Section 2.2 Limits Involving Infinity (Barnett Book Section 2.2)

In this video, we will consider a graphical approach to limits involving infinity.

Definition of Infinite Limits
Symbol: $\lim _{x \rightarrow c} f(x)=\infty$
Spoken: The limit, as x approaches C, of $f(x)$ is infinity.
Usage: x is a variable, f is a function, C is a real number constant.
Meaning: As x gets closer σ closer to c, but not equal to c,
the values of $f(x)$ get more + more positive without bond.
Graphical Significance:
Picture:
 with line equation $X=C$ and the graph is going up along the asymptote on both left and right sides

What is the significance of the phrase without bound?

In both graphs, as x approaches 3 , the y values get more and more positive. But in the graph on the left, the y values are getting more and more positive and approaching 7, while in the graph on the right, the y values are getting more and more positive without bound.

Remark: (a very important point) We have revised the definition of limit! In Section 2.1, the book says that for the drawing shown above, the limit does not exist, but we write the symbol $\lim _{x \rightarrow 3} \frac{9}{x}(x)=\infty$. That's confusing and misses the point. The notation and terminology of limits is simply a helpful shorthand for trends that are often observed in functions and their graphs. What we have done in Section 2.2 is that we have expanded the definition of limit to include another type of trend. With the old definition of limit (from Section 2.1), the limit does not exist in the drawing above. With the new, expanded definition of limit (from Section 2.2), the limit does exist and it is infinity. In section 2.1, we would say $\lim _{x \rightarrow 3} g(x)$ Doer not exist

In section 2.2 , we say that $\lim _{x \rightarrow 3} g(x)=\infty$.

Obvious variations:

One-Sided Infinite Limits

Symbol: $\lim _{x \rightarrow c^{+}} f(x)=\infty$
Spoken: The limit, as x approaches C from the right, of $f(x)$ is infinity.
Meaning: As x gets closer and closer to c but greater than C, the values of $f(x)$ get more and more positive without hound.
Picture:

Negative Infinite Limits
Symbol: $\lim _{x \rightarrow c} f(x)=-\infty$
Spoken: The limit, as x approaches c, of $f(x)$ is negative infinity.
Meaning: As X approaches C, the values of $f(x)$ get more and mire negative, without hound,
Picture:

Observation: With the definition of infinite limits, we now have a shorthand notation to describe the situation where the y values of a function are getting more and more positive (or negative) without bound.

Definition of Limits at Infinity
symbol: $\lim _{x \rightarrow \infty} f(x)=b$
spoken: The limit, as x goes to infinity, of $f(x)$ is b.
Usage: x is a variable, f is a function, b is a real number constant.

Meaning: As x gats more and more pisitive, without hound,
the values of $f(x)$ get doses and closer to b (anA man equal b)
Graphical Significance: The graph has a horizontal asymptote on the right w th line equation $y=b$.

Obvious variations:

Definition of Limit at Negative Infinity
symbol: $\lim _{x \rightarrow-\infty} f(x)=b$
spoken: The limit, as x goes to negotiul infinity, of $f(x)$ is b.
Meaning: As x gets more + more negative, without bound, the values af $f(x)$ gat closer + closer to b land may equal b.)
Graphical Significance: The graph has a horizontal asymptote on the lott with line equation $y=b$.
Picture:

$d r$

We can combine the idea of infinite limits and limits at infinity in the obvious way

Definition of Infinite Limits at Infinity
symbol: $\lim _{x \rightarrow \infty} f(x)=\infty$
spoken: The limit, as x goes to infinity, of $f(x)$ is infinity.
Meaning: As x gets more + more pxstive, without hound, the values of $f(x)$ get more + mare positive, with ant hand.
Graphical Significance: The right end of the graph goes ups.
Picture:

Remark: The tern limit at infinity (or limit at negative infinity) refers to what the right (or left end of the graph is doing. This is called the end behavior of the graph.

Limits Involving Infinity for a Function Given by a Graph (Section 2.2)
Use the graph to answer the questions that follow.

(A) $\lim _{x \rightarrow-\infty} f(x)=1$ because the graph has a horizontal asymptote lett end behavior on the left with line equation $y=1$.

(B) $\lim _{x \rightarrow-3} f(x)=\infty$ because as x approaches -3 , the values of $f(x)$ get more + more positive, without bound.
Equivalently: The graph of $f(x)$ has a vertical asymptote with line equation $x=-3$, and the graph of $f(x)$ goes ap
(C) $f(-3)=$ DIE along with sides of the asymptote.

There is no print on the graph with $x=3$

(D) $\lim _{x \rightarrow 1^{-}} f(x)=\infty$

The graph has a vertical asymptote with equation $x=1$, and the graph goes up along the left side of the asymptote.
(E) $\lim _{x \rightarrow 1^{+}} f(x)=-\infty$ The graph goes down along the right side of the asymptote
(F) $\lim _{x \rightarrow 1} f(x)=$ Does not exist, he cause the left + right limits dint match.
(G) $f(1)=$ Doer not exist, herause there is nu point on the graph with $x=1$.

