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Terminology and Notation of Functions 

This video is about limits. Before discussing limits, it is useful to review the terminology and 

notation of functions. 

 

A function 𝑓(𝑥) can be thought of as a machine that takes as input a number from a set of real 

numbers called the domain, and produces as output a number in a set of real numbers called 

the range. This can be visualized in the following machine diagram. 

 

It is important to note that 

• The symbol 𝑓 is the name of the function. 

• The symbol 𝑥 denotes the input. 

• The symbol 𝑓(𝑥) denotes the resulting output.  

𝑓(𝑥) 
𝑓 

output 

in the 

range set 

𝑥 

input 

from the 

domain set 



Displaying Numerical Functions on Graphs 

 

The horizontal axis (the 𝑥 axis) is used for the input numbers. 

The vertical axis (the 𝑦 axis) is used for the output numbers. 

 

 

If an input 𝑥 = 𝑎 causes an output 𝑓(𝑎) = 𝑏, 

then the point (𝑥, 𝑦) = (𝑎, 𝑏) is on the graph, 

and vice-versa. 

 

 

So for instance, the symbol 𝑓(2) = 7 would tell us 

• For the function 𝑓, an input of 𝑥 = 2 causes an output of 𝑦 = 7. 

• The point (𝑥, 𝑦) = (2,7) is on the graph of 𝑓. 

  

𝑓(𝑎) = 𝑏 
output 

𝑥 = 𝑎 
input 

(𝑎, 𝑏) 



Limits 

Now we are ready to discuss limits. We start with the definition. 

 

The Definition of Limit 

Symbol: lim
𝑥→𝑐

𝑓(𝑥) = 𝐿. 

Spoken: “The limit, as 𝑥 approaches 𝑐, of 𝑓(𝑥) is 𝐿.” 

Less-Abbreviated Symbol: 𝑓(𝑥) → 𝐿 as 𝑥 → 𝑐. 

Spoken: “𝑓(𝑥) approaches 𝐿 as 𝑥 approaches 𝑐.” 

Usage: 𝑥 is a variable, 𝑓 is a function, 𝑐 is a real number, and 𝐿 is a real number. 

Meaning: as 𝑥 gets closer and closer to 𝑐, but not equal to 𝑐, the value of 𝑓(𝑥) gets closer 

and closer to 𝐿 (may actually equal 𝐿). 

Graphical Significance: We’ll come back to this after a couple of examples. 

 

In this video, we explore limits using a graphical approach (the function 𝑓 is given by a graph, 

not by a formula.) 

  



 

We will start by considering examples of the following kind: 

 

Given graph of 𝑓 ➔ give a description of limit behavior of 𝑓.  



Extended [Example 1]: Limits for a Function Given by a Graph 

 

x-value limit from left limit from right limit y-value 

−3 lim
𝑥→−3−

𝑓(𝑥) lim
𝑥→−3+

𝑓(𝑥) lim
𝑥→−3

𝑓(𝑥) 𝑓(−3) 

−1 lim
𝑥→−1−

𝑓(𝑥) lim
𝑥→−1+

𝑓(𝑥) lim
𝑥→−1

𝑓(𝑥) 𝑓(−1) 

1 lim
𝑥→1−

𝑓(𝑥) lim
𝑥→1+

𝑓(𝑥) lim
𝑥→1

𝑓(𝑥) 𝑓(1) 

4 lim
𝑥→4−

𝑓(𝑥) lim
𝑥→4+

𝑓(𝑥) lim
𝑥→4

𝑓(𝑥) 𝑓(4) 

6 lim
𝑥→6−

𝑓(𝑥) lim
𝑥→6+

𝑓(𝑥) lim
𝑥→6

𝑓(𝑥) 𝑓(6) 

  

𝑥 

𝑓(𝑥)



Start with the row for 𝑥 = 1 

 

Observations: 

• The graph has no 𝑦 value (there is no point on the graph) at 𝑥 = 1. So 𝑓(1) does not exist. 

