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Useful Definition from Limits Video A 

 

The Definition of Limit 

Symbol: lim
𝑥→𝑐

𝑓(𝑥) = 𝐿. 

Spoken: “The limit, as 𝑥 approaches 𝑐, of 𝑓(𝑥) is 𝐿.” 

Less-Abbreviated Symbol: 𝑓(𝑥) → 𝐿 as 𝑥 → 𝑐. 

Spoken: “𝑓(𝑥) approaches 𝐿 as 𝑥 approaches 𝑐.” 

Usage: 𝑥 is a variable, 𝑓 is a function, 𝑐 is a real number, and 𝐿 is a real number. 

Meaning: as 𝑥 gets closer and closer to 𝑐, but not equal to 𝑐, the value of 𝑓(𝑥) gets closer 

and closer to 𝐿 (may actually equal 𝐿). 

Graphical Significance: The graph of 𝑓 appears to be heading for location (𝑥, 𝑦) = (𝑐, 𝐿) 

from both sides. 

 

And note the difference between the symbols 𝑓(𝑐) and lim
𝑥→𝑐

𝑓(𝑥). 

 The symbol 𝑓(𝑐) denotes the 𝑦 value at the 𝑥 value 𝑥 = 𝑐. 

 The symbol lim
𝑥→𝑐

𝑓(𝑥) tells us about the trend in the 𝑦 values as 𝑥 gets closer and closer to 𝑐. 



Useful Properties of Limits from Limits Video B 

 

 

 

 

  



 

In this video, we will be continuing an Analytical Approach to Limits 

(That is, the function 𝒇(𝒙) is described by a formula, not a graph.) 

 

We will study Examples involving cancelling inside the limit. 

 

 

  



Ratios of Numbers 

Recall the possible quotients of zero and non-zero real numbers, and their resulting values as 

determined by the rules of arithmetic. 

 

 𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑜𝑟 ≠ 0 𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑜𝑟 = 0 

𝑑𝑒𝑛𝑜𝑚𝑖𝑛𝑎𝑡𝑜𝑟 ≠ 0 
𝑛𝑜𝑛𝑧𝑒𝑟𝑜

𝑛𝑜𝑛𝑧𝑒𝑟𝑜
= 𝑛𝑜𝑛𝑧𝑒𝑟𝑜 

0

𝑛𝑜𝑛𝑧𝑒𝑟𝑜
= 0 

𝑑𝑒𝑛𝑜𝑚𝑖𝑛𝑎𝑡𝑜𝑟 = 0 
𝑛𝑜𝑛𝑧𝑒𝑟𝑜

0
  𝐷𝑁𝐸 

0

0
  𝐷𝑁𝐸 

 

  



Most Important Concept of the First Month of Calculus 

A key concept in this video is the most important concept of the first month of Calculus: 

 

When can one cancel terms, and why? 

 

Observe that 

 We can cancel a quotient of like terms if they are non-zero. For example, 
5

5
= 1. 

 But we cannot cancel 
0

0
. The expression 

0

0
 does not equal 1. (It also does not equal 0.) The 

expression 
0

0
 does not define a real number. We say that 

0

0
 is undefined, or that it does not 

exist (DNE). 

 Without knowing anything about the value of the variable 𝑥, we cannot cancel 
𝑥

𝑥
. (If it 

turns out that 𝑥 ≠ 0, then 
𝑥

𝑥
= 1. But if it turns out that 𝑥 = 0, then 

𝑥

𝑥
 is undefined. So we 

can’t say in advance.) 

 But if we are given extra information enables us to determine that 𝑥 ≠ 0 or 𝑥 = 0, then 

we can replace the expression 
𝑥

𝑥
 with either a 1 or the expression DNE.  



Limits of Ratios 

Recall what we know so far about computing the limit of quotients. That is, limits of the form 

lim
𝑥→𝑐

𝑓(𝑥)

𝑔(𝑥)
. 

 

There are two cases that we have considered so far. 

 

One Case: When the the limit of the denominator is not zero. 

Theorem 2.7 tells us that 

If lim
𝑥→𝑐

𝑓(𝑥) = 𝐿 and if lim
𝑥→𝑐

𝑔(𝑥) = 𝑀 ≠ 0, 

then the limit of the quotient is equal to the quotient of the limits. 

 

That is,  

If lim
𝑥→𝑐

𝑓(𝑥) = 𝐿 and  lim
𝑥→𝑐

𝑔(𝑥) = 𝑀 ≠ 0, 

then lim
𝑥→𝑐

𝑓(𝑥)

𝑔(𝑥)⏟    

limit of quotient with limit

of denominator not zero

=
Theorem 2.7

lim
𝑥→𝑐

𝑓(𝑥)

lim
𝑥→𝑐

𝑔(𝑥)
⏟    

quotient of limits

=
𝐿

𝑀
. 



