Limits Video B: Analytical Approach to Limits

Mark Barsamian
 Ohio University Math Department

August, 2022

Topics in this Video

- First Example: Estimating the Value of a Limit
- Tools: Theorems Presenting Properties of Limits
- Basic Examples of Computing Limits Analytically

To view or download this PDF file, follow the link provided in the Description portion of the web page for the YouTube video. (You may need to click [SHOW MORE] to reveal the link.)

Useful Definition from the Previous Video

The Definition of Limit

Symbol: $\lim _{x \rightarrow c} f(x)=L$.
Spoken: "The limit, as x approaches c, of $f(x)$ is L."
Less-Abbreviated Symbol: $f(x) \rightarrow L$ as $x \rightarrow c$.
Spoken: " $f(x)$ approaches L as x approaches c."
Usage: x is a variable, f is a function, c is a real number, and L is a real number.
Meaning: as x gets closer and closer to c, but not equal to c, the value of $f(x)$ gets closer and closer to L (may actually equal L).
Graphical Significance: The graph of f appears to be heading for location $(x, y)=(c, L)$ from both sides.

And note the difference between the symbols $f(c)$ and $\lim _{x \rightarrow c} f(x)$.

- The symbol $f(c)$ denotes the y value at the x value $x=c$.
- The symbol $\lim _{x \rightarrow c} f(x)$ tells us about the trend in the y values as x gets closer and closer to c.

Topic for this video: We will take an analytical approach to limits.

That means that the function f is given by a formula, not graph.

[Example 1] Estimating the Value of a limit

Let $f(x)=-7 x^{2}+13 x-25$.
(A) Find $f(-2)$.

Solution:

$$
f(-2)=-7(-2)^{2}+13(-2)-25=-7(4)-26-25=-79 .
$$

(B) Use a table of x, y values to estimate the value of $\lim _{x \rightarrow-2} f(x)$.

Solution: The symbol is telling us that we need to consider what happens to the values of $f(x)$ when x gets closer and closer to -2 but not equal to -2 .

We can experiment by making a table of x and $f(x)$ values. Notice in the left column, we put values of x that are getting closer and closer to -2 but not equal to -2 . In the right column, we put the resulting values of $f(x)$, found using a calculator.

x	$f(x)=-7 x^{2}+13 x-25$
-2.1	$f(-2.1)=-7(-2.1)^{2}+13(-2.1)-25 \underset{\text { calculator }}{\overline{=}-83.1700}$
-2.01	$f(-2.01)=-7(-2.01)^{2}+13(-2.01)-25 \text { calculator } \overline{\bar{\omega}}-79.4107$
-2.001	$f(-2.001)=-7(-2.001)^{2}+13(-2.001)-25 \underset{\text { calculator }}{=}-79.0410$
-2.0001	$f(-2.0001)=-7(-2.0001)^{2}+13(-2.0001)-25 \underset{\text { calculator }}{\overline{=}-79.0041}$

It looks like the values of $f(x)$ are getting closer and closer to -79 .

The table that we just built had values of x that are getting closer and closer to -2 and not equal to -2 , but they also had the property that the x values were all less than -2 . We should also build a table with values of x that are getting closer and closer to -2 but always greater than -2 .

x	$f(x)=-7 x^{2}+13 x-25$
-1.9	$f(-1.9)=-7(-1.9)^{2}+13(-1.9)-25 \underset{\text { calculator }}{\overline{=}}-74.9700$
-1.99	$f(-1.99)=-7(-1.99)^{2}+13(-1.99)-25 \underset{\text { calculator }}{=}-78.5907$
-199.9	$f(-1.999)=-7(-1.999)^{2}+13(-1.999)-25 \underset{\text { calculator }}{=}-78.95907$
-1.9999	$f(-1.9999)=-7(-1.9999)^{2}+13(-1.999)-25 \underset{\text { calculator }}{=}-78.9959$

In this table, it looks like the values of $f(x)$ are getting closer and closer to -79 .