• When 𝑥 gets closer & closer to 1, but not equal to 1, the 𝑦 values get closer & closer to 3. 

• (We say that there is a hole in the graph at the location (𝑥, 𝑦) = (1,3).) 

Abbreviations of these observations in math symbols: 

x-value limit from left limit from right limit y-value 

1 lim
𝑥→1−

𝑓(𝑥) lim
𝑥→1+

𝑓(𝑥) lim
𝑥→1

𝑓(𝑥) 𝑓(1)  

  

𝑥 

𝑓(𝑥)



Do the row for 𝑥 = 4 

 

Observations: 

• There is a point on the graph at the location (𝑥, 𝑦) = (4,2). So 𝑓(4) = 2. 

• When 𝑥 gets closer & closer to 4, but not equal to 4, the 𝑦 values get closer & closer to 1. 

(But there is a hole in the graph at the location (𝑥, 𝑦) = (4,1).) 

Abbreviations of these observations in math symbols: 

x-value limit from left limit from right limit y-value 

4 lim
𝑥→4−

𝑓(𝑥) lim
𝑥→4+

𝑓(𝑥) lim
𝑥→4

𝑓(𝑥) 𝑓(4) 

  

𝑥 

𝑓(𝑥)



Add a line to the definition of limit: 

The Definition of Limit 

Symbol: lim
𝑥→𝑐

𝑓(𝑥) = 𝐿. 

Spoken: “The limit, as 𝑥 approaches 𝑐, of 𝑓(𝑥) is 𝐿.” 

Less-Abbreviated Symbol: 𝑓(𝑥) → 𝐿 as 𝑥 → 𝑐. 

Spoken: “𝑓(𝑥) approaches 𝐿 as 𝑥 approaches 𝑐.” 

Usage: 𝑥 is a variable, 𝑓 is a function, 𝑐 is a real number, and 𝐿 is a real number. 

Meaning: as 𝑥 gets closer and closer to 𝑐, but not equal to 𝑐, the value of 𝑓(𝑥) gets closer 

and closer to 𝐿 (may actually equal 𝐿). 

Graphical Significance: The graph of 𝑓 appears to be heading for location (𝑥, 𝑦) = (𝑐, 𝐿) 

from both sides. 

 

And note the difference between the symbols 𝑓(𝑐) and lim
𝑥→𝑐

𝑓(𝑥). 

• The symbol 𝑓(𝑐) denotes the 𝑦 value at the 𝑥 value 𝑥 = 𝑐. 

• The symbol lim
𝑥→𝑐

𝑓(𝑥) tells us about the trend in the 𝑦 values as 𝑥 gets closer and closer to 𝑐. 



Do the row for 𝑥 = −1 

 

Observations: 

• There is a point on the graph at the location (𝑥, 𝑦) = (−1,1). So 𝑓(−1) = 1. 

• As 𝑥 gets closer and closer to −1, but not equal to −1, there is no single 𝑦 value that all of 

the 𝑦 values are getting closer and closer to. We could also say that as 𝑥 gets closer and 

closer to −1, there is no single (𝑥, 𝑦) location that the graph is heading towards. 

x-value limit from left limit from right limit y-value 

−1 lim
𝑥→−1−

𝑓(𝑥) lim
𝑥→−1+

𝑓(𝑥) lim
𝑥→−1

𝑓(𝑥) 𝑓(−1) 

  

𝑥 

𝑓(𝑥)



As we just observed, the lim
𝑥→−1

𝑓(𝑥) does not exist because there is no single (𝑥, 𝑦) location 

that the graph is heading towards. 

 

But there are some obvious trends in the graph: 

• On the left side of 𝑥 = −1, the graph appears to be heading for the location (𝑥, 𝑦) =

(−1,1). 

• On the right side of 𝑥 = −1, the graph appears to be heading for the location (𝑥, 𝑦) =

(−1,2). 

 

It would be useful to have some terminology and notation for those trends. That is the idea of 

one-sided limits. The definitions follow on the next page. 