Another Case: When the limit of the numerator is not zero and the limit of the 

denominator is zero. 

 

Theorem 4 tells us that  

If lim
𝑥→𝑐

𝑓(𝑥) = 𝐿 ≠ 0 and if lim
𝑥→𝑐

𝑔(𝑥) = 𝑀 = 0, 

then the limit of the quotient does not exist. 

 

That is,  

If lim
𝑥→𝑐

𝑓(𝑥) = 𝐿 ≠ 0 and  lim
𝑥→𝑐

𝑔(𝑥) = 𝑀 = 0, 

then lim
𝑥→𝑐

𝑓(𝑥)

𝑔(𝑥)
  𝐷𝑁𝐸. 

  



Indeterminate Forms 

 

New Case: When the limits of both the numerator and the denominator are zero. 

 

A case that we have not yet considered is the case when the limit of the numerator and the 

limit of the denominator are both zero. It turns out that if both lim
𝑥→𝑐

𝑓(𝑥) = 𝐿 = 0 and 

lim
𝑥→𝑐

𝑔(𝑥) = 𝑀 = 0, then it is impossible to say immediately whether or not the limit of the 

ratio lim
𝑥→𝑐

𝑓(𝑥)

𝑔(𝑥)
 exists and, if it does exist, what its value will be. Some more steps need to be 

done in order to convert the limit into one of the forms for which our theorems about limits 

(Theorems 2,3,4) can be used. Only then can a determination be made about the existence 

and value of the limit. For that reason, limits of type lim
𝑥→𝑐

𝑓(𝑥)

𝑔(𝑥)
, where lim

𝑥→𝑐

𝑓(𝑥) = 𝐿 = 0 and 

lim
𝑥→𝑐

𝑔(𝑥) = 𝑀 = 0,  are said to be in indeterminate form. 

 



 

The previous paragraph says, rather vaguely, that 

“…Some more steps need to be done in order to convert the limit into one of the forms 

for which our theorems about limits (Theorems 2,3,4) can be used. Only then can a 

determination be made about the existence and value of the limit….”. 

 

What exactly does that mean? What steps? 

 

The steps involve cancelling terms in the numerator and denominator. Remember that at the 

start of this video, it was mentioned that that operation, cancelling terms, involves the most 

important concept of the first month of calculus: 

 

When can one cancel terms, and why? 

 



We will see that when we encounter a limit that is an indeterminate form, we will be doing 

steps involving cancelling terms, in order to convert the limit to a new form that is not an 

indeterminate form. Then, we will be able to apply one of our theorems about limits 

(Theorems 2,3,4) to determine if the limit exists and, if it does exist, to give its value. 

 

The various types of limits of quotients are summarized in the table below 

 

 lim
𝑥→𝑐

𝑓(𝑥) = 𝐿 ≠ 0 lim
𝑥→𝑐

𝑓(𝑥) = 0 

lim
𝑥→𝑐

𝑔(𝑥) = 𝑀 ≠ 0 
lim
𝑥→𝑐

𝑓(𝑥)

𝑔(𝑥)
=
𝐿

𝑀
≠ 0 

by Theorem 2.7. 

lim
𝑥→𝑐

𝑓(𝑥)

𝑔(𝑥)
=
0

𝑀
= 0 

by Theorem 2.7. 

lim
𝑥→𝑐

𝑔(𝑥) = 0 
lim
𝑥→𝑐

𝑓(𝑥)

𝑔(𝑥)
  𝐷𝑁𝐸 

by Theorem 4. 

lim
𝑥→𝑐

𝑓(𝑥)

𝑔(𝑥)
   ? ? ? 

indeterminate form 

 

For the rest of this video, we will consider examples of computing 𝑦 values and limits for 

quotients. Some of the limits will involve indeterminate forms; some will not.  



[Example 1] Let 𝑓(𝑥) =
𝑥
2
− 2𝑥 − 3

𝑥 − 3
=
(𝑥 − 3)(𝑥 + 1)

(𝑥 − 3)
 

 

(A) (Computing 𝒚 values.) Find 𝑓(𝑐) for 𝑐 = 1,2,3  

 

Solution:  The function 𝑓(𝑥) is called a rational function because it is a ratio of polynomials. 