(H) $\lim _{x \rightarrow 4^{-}} f(x)=-\infty$ The graph has a vertical as y mptote with line equation $x=4$ and the graph goes down along the left side of the any moore
(I) $\lim _{x \rightarrow 4^{+}} f(x)=1$ The graph is heading for the location $(x, y)=(4,1)$ from the $\begin{gathered}\uparrow \text { right. }\end{gathered}$
(J) $\lim _{x \rightarrow 4} f(x)=$ DNE because the lat and right limits don't match.
(K) $f(4)=1 \quad$ because there is a print on the graph at $(x, y)=(y, 1)$

(L) $\lim _{x \rightarrow \infty} f(x)=\infty$ The right end of the graph goes up without hound.

Summarizing Limit Terminology from Sections 2.1 and 2.2

As mentioned throughout this video and in previous videos, limit terminology is simply an abbreviation for certain kinds of trends that sometimes occur in the x values and y values for particular functions. The corresponding limit notation is an even more an even more condensed abbreviation. Here's a summary of limit notation and the corresponding trends.

Limit Notation Introduced in Section 2.1

		Trend in the \boldsymbol{y}-values	
		y values approach the number L (and may equal L)	y values do anything else
	x approaches the number c from the left	$\begin{gathered} \lim _{x \rightarrow c^{-}} f(x)=L \\ \text { (section 2.1) } \end{gathered}$	$\lim _{x \rightarrow c^{-}} f(x) D N E$
	x approaches the number c from the right	$\begin{gathered} \lim _{x \rightarrow c^{+}} f(x)=L \\ (\text { section 2.1) } \end{gathered}$	$\lim _{x \rightarrow c^{+}} f(x) D N E$
	x approaches the number c	$\begin{gathered} \lim _{x \rightarrow c} f(x)=L \\ \text { (section 2.1) } \end{gathered}$	$\lim _{x \rightarrow c} f(x) D N E$
	x values do anything else	no terminology in Section 2.1	no terminology in Section 2.1

Observation: In Section 2.1, a limit can only be a real number, occurring at a particular x yalue. The limit symbol can only mean that the graph is heading for a location $(x, y)=(c, L)$

Limit Notation Introduced in Section 2.2

		Trend in the \boldsymbol{y}-values			
		$\begin{gathered} y \text { values approach } \\ \text { the number } L \\ (\text { and may equal } L) \end{gathered}$	y values grow negative, without bound	$\left.\begin{array}{c}y \text { values grow } \\ \text { positive, } \\ \text { without bound }\end{array}\right)$	y values do anything else
	x approaches the mber c from the left	$\begin{gathered} \lim _{x \rightarrow c^{-}} f(x)=L \\ \text { (section 2.1) } \end{gathered}$	$\begin{gathered} \hline \hline \lim _{x \rightarrow c^{-}} f(x)=-\infty \\ \text { (section 2.2) } \end{gathered}$	$\begin{gathered} \hline \lim _{x \rightarrow c^{-}} f(x)=\infty \\ (\text { section 2.2) } \end{gathered}$	$\lim _{x \rightarrow c^{-}} f(x) D N E$
	x approaches the number c from right	$\begin{gathered} \lim _{x \rightarrow c^{+}} f(x)=L \\ \text { (section 2.1) } \end{gathered}$	$\begin{gathered} \lim _{x \rightarrow c^{+}} f(x)=-\infty \\ (\text { section 2.2) } \end{gathered}$	$\begin{gathered} \lim _{\substack{x \rightarrow c^{+}}} f(x)=\infty \\ (\text { section 2.2) } \end{gathered}$	$\lim _{x \rightarrow c^{+}} f(x) D N E$
	x approaches the number c	$\begin{gathered} \lim _{x \rightarrow c} f(x)=L \\ \text { (section 2.1) } \end{gathered}$	$\begin{gathered} \lim _{x \rightarrow c} f(x)=-\infty \\ (\text { section 2.2) } \end{gathered}$	$\begin{gathered} \lim _{\substack{x \rightarrow c}} f(x)=\infty \\ \text { (section 2.2) } \end{gathered}$	$\lim _{x \rightarrow c} f(x) D N E$
	x grows negative, without bound	$\begin{gathered} \lim _{\substack{x \rightarrow-\infty \\ (\text { section 2.2) }}} f(x)=L \\ \hline \end{gathered}$	$\begin{gathered} \lim _{x \rightarrow-\infty} f(x)=-\infty \\ (\text { section 2.2) } \end{gathered}$	$\begin{gathered} \lim _{\substack{x \rightarrow-\infty}} f(x)=\infty \\ (\text { section 2.2) } \end{gathered}$	$\lim _{x \rightarrow-\infty} f(x) D N E$
	x grows positive, without bound	$\begin{aligned} & \lim _{x \rightarrow \infty} f(x)=L \\ & \text { (section 2.2) } \end{aligned}$	$\begin{gathered} \lim _{x \rightarrow \infty} f(x)=-\infty \\ \text { (section 2.2) } \end{gathered}$	$\begin{gathered} \lim _{x \rightarrow \infty} f(x)=\infty \\ (\text { section 2.2) } \end{gathered}$	$\lim _{x \rightarrow \infty} f(x) D N E$
	x values do anything else	$\begin{aligned} & \text { no terminology in } \\ & \text { Section } 2.1 \text { or } 2.2 \end{aligned}$	no terminology in Section 2.1 or 2.2	no terminology in Section 2.1 or 2.2	no terminology in Section 2.1 or 2.2

Observation: In Section 2.2, more limit terminology and limit symbols are introduced. These are are just shorthand notation for additional kinds of trends that are often seen in functions and their graphs.

End of Video