 

 

 

  



 

The Definition of Limit from the Left 

Symbol: lim
𝑥→𝑐−

𝑓(𝑥) = 𝐿. 

Spoken: “The limit, as 𝑥 approaches 𝑐 from the left, of 𝑓(𝑥) is 𝐿.” 

Meaning: as 𝑥 gets closer and closer to 𝑐, but less than 𝑐, the value of 𝑓(𝑥) gets  

closer and closer to 𝐿 (may actually equal 𝐿). 

Graphical Significance: The graph of 𝑓 appears to be heading for location (𝑥, 𝑦) = (𝑐, 𝐿) 

from the left. 

 

The Definition of Limit from the Right 

Symbol: lim
𝑥→𝑐+

𝑓(𝑥) = 𝐿. 

Spoken: “The limit, as 𝑥 approaches 𝑐 from the right, of 𝑓(𝑥) is 𝐿.” 

Meaning: as 𝑥 gets closer and closer to 𝑐, but greater than 𝑐, the value of 𝑓(𝑥) gets  

closer and closer to 𝐿 (may actually equal 𝐿). 

Graphical Significance: The graph of 𝑓 appears to be heading for location (𝑥, 𝑦) = (𝑐, 𝐿) 

from the right.  



Finish row 𝑥 = −1. 

 

 

 

x-value limit from left limit from right limit y-value 

−1 lim
𝑥→−1−

𝑓(𝑥) lim
𝑥→−1+

𝑓(𝑥) lim
𝑥→−1

𝑓(𝑥) 𝐷𝑁𝐸 𝑓(−1) = 1 

  

𝑥 

𝑓(𝑥)



Re-cast the definition of Limit using 3-part test involving one-sided limits. 

 

The Definition of Limit written as a 3-part test involving One-Sided Limits. 

Symbol: lim
𝑥→𝑐

𝑓(𝑥) = 𝐿. 

Meaning: The function passes this three-part test 

test a: The limit from the left, lim
𝑥→𝑐−

𝑓(𝑥), exists 

test b: The limit from the right, lim
𝑥→𝑐+

𝑓(𝑥), exists 

test c: The values of the limits from the left and right match, with value 𝐿. That is,  

lim
𝑥→𝑐−

𝑓(𝑥) = 𝐿 = lim
𝑥→𝑐+

𝑓(𝑥). 

 

  



Go back and fill in empty cells in rows 𝑥 = 1 and 𝑥 = 4. 

 

 

 

x-value limit from left limit from right limit y-value 

1 lim
𝑥→1−

𝑓(𝑥) lim
𝑥→1+

𝑓(𝑥) lim
𝑥→1

𝑓(𝑥) = 3 𝑓(1) 𝐷𝑁𝐸 

4 lim
𝑥→4−

𝑓(𝑥) lim
𝑥→4+

𝑓(𝑥) lim
𝑥→4

𝑓(𝑥) = 1 𝑓(4) = 2 

 

  

𝑥 

𝑓(𝑥)



Do the row for 𝑥 = −3. 

 

Observations: 

• There is a point on the graph at the location (𝑥, 𝑦) = (−3,3). 

• When 𝑥 gets closer and closer to −3, but not equal to −3, the 𝑦 values get closer and 

closer to 3.  That is, the graph appears to be heading for the location (𝑥, 𝑦) = (−3,3). 

 

x-value limit from left limit from right limit y-value 

−3 lim
𝑥→−3−

𝑓(𝑥) lim
𝑥→−3+

𝑓(𝑥) lim
𝑥→−3

𝑓(𝑥) 𝑓(−3) 

  

𝑥 

𝑓(𝑥)



Finally, do the row for 𝑥 = 6 

 

Observations: 

• There is no point on the graph with 𝑥 = 6. 

• On the left side of 𝑥 = 6, the graph appears to be heading for the location (𝑥, 𝑦) = (6,0). 

• On the right side of 𝑥 = 6, the graph appears to be heading for the location (𝑥, 𝑦) = (6,2). 

