End Behavior of Rational Functions

In this video, we will study the end behavior of rational functions.
Remember that a rational function is a ratio of polynomials, where the polynomial in the denominator is not the zero polynomial.

We will study three examples of rational functions in this video

$$
\begin{aligned}
& f(x)=\frac{7 x^{2}-42 x+35}{2 x^{2}-16 x+30} \\
& g(x)=\frac{7 x^{2}-42 x+35}{2 x^{3}-16 x^{2}+30 x} \\
& h(x)=\frac{7 x^{3}-42 x^{2}+35 x}{2 x^{2}-16 x+30}
\end{aligned}
$$

[Example 1] Find the end behavior of the function

Solution:

$$
f(x)=\frac{7 x^{2}-42 x+35}{2 x^{2}-16 x+30}
$$

Remember that the phrase end behavior refers to the behavior of the left end and the right end of the graph. That is, as $x \rightarrow-\infty$, what is the trend in the y values? And what is the trend in the y values as $x \rightarrow \infty$?

We will start by finding $\lim _{x \rightarrow \infty} f(x)$ in order to determine the right end behavior.

Observe that the function $f(x)$ can be factored:

$$
f(x)=\frac{7 x^{2}-42 x+35}{\underbrace{2 x^{2}-16 x+30}_{\text {standard form }}}=\frac{7\left(x^{2}-6 x+5\right)}{2\left(x^{2}-8 x+15\right)}=\frac{7(x-1)(x-5)}{2(x-3)(x-5)}
$$

Remember that when we found limits of the form $\lim _{x \rightarrow c} f(x)$ where the symbo C vas a real number constant, we always use the factored form of $f(x)$, because it makes the calculations simpler.

But when finding finding $\lim _{x \rightarrow \infty} f(x)$, it is the standard form of $f(x)$ that is useful. The reason is that when finding $\lim _{x \rightarrow \infty} f(x)$, we are to imagine x getting more and more positive without bound. When x is huge, the leading terms in the numerator and denominator, $7 x^{2}$ and \underline{x}^{2} are gigantic. The behavior of $f(x)$ is determined by the ratio of these leading terms. So when finding $\lim _{x \rightarrow \infty} f(x)$, we should not even bother to factor the function, and just stick with the standard form.

So the limit proceeds as follows:

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} f(x)=\lim _{\uparrow x \rightarrow \infty} \frac{7 x^{2}-42 x+35}{2 x^{2}-16 x+30}=\lim _{x \rightarrow \infty} \frac{7 x^{2}}{2 x^{2}}=\lim _{\uparrow \rightarrow \infty} \frac{7}{2}=\frac{7}{2} \\
& \begin{array}{lll}
\begin{array}{ll}
\text { use } \\
\text { Standard } \\
\text { form }
\end{array} & \text { Keeponly the } & \text { Since } x \rightarrow \infty \text {, } \\
\text { leading terms } & \text { we know } x \neq 0 \text {, } \\
\text { So we can }
\end{array} \\
& \begin{array}{ll}
\text { Keeponlythe } & \begin{array}{l}
\text { Since } x \rightarrow \infty, \\
\text { We know } x \neq 0, \\
\text { So we can cancel } \frac{x}{x}
\end{array}
\end{array} \\
& \text { In this limit, we are supposed to imagine } x \text { getting more and more positive, without bound, and } \\
& \text { consider what happens to the values of } \frac{7}{2} \text {. But since the value of } \frac{7}{2} \text { is always the same, we realize } \\
& \text { that the limit is the number } \frac{7}{2} \text {. }
\end{aligned}
$$

Sentence description:
As x gets mire and mire pistivie, withuot binned, the y values got clover and closer to $y=\frac{2}{2}$ (and nay even equal $\frac{7}{2}$)
Behavior of graph (This is the right end behavior)
There is a horczuntal asymptote on the right, with line equation $y=\frac{7}{2}$.