The two forms shown are called the standard form and the factored form. Although the 

standard form of polynomials and rational functions may be a more familiar form, when 

computing 𝑦 values, the factored form makes the computations easier. 

 

Computing the 𝒚 value 𝒇(𝟏) 

 

𝑓(1) =
((1) − 3)((1) + 1)

((1) − 3)
=
(−2)(2)

(−2)
= 2. 

 

We can cancel 
−2

−2
 because −2 ≠ 0.  



Computing the 𝒚 value 𝒇(𝟐) 

 

𝑓(2) =
((2) − 3)((2) + 1)

((2) − 3)
=
(−1)(3)

(−1)
= 3. 

 

We can cancel 
−1

−1
 because −1 ≠ 0. 

 

  



Computing the 𝒚 value 𝒇(𝟑) 

 

𝑓(3) =
((3) − 3)((3) + 1)

((3) − 3)
=
(0)(3)

(0)
=
0

0
, 𝐷𝑁𝐸. 

 

We cannot cancel 
0

0
, so 𝑓(3) does not exist. (This is a quotient of real numbers; it is not a limit. 

The quotient 
0

0
 is not an indeterminate form. There is no uncertainty about what this 

expression might equal.  It is simply an expression that does not represent a real number. 

Therefore, we say that the expression is undefined, or does not exist.) 

 

  



(B) (Finding Limits.) Find lim
𝑥→𝑐

𝑓(𝑥)  for 𝑐 = 1,2,3. 

 

Solution: As was the case in part (A), although the standard form of polynomials and rational 

functions may be a more familiar form, when computing the limit as 𝑥 → 𝑐, the factored form 

makes computations easier. 

 

Computing the limit as 𝒙 → 𝟏 

 

lim
𝑥→1

𝑓(𝑥) = lim
𝑥→1

(𝑥 − 3)(𝑥 + 1)

(𝑥 − 3)⏟            

limit of rational function

with 𝑥=1 in its domain

=
Theorem 3

((1) − 3)((1) + 1)

((1) − 3)⏟            

can substitue 𝑥=1

=
(−2)(2)

(−2)
=

can cancel

because

−2≠0

2 

 

We are allowed to use Theorem 3 because substituting in 𝑥 = 1 does not cause the 

denominator to be zero. 

 

  



Computing the limit as 𝒙 → 𝟐 

 

lim
𝑥→2

𝑓(𝑥) = lim
𝑥→2

(𝑥 − 3)(𝑥 + 1)

(𝑥 − 3)⏟            

limit of rational function

with 𝑥=2 in its domain

=
Theorem 3

((2) − 3)((2) + 1)

((2) − 3)⏟            

can substitue 𝑥=2

=
(−1)(3)

(−1)
=

can cancel

because

−1≠0

3 

 

We are allowed to use Theorem 3 because substituting in 𝑥 = 2 does not cause the 

denominator to be zero.  



Computing the limit as 𝒙 → 𝟑 

We first investigate what happens if we try substituting 𝑥 = 3 into the expression 

 

(𝑥 − 3)(𝑥 + 1)

(𝑥 − 3)
⟹

try substituting 𝑥=3

((3) − 3)((3) + 1)

((3) − 3)
=
(0)(4)

(0)
=
0

0
 

 

Because we reach the expression 
0

0
, we know that we should not substitute 𝒙 = 𝟑! 

(Remember that none of the Limit Properties allow us to substitute an 𝑥 value into an 

expression if it results in a denominator of 0.) 

 

But what are we to make of the fact that when we substitute 𝑥 = 3 into the expression, we 

reach the expression 
0

0
?? 

 

Observe that simply substituting 𝑥 = 3 into the expression really amounts to taking the limit 

of the numerator and the limit of the denominator separately. To help you understand what 

that means, I’ll do those limits more explicitly on the next page.  



Take the limits of the numerator and denominator separately. 

 

 Limit of numerator is lim
𝑥→3

(𝑥 − 3)(𝑥 + 1)
⏟            

limit of a polynomial

=
Thm 3

((3) − 3)((3) + 1)⏟            

can substitute 𝑥=3

= (0)(4) = 0. 

 

 Limit of denominator is lim
𝑥→3

(𝑥 − 3)
⏟      

limit of a polynomial

=
Thm 3

((3) − 3)⏟      

can substitute 𝑥=3

= 0. 

 

Since the limits of the numerator and denominator by themselves are both zero, we realize 

that the limit is an indeterminate form. 

 

 

  



Remember that when one encounters a limit that is an indeterminate form,  

 

“…Some more steps need to be done in order to convert the limit into one of the forms 

for which our theorems about limits (Theorems 2,3,4) can be used. Only then can a 

determination be made about the existence and value of the limit….”. 

