that the thermal
conductivity of a gas is independent of pressure and
. this, too, is ern out by experiment, The ratio nf '

is approx1mately a constant, and is deternaned most
convenlently via the Prandtl number. o



The definition of the Prandtl number P» is as follows
(KL64) : |

Pr = cp.u/k *
where

ep is the constant pressure specific heat capacity of
the gas IR '

k is the fhermal conductivit; of the gés‘

ep = v/(y-1)

(E.6)+(E.5):

Pr = y.u/k(y-1)

The Prandtl number is approximately constant for all

gases, varying between 0,65 and 1 (RM67). A value of
Pr = 0,71 has been chosen in the application example
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(E.5)

(E.6)

(E.7)

test engine of Chapter 4 to represent air, helium and
hydrogen. The ratio of specific heat capacities y is

approximately 1,4 for the diatomic gases (air and
hydrogen), and 1,67 for the monatomic gases (helium).
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F. FRICTION FACTOR AND HEAT TRANSFER COEFFICIENT ‘ -

F.1 INTRODUCTION : 1 o —

The basic system mode]tconsidered in this work is omne-
dimensional. However the fundamental concepts of fluid

. friction paradoxically break down under one-dimensional
flow. From Newton's law of viscosity (equation D.1) it
is seen that a Newtcnian fluid cannot sustain a shear
stress unless the flow is two-dimensional. This paradox
is bypassed by stating that the flow is not strictly
one-dimensional, but rather represented by its mean bulk
mass flow rate. Empirical correlations are thus invoked
in order to determine the friction (and reclated heat ' —
transfer) behaviour of the working gas with respect to

its surroundings. -

In this appendix the conventional Fanning friction factor
is considered and found to be unsuitable for use in the
reversing flow situation. A new friction factor, the so-
called Reynolds friction factor is introduced in order

to overcome this problem. Circular pipes are trcated in
detail and the Reynolds simple analogy is used to determine
the related heat transfer coefficient. Porous matrices
suitable for use in the regenerator are aiso considered.

Normalized parameters are used throughout (refer to Appendix
A).

F.2 THE REYNOLDS FRICTION FACTOR

The quasi-steady state momentum equation (D.20) is now’

considered:
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Vdp/dz+F = 0 L | . (D.20)

For a finite length of heat exchanger section (or
regenerator matrix)

VAp/Ax+F = 0 , . o ’ (F.1)

. By definition, the drag force F is related to the

shear stress o as follows:

1

F A o.Awg . (F.2)
where Adwg is the wetted area of the elementél 1engtﬁ

Ax of heat exchanger section. '

The hydraulic diameter of the flow passage d is defined

as follows (KL64): ‘

d/bx A 44[Awg , (F.3)
where A = V/Axz is the free flow area.

It is noted that for flow in a circular pipe d reduces

to the internal diameter of the pipe and 4 to its

internal cross sectional area.

(F.3)>(F.2):

F = 40.v/d (F.4)

The conventional Fanning friction factor is defined
by the shear stress divided by the dynamic head
(KL64).



Ff AYZU/gzv
(E.5)>(F.4):

F = 2Pf.g%V.v/d
(F.6)+(F.1):

Ap+2Ff.g%vdx/d 2 0.
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(F.5)

(F.6)

.7

For the case of steady flow in:the positive direction

(g>0), Ap is negative since there is a pressure drop

in the positive direction and equation (F,?)'is satisr'

fied. chever, for the case'of steady flow in the

reverse direction (g<0) then Ap must be positive, and

equatibn'(F.7) is thus violated since the second term
is always positive! '

A more suitable definition of friction factor is thus
proposed which relates the shear stress to the mass

flux density and properties of the fluid, rather than

to the dynamic'head. The Reynolds number is first
defined (KL64):

Re A |g.d/u|

The so-called 'Reynolds' friction factor Fr is thus
defined as follows: ‘

Fr A Ff.Re
(F.8),(F.9)+(F.6):

F = 2Fp.u.g.V.v/d>

(F.9)

(F.10)
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(F.10)~»(F.1):

Ap+2Fr.u.g.vbz/d* = 0 _ (F.11)
Equation (F.11) is satisfied for both positive and

reversed flow, since the sign of Ap is always

‘correctly related to the sign of g.