Now we find $\lim _{x \rightarrow-\infty} f(x)$ in order to determine the left end behavior.

$$
\begin{aligned}
& \lim _{x \rightarrow-\infty} f(x)=\lim _{x \rightarrow-\infty} \frac{7 x^{2}-42 x+35}{\left(2 x^{2}-16 x+30\right.}=\lim _{x \rightarrow-\infty} \frac{7 x^{2}}{2 x^{2}}=\lim _{x \rightarrow-\infty} \frac{7}{2}=\frac{7}{2} \\
& \text { Keep only } \\
& \text { seadince } x \rightarrow-\infty, \\
& \text { we kind that } x \neq 0 \\
& \text { so we can cancel } \frac{x^{2}}{x^{2}}
\end{aligned}
$$

Sentence description:
As x goer to negative infinity, the y values got closer and closer to $y=\frac{7}{2}$

Behavior of graph (This is the left end behavior)
There is a horizontal asymptote with line equation $y=\frac{7}{2}$ on the left end af the graph

We can confirm our results with a computer graph.

End of [Example 1]

[Example 2] For the function

$$
g(x)=\frac{7 x^{2}-42 x+35}{2 x^{3}-16 x^{2}+30 x}
$$

find $\lim _{x \rightarrow \infty} g(x)$ and $\lim _{x \rightarrow-\infty} g(x)$ and explain what the results tell us about the graph of $g(x)$.

Solution:
We start by finding $\lim _{x \rightarrow \infty} g(x)$

$$
\begin{aligned}
& \text { We start by finding } \lim _{x \rightarrow \infty} g(x) \\
& \lim _{x \rightarrow \infty} g(x)=\lim _{\substack{ \\
x_{x \rightarrow \infty}}} \frac{7 x^{2}-42 x+35}{2 x^{3}-16 x^{2}+30 x}=\lim _{x \rightarrow \infty} \frac{7 x^{2}}{2 x^{3} \uparrow}=\lim _{x \rightarrow \infty} \frac{7}{2 x} \\
& \text { standard } \\
& \text { keeponly the } \begin{array}{l}
\text { since } x \rightarrow \infty, \\
\text { we know } x \neq 0
\end{array}
\end{aligned}=0
$$

In this limit, we are supposed to imagine x getting more and more positive, without bound, and consider what happens to the values of $\frac{7}{2 x}$. Notice that numerator of the fraction is fixed at 7 , while the denominator is getting huge and positive. So the fraction will be getting closer and closer to zero. That is,
as x gets more and mire positive, without bound, the value of $\frac{7}{2 x}$ will he getting closer and closer $t, 0$.
What does this result tell us about the behavior of the graph?
The right end of the graph has a horizontal asymptote, with line equation $y=0$. (right end hahavior).

Now we find $\lim _{x \rightarrow-\infty} g(x)$

$$
\begin{aligned}
& \text { Now we find } \lim _{x \rightarrow-\infty} g(x) \\
& \lim _{x \rightarrow-\infty} g(x)=\lim _{\substack{ \\
\text { use standard } \\
\text { form }}} \begin{array}{l}
7 x^{2} 42 x+35 \\
\end{array} \quad=\lim _{x \rightarrow-\infty} \frac{7 x^{2}}{2 x^{3}-16 x^{2}+30 x}=\lim _{1 \rightarrow-\infty} \frac{7}{2 x}=0
\end{aligned}
$$

In this limit, we are supposed to imagine x getting more and more negative, without bound, and consider what happens to the values o $\frac{7}{2 x}$. Notice that numerator of the fraction is fixed at 7 , while the denominator is getting huge and negative. So the fraction will be getting closer and closer to zero. That is,
As $x \rightarrow-\infty$, the value of the fraction $\frac{7}{2 x}$ will be getting closer and clogerto 0 .

What does this result tell us about the behavior of graph?
The lett end of the graph has a horizontal asymptote with line equation $y=0$. (left end behavior)

We can confirm our results with a computer graph.

End of [Example 2]

[Example 3] Consider the function

$$
h(x)=\frac{7 x^{3}-42 x^{2}+35 x}{2 x^{2}-16 x+30}
$$

Does the graph have any horizontal asymptotes? If so, give their line equations.
Solution:

Remember that to say that a graph has a horizontal asymptote is actually an abbreviation for a more detailed description of its end behavior.