 

The steps involve cancelling terms in the numerator and denominator. Remember that 

cancelling terms involves the most important concept of the first month of calculus: 

 

When can one cancel terms, and why? 

 

I’ll do the limit in detail on the next page. 

  



Here is a presentation of the limit, with justifications for each step. 

 

lim
𝑥→3

𝑓(𝑥) = lim
𝑥→3

(𝑥 − 3)(𝑥 + 1)

(𝑥 − 3)⏟            

indeterminate form

=
can cancel

because

𝑥−3≠0

lim
𝑥→3

(𝑥 + 1)
⏟      

limit of polynomial

(not indeterminate)

=
Theorem 3

((3) + 1)⏟      

can substitute 𝑥=3

= 4. 

 

Justification for the Cancellation Step: 

since 𝑥 → 3, 

we know that 𝑥 ≠ 3, 

so we know that 𝑥 − 3 ≠ 0, 

so we know that we can cancel 
(𝑥−3)

(𝑥−3)
. 

 

Observe that the limit proceeded in the manner that was described a few pages ago: 

We will see that when we encounter a limit that is an indeterminate form, we will be doing 

steps involving cancelling terms, in order to convert the limit to a new form that is not an 

indeterminate form. Then, we will be able to apply one of our theorems about limits 

(Theorems 2,3,4) to determine if the limit exists and, if it does exist, to give its value. 



Let’s summarize our results of parts (A) and (B), and consider what they tell us about the 

graph of 

𝑓(𝑥) =
𝑥
2
− 2𝑥 − 3

𝑥 − 3
=
(𝑥 − 3)(𝑥 + 1)

(𝑥 − 3)
. 

 

At 𝒙 = 𝟏 

 In part (A), we found that 𝑓(1) = 2. 

This tells us that there is a point on the graph with coordinates (𝑥, 𝑦) = (1,2). 

 In part (B), we found that lim
𝑥→1

𝑓(𝑥) = 2. 

This tells us that the graph is heading for the location (𝑥, 𝑦) = (1,2). 

 

At 𝒙 = 𝟐 

 In part (A), we found that 𝑓(2) = 3. 

This tells us that there is a point on the graph with coordinates (𝑥, 𝑦) = (2,3). 

 In part (B), we found that lim
𝑥→2

𝑓(𝑥) = 3. 

This tells us that the graph is heading for the location (𝑥, 𝑦) = (2,3). 

  



At 𝒙 = 𝟑 

 In part (A), we found that 𝑓(3) does not exist. 

This tells us that there is no point on the graph with 𝑥 coordinate 𝑥 = 3. 

 In part (B), we found that lim
𝑥→3

𝑓(𝑥) = 4. 

This tells us that the graph is heading for the location (𝑥, 𝑦) = (3,4). 

 Since the graph is heading for the location (𝑥, 𝑦) = (3,4), but there is no point on the 

graph with 𝑥 coordinate 𝑥 = 3, we realize there is a hole in the graph at the location 

(𝑥, 𝑦) = (3,4). 

 

The calculations that we did at 𝑥 = 3, finding that 𝑓(3) does not exist while lim
𝑥→3

𝑓(𝑥) does 

exist, illustrate the most important concept of the first month of Calculus, mentioned at the 

start of this video. 

When can one cancel terms, and why? 

 

We were not allowed to cancel terms when computing 𝑓(3), while we were allowed to cancel 

terms when computing lim
𝑥→3

𝑓(𝑥).  



Do these results make sense? 

Consider the graphs of 𝑓(𝑥) =
𝑥
2
−2𝑥−3

𝑥−3
=
(𝑥−3)(𝑥+1)

(𝑥−3)
 and a very similar function 𝑔(𝑥) = 𝑥 + 1. 

Let’s make tables of values for both functions 

𝑥 𝑓(𝑥) =
(𝑥 − 3)(𝑥 + 1)

(𝑥 − 3)
.  𝑥 𝑔(𝑥) = 𝑥 + 1. 

0 𝑓(0) =
((0) − 3)((0) + 1)

((0) − 3)
=
(−3)(1)

(−3)
= 1.  0 𝑔(0) = (0) + 1 = 1. 

1 𝑓(1) =
((1) − 3)((1) + 1)

((1) − 3)
=
(−2)(2)

(−2)
= 2.  1 𝑔(1) = (1) + 1 = 2. 

2 𝑓(2) =
((2) − 3)((2) + 1)

((2) − 3)
=
(−1)(3)

(−1)
= 3.  2 𝑔(2) = 2 + 1 = 3. 