 

x-value limit from left limit from right limit y-value 

6 lim
𝑥→6−

𝑓(𝑥) lim
𝑥→6+

𝑓(𝑥) lim
𝑥→6

𝑓(𝑥) 𝑓(6) 

  

𝑥 

𝑓(𝑥)



Gathering up all of our results in one table: 

 

x-value limit from left limit from right limit y-value 

−3 lim
𝑥→−3−

𝑓(𝑥) = 3 lim
𝑥→−3+

𝑓(𝑥) = 3 lim
𝑥→−3

𝑓(𝑥) = 3 𝑓(−3) = 3 

−1 lim
𝑥→−1−

𝑓(𝑥) = 1 lim
𝑥→−1+

𝑓(𝑥) = 2 lim
𝑥→−1

𝑓(𝑥) 𝐷𝑁𝐸 𝑓(−1) = 1 

1 lim
𝑥→1−

𝑓(𝑥) = 3 lim
𝑥→1+

𝑓(𝑥) = 3 lim
𝑥→1

𝑓(𝑥) = 3 𝑓(1) 𝐷𝑁𝐸 

4 lim
𝑥→4−

𝑓(𝑥) = 1 lim
𝑥→4+

𝑓(𝑥) = 1 lim
𝑥→4

𝑓(𝑥) = 1 𝑓(4) = 2 

6 lim
𝑥→6−

𝑓(𝑥) = 0 lim
𝑥→6+

𝑓(𝑥) = 2 lim
𝑥→6

𝑓(𝑥)  𝐷𝑁𝐸 𝑓(6) 𝐷𝑁𝐸 

End of Extended [Example 1]  

𝑥 

𝑓(𝑥)



Example of a different type: 

 

Given a description of limit behavior of 𝑓 ➔ sketch a possible graph of 𝑓 

 

[Example 2] Sketch a graph that satisfies all these conditions: 

𝑓(1) = 3 

lim
𝑥→1−

𝑓(𝑥) = 2 

lim
𝑥→1+

𝑓(𝑥) = −1 

 

  



Solution: 

Start by noting that in the given information, three (𝑥, 𝑦) locations are implicated. 

 The symbol 𝑓(1) = 3 is about the location (𝑥, 𝑦) = (1,3). 

 The symbol lim
𝑥→1−

𝑓(𝑥) = 2 is about the location (𝑥, 𝑦) = (1,2). 

 The symbol lim
𝑥→1+

𝑓(𝑥) = −1 is about the location (𝑥, 𝑦) = (1, −1). 

On one set of axes, plot these three locations with open circles and label the locations with 

their (𝑥, 𝑦) coodinates. 

 

  

𝑥 

𝑓(𝑥) 

(1,3) 

(1,2) 

(1, −1) 



Then add features that convey what the given information tells us about those locations. 

• The symbol 𝑓(1) = 3 tells us that there is a point on the graph at the location (𝑥, 𝑦) =

(1,3), so we fill in the open circle at that location. 

• The symbol lim
𝑥→1−

𝑓(𝑥) = 2 tells us that the graph is heading for the location (𝑥, 𝑦) = (1,2) 

from the left, so we draw some sort of smooth curve heading for that location from the left. 

• The symbol lim
𝑥→1+

𝑓(𝑥) = −1 tells us that the graph is heading for the location (𝑥, 𝑦) =

(1, −1) from the right so we draw a smooth curve heading for that location from the right. 

  

𝑥 

𝑓(𝑥) 

(1,3) 

(1,2) 

(1, −1) 



Question: Can we fill in all of the open circles? 

 

Answer: No!  

 

If we filled in more than  one circle, then that would mean that for 𝑥 = 1, there is more than 

one 𝑦 value. This would violate the definition of function, which says that for a particular 

input (a particular 𝑥 value), there is exactly one output (one 𝑦 value). (Put another way, the 

graph would fail the vertical line test.) 

 

End of [Example 2] 

 

 

End of Video  