Since all cur:e&t émpir;cal data on the Fanning friction
factor is given as a function of Reynolds number, it will
be a simple matter to convert that data to the required
Reynolds friction factor.

" F.3 FRICTION FACTOR FOR CIRCULAR PIPES

Both the heater and cooler heat exchanger sections of

a Stirling cycle engine are usually constructed from
groups of parallel circular pipes. In the application
example test englne (Chapter 4) the regenerator has

been considered to be constructed from parallel circular
pipes as well, the rcasons for which have been amplified
in Chapter 4.

The Fanning friction factor versus Reynolds number curves
for various relative roughness factors has been widely
documented and in widespread use for some decades
(Mo48,5c55) (Figure F.1). "

Referring to figure F.1, the so-called Moody diagram or
friction factor chart, it is noticed that the flow can
be separated into three regimes; a laminar flow regime .
(Re<2000), a critical flow regime (2000<Re<4000) and a
turbulent flow regime (Re>4000).
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Figure F.1 FANNING(FRICTION FACTOR DIAGRAM
(After Pipe Friction Manual, 3rd Edition,
Hydraulic Institute, 1961).

The turbulent flow regimes can be subdivided into the
'transition' zone and the 'complete turbulence fuugh
pipes' zone, where the friction factor is constant witha‘
Reynolds number. The turbulent flow regime shows a |

(Ro)

FACTOR

RELATIVE ROUGHNESS
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number cf curves for different values of relative

roughness factor Ro.
Ro A z/d ) (F.12)
where z is the height of the protrusions.

For computation purposes it was decided to represent
- \ - 3 -

the Moody diagram by three equations conditional on

the Reynolds number Re and the relative roughness

factor Ro. *

0 < Re < 2000, Ro > 0 = Ff <« 16/Fe (F.13)

Re > 2000, Fc = 0 => Ff <« 60,0791/ (Re)*?° (F.14)

4

Re > 2000, Ro > 0 = (ivn. 0,0791/ (Re) %2 °® (F.15)

Ff2 < 1/(4[1,14-0,86861n(ko)]?)

.}

Ffl > Ff2 =» Ff « Ffl

(Ffl < Ff2 =» Pf « Ff2
Equation (F.13) is based on the Hagen-Poiseuille
equation of laminar flow through a pipe, which can
be derived from first principles (Sc55).

Equation (F.14) cannot be deduced theoretically; it is
an experimentaly determined relation, the so-called
'friction law of Blasius' and it holds reasonably well
for turbulent flow in smooth pipes up to Reynolds
numbers of about 200 000 (RM67).
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In equation (F.15), Ffl is the 'friction law of Blasius'
and Ff2 is a relationship due to von Kdrmin based upon

extensive experimental results due 1o Nikuradse for
fully developed turbulent flow in rough pipes (Sc55).The
friction factor Ff is thus chosen to be the greater of

Ff1 and Ff2.

The friction factor diagram which results from the use of
equations (F. 13),(F 14) and (F.15) is shown in figure F.2.
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Figure F.2 APPROXIMATE FRICTION FACTOR DIAGRAM

It is noticed from figure F.2 that the critical flow

regime and tran31tlon zone have been eliminated, it

being assumed that the flow is fully turbulent for all

Reynolds numbers greater than or equal to 2000.
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In section F.2 it was shown that the Reynolds friction
factor is more suitable for use with reversing flow
situations, than is the conventional Fanning friction
factor. The friction factor equations (F.13),(F.14)
and (F.15) are transfarmed as follows:

" (F.9)+(F.13),(F.14),(F.15):

0 < Re < 200G, Ro > U => Fr < 16 ' (F.16)

‘Re > 2000, Fo = 0 = Fr « 0,0791(&e) %" (F.17)

Re > 2000, Ro > 0 = {Ml « 0,0791(Re)?7® A (F.18)
Fr2 « Re/(4[1,14-0,86861n(Ro)]?

Fpl » Fr2 =2 Fp +~ Fpl

\Fr2 < Fr2 = Fr « Frl

The friction factor diagvam which results Ffrom the use of

5 ey

equations (F.16),(F.17) and (F.18) is shown in figure F.3.