3 𝑓(3) =
((3) − 3)((3) + 1)

((3) − 3)
=
(0)(4)

(0)
=
0

0
 𝐷𝑁𝐸.  3 𝑔(3) = (3) + 1 = 4. 

4 𝑓(4) =
((4) − 3)((4) + 1)

((4) − 3)
=
(1)(5)

(1)
= 5.  4 𝑔(4) = (4) + 1 = 5. 

Observe that we were able to cancel terms of the form 
𝑎

𝑎
 only when 𝑎 ≠ 0.  



Use this data to make graphs of 𝑓(𝑥) and 𝑔(𝑥) on separate axes. 

𝑓(𝑥) =
𝑥
2
− 2𝑥 − 3

𝑥 − 3
=
(𝑥 − 3)(𝑥 + 1)

(𝑥 − 3)
 

 

  

𝑔(𝑥) = 𝑥 + 1 

 

Observe the hole in graph of 𝑓(𝑥) at (𝑥, 𝑦) = (3,4). 

The hole is caused by the factors 
(𝑥−3)

(𝑥−3)
 in the formula for 𝑓(𝑥). 

The hole in the graph of 𝑓(𝑥) corresponds to the fact that 𝑓(3) 𝐷𝑁𝐸, but lim
𝑥→3

𝑓(𝑥) = 4. 



Realize that the above tables of data and the corresponding graphs tell us that 𝑓(𝑥) and 𝑔(𝑥) 

are 𝑛𝑜𝑡 the same function. That is, as functions, these two expressions are not equal. 

(𝑥 − 3)(𝑥 + 1)

(𝑥 − 3)
≠ 𝑥 + 1. 

 

But the expressions do have the same limit 

lim
𝑥→3

(𝑥 − 3)(𝑥 + 1)

(𝑥 − 3)
= lim
𝑥→3

(𝑥 + 1). 

 

Remark: One must be careful to always write correct mathematical equations. 

The following equation is not true! 

(𝑥 − 3)(𝑥 + 1)

(𝑥 − 3)
= 𝑥 + 1. 

But this equation is true! 

lim
𝑥→3

(𝑥 − 3)(𝑥 + 1)

(𝑥 − 3)
= lim
𝑥→3

(𝑥 + 1). 

End of [Example 1]  



Common Mistakes, and the Importance of using proper limit notation 

Before continuing on to a second example, it is worth making note of two very common 

mistakes that students often make when computing limits. 

 

Consider the following two “solutions” to the problem from [Example 1] (B) 

For 𝑓(𝑥) =
(𝑥−3)(𝑥+1)

(𝑥−3)
, find lim

𝑥→3

𝑓(𝑥). 

 

Alice’s Incorrect Solution, containing a common mistake: 

 

lim
𝑥→3

𝑓(𝑥) = lim
𝑥→3

(𝑥 − 3)(𝑥 + 1)

(𝑥 − 3)
=

mistake

(3 − 3)(3 + 1)

(3 − 3)
=
0

0
  𝐷𝑁𝐸. 

 

Realize that Alice made a mistake in the step indicated. The rules for computing limits 

(Theorems 2 and 3) only allow one to substitute 𝑥 = 𝑐 into a quotient if doing so does not 

cause the denominator to be zero! 

 

As a result of her mistake, Alice got the wrong answer for the limit.  



Bob’s Incorrect Solution, containing two common mistakes: 

 

lim
𝑥→3

𝑓(𝑥) = lim
𝑥→3

(𝑥 − 3)(𝑥 + 1)

(𝑥 − 3)
=

mistake #1

(3 − 3)(3 + 1)

(3 − 3)
=

mistake #2

(3 + 1) = 4. 

 

Observe that Bob got the right numerical answer, but he made two mistakes. 

 

 Mistake #1: One is not allowed to substitute in 𝑥 = 3, because it causes the denominator 

to become zero. 

 Mistake #2: One cannot cancel 
0

0
 and replace it with the number 1. 

 

So Bob’s Solution is worse than Alice’s solution, even though Bob got the right numerical 

answer. 

  



The importance of using proper limit notation. 

 

Students sometimes leave out important notation, writing solutions such as the following: 

 

lim
𝑥→3

𝑓(𝑥) =
(𝑥 − 3)(𝑥 + 1)

(𝑥 − 3)
= 𝑥 + 1 = 3 + 1 = 4 

 

It is important to realize that although this line shows the correct value for the limit, the steps 

are incorrect. In fact, three of the equal signs are not valid!! 