Based on these two tables, we could write the following observation:

When x gets closer and closer to -2 but not equal to -2 , we would estimate that the value of $f(x)$ gets closer and closer to -79 .

We could abbreviate the above observation using limit notation:

We would estimate that $\lim _{x \rightarrow-2} f(x) \underset{\text { estimate }}{=}-79$.

End of [Example 1]

Remark \#1 About the Result of [Example 1]: Comparison of the limit and the \boldsymbol{y} value
Observe that our estimate of the value of the limit matches the value obtained in our earlier computation of the y value.

Result of (A): $f(-2)=-79$.
Result of (B): $\lim _{x \rightarrow-2} f(x) \underset{\text { estimate }}{\overline{=}}-79$

A natural question is

Question: Does the value of $\lim _{x \rightarrow c} f(x)$ always match the value of $f(c)$?

Answer: Remember that in Limits Video A, we saw examples of a function $f(x)$ given by a graph where the value of the limit did not match the y value. In this first example of a function $f(x)$ given by a formula, it happens that the value of the limit does match the y value. But we should not expect that this will aways happen.

Remark \#2 About the Result of [Example 1]: Unsatisfying Method

This process used in part (B) should seem very unsatisfying.

- We had to use a calculator to find the values of $f(x)$ to fill in two large tables.
- We could only estimate that the values of $f(x)$ are getting closer and closer to -79 , so we could only estimate that the value of the limit is $\lim _{x \rightarrow-2} f(x)=-79$.

Question: Is there is a better way? That is, is there some way to analyze the formula for $f(x)$ to determine the value of the limit precisely, without estimating?

Answer: There are analytical techniques, developed in higher-level math, that provide a way of analyzing the formulas for certain kinds of functions to determine their limits.

The analytical techniques, themselves, are beyond the level of an introductory Calculus course. But the general results of using the techniques can be presented as Theorems that can be used in our course. Three such Theorems about Limits are presented on the next two pages.

Three Theorems About Limits.

THEOREM 2 Properties of Limits

Let f and g be two functions, and assume that

$$
\lim _{x \rightarrow c} f(x)=L \quad \lim _{x \rightarrow c} g(x)=M
$$

where L and M are real numbers (both limits exist). Then

1. $\lim _{x \rightarrow c} k=k$ for any constant k
2. $\lim _{x \rightarrow c} x=c$
3. $\lim _{x \rightarrow c}[f(x)+g(x)]=\lim _{x \rightarrow c} f(x)+\lim _{x \rightarrow c} g(x)=L+M$
4. $\lim _{x \rightarrow c}[f(x)-g(x)]=\lim _{x \rightarrow c} f(x)-\lim _{x \rightarrow c} g(x)=L-M$
5. $\lim _{x \rightarrow c} k f(x)=k \lim _{x \rightarrow c} f(x)=k L \quad$ for any constant k
6. $\lim _{x \rightarrow c}[f(x) \cdot g(x)]=\left[\lim _{x \rightarrow c} f(x)\right]\left[\lim _{x \rightarrow c} g(x)\right]=L M$
7. $\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow c} f(x)}{\lim _{x \rightarrow c} g(x)}=\frac{L}{M} \quad$ if $M \neq 0$
8. $\lim _{x \rightarrow c} \sqrt[n]{f(x)}=\sqrt[n]{\lim _{x \rightarrow c} f(x)}=\sqrt[n]{L} \quad$ if $L>0$ or n is odd

THEOREM 3 Limits of Polynomial and Rational Functions

1. $\lim _{x \rightarrow c} f(x)=f(c)$ for f any polynomial function.
2. $\lim _{x \rightarrow c} r(x)=r(c)$ for r any rational function with a nonzero denominator at $x=c$.