The Reynolds friction factor diagram (figure F.3) appears
more intuitively logical to appreciate than the equivalent
Pannihg friction factor diagram (figure F.2). One can see
directly on figure F.3 that in the laminar {low region

the frictional drag force is proportional to the mass flow
rate (Fr constant), and that in the fully developed
Nikuradse turbulent regime to the square of the mass flow

rate (Fr has slope 1).
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F.4 HEAT TRANSFER COEFFICIENT FOR CIRCULAR PIPES

Heat transfer by convection is related to bulk mass flow

rate in a similar way to friction.

laminar flow in circular pipes one can theoretically
determine the heat transfer coefficient (RM&67). It is

found that the Nusselt number ¥u becomes a constant, its’

For fully developed

—_

]

-
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value being a function of the type of heat exchange
with the surrounding wall. The Nusselt number is

defined as follows:

Nu A h.d/k (F.19)
" where

% is the heat transfer coefficient

k is the working gas thermal conductivity,
Significantly it is noted from cquation (F.16) that
under laminar flow conditions the Reynolds friction
factor is aico constant.

It is not possible to produce a complete analytical
solution for heat transfer by convection when the flow
is turbulent. It was suggested by Reynolds that there
exists a similarity between forced convection heat

transfer and fluid friction (RM67).

Thus the so-called Reynolds simple analogy has been
derived based upon the assumption that the Prantdl

number is unity:
Nu = Ff.Re/2 (F.20)

In terms of the Reynolds friction factor, the Reynolds

simple analogy can be written.
(F.9)~(F.20)

Nu = Fr/2 . (F.21)
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For the Prandtl number different from unity Prandtl
and Tayler suggested a modification to the Reynolds .

simple analogy (RM67):
/8
Nu = Fr/2[i+1,99Re” '(Fr-1)] (F.22)

" However, for the range of Reynolds number and Prandtl
number encountered in this work it has not been
considered that the use of equation (¥.22) can signi-
ficantly increase the accuracy.

The Reynolds simple analogy, equation (¥.21), has

been derived for the turbulent flow rcgimc. When used
in the laminar flow regime it predicts values of Nusselt
number that are about twice as large as the thecoretical
values for fully developed laminar fiow. lowever, for
the application example test enpinc (Chapter 4) it was
found that laminar flow occurs only during a small
fraction of the cycle, forming the transition between
turbulent flow in the one dircction, and turbulent flow
in the opposite direccticn. From Kays and London (KLG4)
it is found that when the laminar flow is not fully
developed then the Nusselt number can be very much greater
than that for fully quelcped flow. Bascd on the above
considerations it was decided to use the Reynolds simplc
analogy throughout, covering both the laminar and

turbulent regimes.

F.5 REGENERATOR MATRICES

In the case of porous regenerator matrices, the
equivalent hydraulic diameter, wetted area and free
flow area are required to be evaluated. These are
related to the concept of the porosity of the matrix y.
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v A V/(V+Vm) (F.23)
where

V is the void volume of the matrix

vm is the volume of the matiix material

(Vv+Vm) 1is thus‘thg total volume of the macrix.

Dividing the numerator and denominator of equation

(F.23) by the matrix length, the effective free flow

area of the matrix is cbtained:

A = YAf (F.24)
where

A is the {rec flow area,

Af is the frontal area of the matrix.

In order to calculate the equivalent hydraulic diameter
of the matrix, the wetted area Awg must first be evaluated.

A common form of regenerator matrix used is a stacked

wire mesh, either in the form of stacked woven wire
gauze, crossed rods or wire wool. The total wetted area
Awg for the wire mesh matrix is given by

Awg = w.dm.xm (F.25)

where
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dm is the mesh wivre diameter

zm is the total effective length of the wire in the
matrix (number of wires times the length of cach wire),

The total volume of wite mesh is given by
Vm = w.azm(dm)?/4 (F.26)

The total mass of matrix mm 15

4

mm = Vm.pm (F.27)
where pm is the density of the matrix material
(F.26),(F.27)+(F.25):

Awg = 4mm/pm.dm (F.28)

Thus given the matrix mass, density, wire diameter,
porosity and frontal area, the wetted areca, f{rec {low

area and hydraulic diameter can be evaluated.