 

To understand why, consider carefully what the symbols on that line represent. 

  



First invalid equal sign 

 

 The expression lim
ℎ→3

𝑓(𝑥) represents a number. (We found in [Example 1] that it 

represents the number 4.) 

 

 The expression 
(𝑥−3)(𝑥+1)

(𝑥−3)
 is a function in the variable 𝑥. 

 

A number is not the same thing as a function in the variable 𝑥, so the first equal sign is invalid! 

 

lim
𝑥→3

𝑓(𝑥) ≠
(𝑥 − 3)(𝑥 + 1)

(𝑥 − 3)
 

 

  



Second invalid equal sign 

 

 The expression 
(𝑥−3)(𝑥+1)

(𝑥−3)
 is a function in the variable 𝑥, with domain all 𝑥 ≠ 0. 

 

 The expression 𝑥 + 1 is a function in the variable 𝑥, with domain all real numbers 𝑥. 

 

These functions are not equal, because they have different domains! 

 

Therefore, the second equal sign is invalid! 

 

(𝑥 − 3)(𝑥 + 1)

(𝑥 − 3)
≠ 𝑥 + 1 

 

  



Third invalid equal sign 

 

 The symbol 𝑥 + 1 is a function in the variable 𝑥. 

 

 The expression 0 + 1 is a number. 

 

A function in the variable 𝑥 is not the same thing as a number, so the third equal sign is 

invalid! 

 

𝑥 + 1 ≠ 3 + 1 

 

 

Conclusion about limit notation. 

 

A correction solution to a limit problem should show not only the correct final answer for the 

limit, but also correct steps, with correct limit notation and explanation of the steps (as 

modeled in my solution to [Example 1]).  



Example to be Presented in the Notes but Not Discussed in the Video 

 

The next example will be included in the printed notes accompanying this video, but I will not 

discuss the example in the video. (The concepts are the same concepts that were discused in 

the previous example.) You should study the printed notes carefully on your own. 

 

[Example 2] Let 𝑓(𝑥) =
𝑥
2
− 6𝑥 + 5

𝑥2 − 8𝑥 + 15
=
(𝑥 − 1)(𝑥 − 5)

(𝑥 − 3)(𝑥 − 5)
. 

(A) Computing 𝒚 values. Find 𝑓(𝑐) for 𝑐 = 1,3,5  

(B) Finding Limits.  Find lim
𝑥→𝑐

𝑓(𝑥) for 𝑐 = 1,3,5. 

(C) Confirm Results with a Graph 

 

  



(A) (Computing 𝒚 values.) Find 𝑓(𝑐) for 𝑐 = 1,3,5  

 

Solution: As was mentioned in [Example 1], remember that when computing 𝑦 values, the 

factored form makes the computations easier. 

 

Computing the 𝒚 value 𝒇(𝟏) 

 

𝑓(1) =
((1) − 1)((1) − 5)

((1) − 3)((1) − 5)
=
(0)(−4)

(−2)(−4)
=
(0)

(−2)
= 0. 

 

We can cancel 
−4

−4
 because −4 ≠ 0. 

 

  



Computing the 𝒚 value 𝒇(𝟑) 

 

𝑓(3) =
((3) − 1)((3) − 5)

((3) − 3)((3) − 5)
=
(2)(−2)

(0)(−2)
=
−4

0
 𝐷𝑁𝐸. 

 

Division by 0 is undefined, so 𝑓(3) does not exist. 

 

  



Computing the 𝒚 value 𝒇(𝟓) 

 

𝑓(5) =
((5) − 1)((5) − 5)

((5) − 3)((5) − 5)
=
(4)(0)

(2)(0)
=
0

0
 𝐷𝑁𝐸. 

 

We cannot cancel 
0

0
, So 𝑓(5) does not exist.  



(B) (Finding Limits.)  Find lim
𝑥→𝑐

𝑓(𝑥) for 𝑐 = 1,3,5. 

 

Solution: 

 

Computing the limit as 𝒙 → 𝟏 

 

lim
𝑥→1

𝑓(𝑥) = lim
𝑥→1

(𝑥 − 1)(𝑥 − 5)

(𝑥 − 3)(𝑥 − 5)⏟            

limit of rational function

with 𝑥=1 in its domain

=
Theorem 3

((1) − 1)((1) − 5)

((1) − 3)((1) − 5)⏟            

can substitute 𝑥=1

=
(0)(−4)

(−2)(−4)
=
0

8
= 0. 