Abbreviated description:
The graph has a horizontal asymptote on the right with line equation y $y=b$.
More detailed, less abbreviated description:
As x gets more and mire positive without bound, the values of $h(x)$ get Closer and closer to $y=b$ (and may even equal b)

Morelabbreviated description, using limit notation:

$$
\lim _{x \rightarrow \infty} h(x)=b \text { where b is areal number }
$$

So in other words, in order to find out if the graph of $h(x)$ has any horizontal asymptotes, we should find $\lim _{x \rightarrow \infty} h(x)$ and $\lim _{x \rightarrow-\infty} h(x)$

We start by finding $\lim _{x \rightarrow \infty} h(x)$ in order to determine the right end behavior

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} h(x)=\lim _{x \rightarrow \infty} \frac{7 x^{3}-42 x^{2}+35 x}{2 x^{2}-16 x+30}=\lim _{x \rightarrow \infty} \frac{7 x^{3}}{2 x^{2}}=\lim _{x \rightarrow \infty}=\infty \\
& \text { use standard } \\
& \text { form }
\end{aligned}
$$

In this limit, we are supposed to imagine x getting more and more positive, without bound, and consider what happens to the values of $\frac{7 x}{2}$. But if x is huge and positive, then $\frac{7 x}{2}$ will also be huge and positive. That is,

As x gets more and mure positive, w thant bund, the value of $\frac{7 x}{2}$ also gats more and more positive, without bound.
Limit description:

$$
\lim _{x \rightarrow \infty} \frac{7 x}{2}=\infty
$$

What does this result tell us about the behavior of the graph?
The fact that $\lim _{x \rightarrow \infty} h(x)=\infty$ tells us that the right end of the graph goes up. There is no horizontal asymptote on the right.

$$
\begin{aligned}
& \text { Next, we find } \lim _{x \rightarrow-\infty} h(x) \text { in order to determine the left end behavior } \\
& \lim _{x \rightarrow-\infty} h(x)=\lim _{p x \rightarrow-\infty} \frac{7 x^{3}-42 x^{2}+35 x}{2 x^{2}-16 x+30}=\lim _{x \rightarrow-\infty} \frac{7 x^{3}}{2 x^{2}}=\lim _{x \rightarrow-\infty} \frac{7 x}{2}=-\infty \\
& \text { Strinelard form } \\
& \text { keponly } \\
& \text { leading terms } \\
& \left.\operatorname{Snce}_{\text {we }} x \rightarrow-\infty\right) \\
& \left.\begin{array}{l}
\text { we lena } x \neq 0 \text {, } \\
\text { So we can cancel } \frac{x^{2}}{x^{2}}
\end{array}\right\}
\end{aligned}
$$

In this limit, we are supposed to imagine x getting more and more negative, without bound, and consider what happens to the values of $\frac{7 x}{2}$. But if x is huge and negative, then $\frac{7 x}{2}$ will also be huge and negative. That is,
as x gettsmore and morenegatwe, with ont bound, the values of $\frac{7 x}{2}$ also get move and more negative w thant bound.

$$
\lim _{x \rightarrow-\infty} \frac{7 x}{2}=-\infty
$$

What does this result tell us about the behavior of the graph?
Since $\lim _{x \rightarrow-\infty} h(x)=-\infty$, we know that the left end of the graph gree down. So there is no horizontal asymptote on the let.

We can confirm our results with a computer graph.

We can generalize the results of these three examples

Generalization of [Example 1]
If $f(x)$ is a rational function with the degree of the numerator =degree of the denominator, and with leading coefficients a and b in the numerator and denominator, then
limit behavior: $\lim _{x \rightarrow \infty} f(x)=\frac{9}{b}$ and $\lim _{x \rightarrow-\infty} f(x)=\frac{a}{b}$
end behavior: the graph of $f(x)$ has a horizontal asymptote on both ends, with line equation $y=\frac{a}{b}$
Generalization of [Example 2]
If $g(x)$ is a rational function with the degree of the numerator $<$ degree of the denominator, then
limit behavior:

$$
\lim _{x \rightarrow \infty} g(x)=0 \quad \text { and } \lim _{x \rightarrow-\infty} g(x)=0
$$

end behavior: the graph has a horizontal asymptote on both ends, with line equation $y=0$.

Generalization of [Example ${ }^{3}$]
If $h(x)$ is a rational function with the degree of the numerate \geqslant degree of the denominator, then limit behavior: $\lim _{x \rightarrow \infty} h(x)=\infty$ or $-\infty \quad$ and $\lim _{x \rightarrow-\infty} h(x)=\infty$ or $-\infty$. end behavior:
The ends of the graph of $h(x)$ go up or gr down. (no horizontal) asymptote).

End of Video