Little experimental work has been published on friction
factors or heat transfer coefficients of matrices
suitable for use in Stirling cycle machines. There has
been quite an extensive experimental investigation of
the friction and heat transfer behaviour of stacked
sphere matri&es under steady flow conditions. These
have been correlated by Kays and London (KL64) who
presented graphical data for the Fanning friction factor
and the so-called Colburn j-factor (Ki70) versus
Reynolds number (figure F.4).
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Figure F.4 FLOW FRICTION AND HEAT TRANSFER CHARACTERISTICS

FOR FLOW THROUGH STACKED SPHERE MATRICES (After
Kays and London KL64)

The Colburn j-factor is defined as S¢.Pr%?, Kim{Ki70)
determined experimental correlations for cyclic opera-
tion of stacked sphere matrices. He found that duc to
the cyclic operation (which is more realistically
related to Stirling cycle machine operation) he
obtained both friction factor and heat transfer
coefficients which were about 20% higher than the

- steady flow values given by Kays and London. Kim's
correlations are given as follows:
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Ff = 488/Re+1,92 (F.29)
St.(Pr)%¥?® = 0,144Re™™? (F.30)

The range of Reynoldsinumbers tested by Kim was 390
to 1183. Stacked spherc matrices are more usually

- used in cryogenic refrigeratbrs than in engines.
This is because the various materials which have a
reasonably high thermal capacity at cryogenic tempe-
ratures (eg, léadj are more easily available in the
form of  spheres. Unfortunately no equivalent exten-
sion of Kim's experlmental work has been done on '

stacked wire mesh matrices.

Kays and London (KL64) present curves of Fanning
friction factor and heat transfer characteristics

for both randomly stacked woven screcn matrices and
crossed rod matrices. The data for the woven screen
matrices has been based on steady [low experiments
using mesh sizes ranging from 5x5 mesh per inch

through 60x60 mesh per inch. Since this data is
presented in gl&pthdl form only it has been repfsduaad
herc for convenience (figure F.5). The data for crossed
rod matrices has been based ¢n steady flow experiments
using rod diameters of 0,375 inch only, hence it is

not of interest.

Vasishta and Walker (VW70,Va69) conducted stecady flow
experimental investigations of the friction factor and
heat transfer characteristics of dense mesh wirec screens
(200x200 and 400x400 mesh per inch). Since the data has
not been reduced to the same format as that of Kays and
London (KL64), and the original unreduced data is not
available in either of the publications, it is extremely
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difficult to determine if it can be used as an extension

to the results given in figure F.5. Unless this
reduction is done its use will be limited to systems

having the identical dense mesh dimensions.

F.6 CONCLUSIONS

It is seen from the above discussion that there is a
grave lack of ekperimental correlation data available
for matrices suitable for use in Stirling cycle
regenerators. Even where this‘data is available, eg,
stacked sphere matrices, then the work by Kim (Ki70)
has indicated that under cyclic conditions of opera-
tion the friction factor and heat transfer coefficient
are much higher than thosc predicted by steady {1low
experiments. Much experimental and theoretical inves-
tigation needs to be done in this field. In defining
the system model and solution technique, the method
of approach adopted in this work has been to develop

a method of analysis which'will be able to accept'new

correlation data as it becomes available.
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G. METHOD OF SOLUTION

G.1 THE METHOD OF LINES

'The,fundamental nonlinear partial differential equations

in space and time have becn developed in Appendix D. In

-this appendix the method of applying these equations to

the model defined in Chapter 4, as well as of their solu-
tion, is outlined.. The usual method of solving partial

differential equations on a digital computer consists of

,apprOXimating the partial deritatives with respect to all

the independent variables by finite difference expressions.

The resulting algebraic relationships are then solved at

* the grid points of the discrctized region of interest. Kim

(Ki70) used this technique to solve a system of equations
similar to equations (D.5),(D.20), and (D.19) as applicd
to the regenerator of a Stirling cycle machine. Another
approach is to convert the partial differential equations
to a system of ordinary differential equations by discre-
tizing all but one of the independant variables, which is
left continuous. This method has been called "the method
of 1lines' (FW60). Hicks and Wei (HW67) enumerated a
number of computational advantages of the method and
demonstrated its applicability to linear and nonlinear
partial differential equations. Iehlberg (Fe69) demons-
trated the high accuracy of the methcd by integrating
highly nonlinear partical differential equations by
Runge-Kutta methods of various orders. The major advan-
tage is that once the problem has been converted to an
initial value problem, involving a system of simultaneous
ordinary differential equations, several powerful
numerical techniques are available for use in solving
these equations.
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G.2 APPROACH TO SOLUTION