 

Note that we are taking the limit of a rational function as 𝑥 → 1. Since 𝑥 = 1 is in the domain 

of the rational function, Theorem 3 allows us to simply substitute in 𝑥 = 1. 

 

  



Computing the limit as 𝒙 → 𝟑 

We first investigate what happens if we try substituting 𝑥 = 3 into the expression 

 

(𝑥 − 1)(𝑥 − 5)

(𝑥 − 3)(𝑥 − 5)
⟹

try substituting 𝑥=3

((3) − 1)((3) − 5)

((3) − 3)((3) − 5)
=
(2)(−2)

(0)(−2)
=
−4

0
 

 

Because we reach the expression 
−4

0
, we know that we should not substitute 𝒙 = −𝟒! 

(Remember that none of the Limit Properties allow us to substitute an 𝑥 value into an 

expression if it results in a denominator of 0.) 

 

But what are we to make of the fact that when we substitute 𝑥 = 3 into the expression, we 

reach the expression 
−4

0
?? 

 

Observe that simply substituting 𝑥 = 3 into the expression really amounts to taking the limit 

of the numerator and the limit of the denominator separately. To help you understand what 

that means, I’ll do those limits more explicitly on the next page.  



Take the limits of the numerator and denominator separately. 

 

 Limit of numerator is lim
𝑥→3

(𝑥 − 1)(𝑥 − 5)
⏟            

limit of a polynomial

=
Thm 3

((3) − 1)((3) − 5)⏟            

can substitute 𝑥=3

= (2)(−2) = −4. 

 

 Limit of denominator is lim
𝑥→3

(𝑥 − 3)(𝑥 − 5)
⏟            

limit of a polynomial

=
Thm 3

((3) − 3)((3) − 5)⏟            

can substitute 𝑥=3

= (0)(−2) = 0. 

 

Since the limit of the numerator is non-zero while the limit of the denominator is zero, 

Theorem 4 tells us that the limit does not exist. 

 

lim
𝑥→3

𝑓(𝑥) = lim
𝑥→3

(𝑥 − 1)(𝑥 − 5)

(𝑥 − 3)(𝑥 − 5)
=

Theorem 4

𝐷𝑁𝐸. 

  



Computing the limit as 𝒙 → 𝟓 

We first investigate what happens if we try substituting 𝑥 = 5 into the expression 

 

(𝑥 − 1)(𝑥 − 5)

(𝑥 − 3)(𝑥 − 5)
⟹

try substituting 𝑥=5

((5) − 1)((5) − 5)

((5) − 3)((5) − 5)
=
0

0
 

 

Because we reach the expression 
0

0
, we know that we should not substitute 𝒙 = 𝟓! (Again, 

remember that none of the Limit Properties allow us to substitute an 𝑥 value into an 

expression if it results in a denominator of 0.) 

 

But what are we to make of the fact that when we substitute 𝑥 = 5 into the expression, we 

reach the expression 
0

0
?? 

 

Observe that simply substituting 𝑥 = 5 into the expression really amounts to taking the limit 

of the numerator and the limit of the denominator separately. To help you understand what 

that means,  I’ll do those limits more explicitly on the next page.  



Take the limits of the numerator and denominator separately. 

 

 Limit of numerator is lim
𝑥→5

(𝑥 − 1)(𝑥 − 5)
⏟            

limit of a polynomial

=
Thm 3

((5) − 1)((5) − 5)⏟            

can substitute 𝑥=5

= (4)(0) = 0. 

 

 Limit of denominator is lim
𝑥→5

(𝑥 − 3)(𝑥 − 5)
⏟            

limit of a polynomial

=
Thm 3

((5) − 3)((5) − 5)⏟            

can substitute 𝑥=5

= (2)(0) = 0. 

 

Since the limits of the numerator and denominator by themselves are both zero, we realize 

that the limit is an indeterminate form. Recall that definition. 

 

 

  



Remember that when one encounters a limit that is an indeterminate form,  

 

“…Some more steps need to be done in order to convert the limit into one of the forms 

for which our theorems about limits (Theorems 2,3,4) can be used. Only then can a 

determination be made about the existence and value of the limit….”. 

 

The steps involve cancelling terms in the numerator and denominator. Remember that 

cancelling terms involves the most important concept of the first month of calculus: 

 

When can one cancel terms, and why? 

 

I’ll do the limit in detail on the next page. 

  



Computing the limit as 𝑥 → 5. 