THEOREM 4 Limit of a Quotient
If $\lim _{x \rightarrow c} f(x)=L, L \neq 0$, and $\lim _{x \rightarrow c} g(x)=0$,
then

$$
\lim _{x \rightarrow c} \frac{f(x)}{g(x)} \quad \text { does not exist }
$$

In this video we will do three examples that use Theorems 2, 3, and 4.

Our first example will be a revisiting of [Example 1]. This time, instead of guessing the value of the limit, we will find it precisely, using a Theorem.
[Example 1, continued]
(C) Use the Theorems About Limits to find the value of $\lim _{x \rightarrow-2} f(x)$.

Observe that we got the same number that we estimated in part (B), but there was a lot less work involved, and this time, we know that the result is correct.

End of [Example 1]

[Example 2] Let $f(x)=\sqrt{24+x^{2}}$
(A) Find $f(5)$

Solution:

$$
f(5)=\sqrt{24+(5)^{2}}=\sqrt{24+25}=\sqrt{49}=7
$$

(B) Find $\lim _{x \rightarrow 5} f(x)$

Solution:

[Example 3] Let $f(x)=\underbrace{\frac{x^{2}-6 x+5}{x^{2}-8 x+15}}_{\text {standard form }}=\frac{(x-1)(x-5)}{\underbrace{(x-3)(x-5)}_{\text {factored form }}}$
Observe that $f(x)$ is a rational function (a ratio of polynomials).
(A) Find $f(1)$

Solution: Although most students may be most familiar with the standard form of rational functions, it is the factored form that often be most useful when computing y values.

$$
f(1)=\frac{((1)-1)((1)-5)}{((1)-3)((1)-5)}=\frac{(0)(-4)}{(-2)(-4)}=\frac{0}{8}=0 .
$$

(B) Find $\lim _{x \rightarrow 1} f(x)$

Solution:

Again, although most students may be most familiar with the standard form of rational functions, it is the factored form that will be most useful when finding the limit.

$$
\lim _{x \rightarrow 1} f(x)=\underbrace{\lim _{x \rightarrow 1} \frac{(x-1)(x-5)}{(x-3)(x-5)}}_{\begin{array}{c}
\text { limit of a rational } \\
\text { function that has } \\
x=1 \text { in its domain }
\end{array}} \operatorname{Thm} 3 \underbrace{\frac{((1)-1)((1)-5)}{((1)-3)((1)-5)}}_{\text {can substitute } x=1}=\frac{(0)(-4)}{(-2)(-4)}=\frac{0}{8}=0 .
$$

(C) Find $f(3)$

Solution:

$$
f(3)=\frac{((3)-1)((3)-5)}{((3)-3)((3)-5)}=\frac{(2)(-2)}{(0)(-2)}=\frac{-4}{0} \text { Does Not Exist. }
$$

(D) Find $\lim _{x \rightarrow 3} f(x)$

Solution:

Notice that the limit of the numerator by itself is

$$
\lim _{x \rightarrow 3} \text { numerator }=\underbrace{\lim _{x \rightarrow 3}(x-1)(x-5)}_{\text {limit of polynomial }} \text { Thm } 3 \underbrace{((3)-1)((3)-5)}_{\text {can substitute } x=3}=(2)(-2)=-4 \neq 0
$$

Notice that the limit of the denomator by itself is

$$
\lim _{x \rightarrow 3} \text { denominator }=\underbrace{\lim _{x \rightarrow 3}(x-3)(x-5)}_{\text {limit of polynomial }} \text { Thm } 3 \underbrace{((3)-3)((3)-5)}_{\text {can substitute } x=3}=(0)(-2)=0
$$

Therefore, Theorem 4 tells us

$$
\lim _{x \rightarrow 3} f(x)=\lim _{x \rightarrow 3} \frac{(x-1)(x-5)}{(x-3)(x-5)} \underset{\text { Theorem } 4}{=} \quad \text { Does Not Exist. }
$$

End of [Example 3]

End of Video