The Stirling cycle machine is not an initial value pvoblem,
but rather a boundary value problem. However, because of
its cyclic nature it cén be formulated as an 1initial value
problem using arbitrary {(but consistent) initial conditions,
"and integrating the equations through several complete
cycles until cyclic4steady state has been recached. This is
the equivalent of the 'warm up' operation of the actual

" machine in which the machine will start from (say) the
stationary state and go through successive transient cycles
until the values of all the variables at the end of each
cycle are equal to their values at the beginning of that
cycle. The time needed until cyclic steady state has been
attained is depcendent mainly upon the thermal capacitance
of the system -- in particular that of the regenerator
matrix -- and can require as much as several hundred
crankshaft revolutions (Fi75). Since a typical computa-
tion cycle takes two minutcs computing time on an IBM 370-158
machine, accelerating convergence techniques had to be

developed.

There are a number of gross performance indices available

in order to determine whether or not cyclic steady state

has been attained, ie;*thermul efficiency, net regenerator
heat transferred per cycle, and the overall cyclic energy
balance. Of these, only the net regenerator heat transferred
per cycle can be used in the form of a feedback loop in
order to accelerate convergence. The convergence techniquev
that was developed is based on the principle that when
cyclic steady state has been attained, then through each
cycle the net transfer of heat between the working fluid
and the regenerator matrix is zero. Now since'the
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regencrator section is divided up into a finite number

of cells, the previous statement can be extended to
read: through each stecady state cycle the net transfer
of heat between the working fluid and each individual
regenerator cell matri> is zero. Turthermore, if it

is found a posteriori that the residual regenerator

- cell heat transfer is positive, then its respective

matrix temperaturc is higher than its cyclic steady state
value; and if negatlve, then it is lower than its cyclic
steady state value. This allows convergence to be
accelerated by means of alterlng all the repgenerator
cell matrix temperatures 1nd1v1dually at the end of each
cycle in accordance with the following algorithm:

whevre

Tm, is the temperature of the Z'th regenerator cell

matrix at the end of the cycle

Qr, is the aposteriori residual 2'th regenerator cell
heat transferred at the end of the cycle

A is an arbitrary convergence factor.

The choice of convergence factor A is critical -to both

the rate of convergence, and the stability of convergence.
It is a complex function of the system parameters, the -
number of cells and the closeness that the system is to
steady state, and can only be determined empirically by
trial and error. The correct choice of the convergence
factor can, however, reduce the number of cycles required

for convergence by some orders of magnitude.
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G.3 THE ALGORITHM OF SOLUTION

The reduction of the system partial differcential
equations to the set of simultaneous first order
differential equatioﬁs is presented in Appendix H.

The fourth order Runge-Kutta integration technique

S using Runge's coefficients was chosen in order to

solve the differential equations. It is the most
widely used of the vast number of numerical methods
available, mainly because of its programming simpli-
city (Ku65). The algorithm of solution is given in

the flow chart diagram ({figure G.1). The system
configuration, size, charge pressure, operating
frequency, matrix properties, working gas properties,
etc, are first defined. If this is the first cycle
being run for this particular system, then a consistent
set of initial conditions are calculated based upon the
system being stationary and in temperature equilibrium.
If not, then thc most updated initial conditions which
have been evaluated from previous runs of this parti-
cular system arc introduced, thus allowing continuation
after limited time rTuns. The cyclic initial conditions
mainly take the form of setting all the energy (heat and
work) terms to zero._ The Runge-Kutta integration

routine integrates the equations over a single differential
time increment. 1In doing so it calls a subroutine called

DERIV four times. DERIV is simply the set of ordinary
differential equations of the sytem. Thus given the

system parameters, each time DERIV is called it will return
the corresponding set of derivatives, which are nonlinear

functions of those parameters. Once the integration
has been completed over a full cycle of crankshaft
rotation, then the convergence algorithm'(equation G.1)
is applied before beginning the next cycle.
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