 

lim
𝑥→5

𝑓(𝑥) = lim
𝑥→5

(𝑥 − 1)(𝑥 − 5)

(𝑥 − 3)(𝑥 − 5)⏟            

indeterminate form

=
can cancel

because

𝑥−5≠0

lim
𝑥→5

(𝑥 − 1)

(𝑥 − 3)⏟      

limit of rational

function with

𝑥=5 in its domain

(not indeterminate)

=
Theorem 3

((5) − 1)

((5) − 3)⏟      

can substitute 𝑥=5

=
(4)

(2)
= 2. 

 

More detailed justification for the Cancellation Step is as follows: 

Since 𝑥 → 5, we know that 𝑥 is getting closer and closer to 5 but not equal to 5. 

So we know that and 𝑥 ≠ 5 and, therefore, 𝑥 − 5 ≠ 0. 

So we know that we can cancel 
(𝑥−5)

(𝑥−5)
. 

 

Observe that the limit proceeded in the manner that was described a earlier in the video: 

We will see that when we encounter a limit that is an indeterminate form, we will be 

doing steps involving cancelling terms, in order to convert the limit to a new form that is 

not an indeterminate form. Then, we will be able to apply one of our theorems about 

limits (Theorems 2,3,4) to determine if the limit exists and, if it does exist, to give its value. 



(C) Confirm Results with a Graph 

 

Let’s summarize our results of (A) and (B), and consider what they tell us about the graph of 

  

𝑓(𝑥) =
𝑥
2
− 6𝑥 + 5

𝑥2 − 8𝑥 + 15
=
(𝑥 − 1)(𝑥 − 5)

(𝑥 − 3)(𝑥 − 5)
. 

 

At 𝒙 = 𝟏 

 

 In (A), we found that 𝑓(1) = 0.  

This tells us that there is a point on the graph with coordinates (𝑥, 𝑦) = (1,0). 

This is an 𝑥 intercept caused by the factor of (𝑥 − 1) in the numerator. 

 

 In (B), we found that lim
𝑥→1

𝑓(𝑥) = 0. 

This tells us that the graph is heading for the location (𝑥, 𝑦) = (1,0). 

  



At 𝒙 = 𝟑 

 

 In (A), we found that 𝑓(3) does not exist. 

This tells us that there is no point on the graph with 𝑥 coordinate 𝑥 = 3. 

 

 In (B), we found that lim
𝑥→3

𝑓(𝑥) does not exist. 

This tells us that as 𝑥 approaches 3, there is no (𝑥, 𝑦) location that the graph is heading 

towards. 

We don’t know yet how this will look. But the behavior is caused by the factor 
1

(𝑥−3)
. 



At 𝒙 = 𝟓 

 

 In (A), we found that 𝑓(5) does not exist. 

This tells us that there is no point on the graph with 𝑥 coordinate 𝑥 = 5. 

 

 In (B), we found that lim
𝑥→5

𝑓(𝑥) = 2. 

This tells us that the graph is heading for the location (𝑥, 𝑦) = (5,2). 

 

 Since the graph is heading for the location (𝑥, 𝑦) = (5,2), but there is no point on the 

graph with 𝑥 coordinate 𝑥 = 5, we realize there is a hole in the graph at the location 

(𝑥, 𝑦) = (5,2). The hole is caused by the factors 
(𝑥−5)

(𝑥−5)
 in the formula for 𝑓(𝑥). 

 

We can observe the features that we have described in a graph of 𝑓(𝑥). 

  



𝑓(𝑥) =
𝑥
2
− 6𝑥 + 5

𝑥2 − 8𝑥 + 15
=
(𝑥 − 1)(𝑥 − 5)

(𝑥 − 3)(𝑥 − 5)
. 

 

  



Observations: 

 

 There is an 𝑥 intercept at the location (𝑥, 𝑦) = (1,0), caused by the factor of (𝑥 − 1) in the 

numerator. In our analysis, we found that 𝑓(1) = 0 and lim
𝑥→1

𝑓(𝑥) = 0. 

 

 There is a hole in the graph at the location (𝑥, 𝑦) = (5,2). The hole is caused by the 

factors 
(𝑥−5)

(𝑥−5)
 in the formula for 𝑓(𝑥). In our analysis, we found that 𝑓(5) 𝐷𝑁𝐸 but 

lim
𝑥→5

𝑓(𝑥) = 2. 

 

 As 𝑥 → 3, there is no single (𝑥, 𝑦) location that the graph is heading towards.  This agrees 

with our analysis that showed that the lim
𝑥→3

𝑓(𝑥) does not exist. (The graph has a vertical 

asymptote at 𝑥 = 3. We will revisit this example in a future video, when we discuss an 

Expanded Definition of Limit.) 

 

End of [Example 2] 

End of Video  


