Topic for this Video: Find all horizontal & vertical asymptotes

Reading:

- General: Section 2.2 reading on p. 109 114 about limits at infinity.
- More specifically: Examples 1, 2, 6, 7

Five concepts from the reading and previous videos and prerequisite material that will be important:

Important Concept (1) Correspondence between Asymptotes and Limits

Recall that these words about a horizontal asymptote:

Are abbreviated by this symbol:

$$\lim_{X \to \infty} f(x) = b$$
, where b is a real number

So to determine whether f(x) has any horizontal asymptotes, we should investigate $\lim_{x\to\infty} f(x)$ to see if it is a real number.

And recall that these words about a vertical asymptote:

The graph of \widehat{f} has a vectical asymptote with line equation X=Cand the graph grees up along bith sides of the asymptote. Are abbreviated by this symbol: $\lim_{X\to c} \widehat{f}(x) = \infty$

Of course, there are lots of different ways that a graph can behave at a vertical asymptote. It can go up or down on left side, and up or down on the right side, etc. These kinds of behaviors are abbreviated by symbols such as

$$\lim_{X \to c^{-}} f(x) = \infty \quad \text{or} \quad \lim_{X \to c^{+}} f(x) = -\infty$$

So to determine whether f(x) has any vertical asymptotes, we should look for real numbers x = cwhere the lim f(x) will turn out to be infinite. (Or where the one-sided limits as $x \to c^-$ or $x \to c^+$ will turn out to be infinite.) Important Concept (2) The form of the function that is most convenient for finding limits.

- When finding finding $\lim_{x\to\infty} f(x)$ it is the *standard* form of f(x) that is useful.
- When finding finding $\lim_{x \to c} f(x)$, it is the *factored* form of f(x) that is useful.

Important Concept (3)

Important Concept (4) Factoring polynomials

Some polynomial functions can be fully factored into linear factors.

For example: $f(x) = 2x^{2} - 6x - 8 = 2(x^{2} - 3x - 4) = 2(x + 1)(x - 4)$ or $g(x) = 3x^{2} - 12 = 3(x^{2} - 4) = 3(x + 2)(x - 2)$

But some polynomial functions *cannot* be fully factored into linear factors.

For example:

$$h(x) = 3x^2 + 12 = 3(x^2 + 4)$$

The quadratic polynomial $h(x) = 3x^2 + 12$ is called *irreducible*, because it cannot be factored into linear factors.

Correspondence between factors of a rational function and its graph behavior

- If a rational function f(x) has a factor (x c) appearing in the numerator only, then the graph of f(x) will have an x intercept with coordinates (c, 0).
- If a rational function f(x) has a factor $\frac{(x-c)}{(x-c)}$ appearing in the numerator and denominator with equal powers, then the graph of f(x) will have a hole at x = c.
- If a rational function f(x) has a factor $\frac{1}{(x-c)}$ appearing in the denominator denominator only, then the graph of f(x) will have a vertical asymptote with line equation x = c.

[Example 1] Find all horizontal and vertical asymptotes for the function:

$$f(x) = \frac{3x^2 - 3x - 36}{2x^2 - 6x - 8}$$

Solution:

To determine whether or not there is a horizontal asymptote, we work with the given *standard* form of f(x)

$$f(x) = \frac{3x^2 - 3x - 36}{2x^2 - 6x - 8}$$

Therefore,

Graph has a hirizontal asymptote with line equation
$$y = \frac{3}{2}$$
.

To determine whether or not there are any vertical asymptotes, we must find the *factored* form of

$$f(x) = \frac{3 \chi^2 - 3 \chi - 36}{2 \chi^2 - 6 \chi - 8} = \frac{3 (\chi^2 - \chi - 12)}{2 (\chi^2 - 3 \chi - 4)} = \frac{3 (\chi + 3) (\chi - 4)}{2 (\chi + 1) (\chi - 4)}$$

We observe that

Therefore,
The graph will have a vertical asymptote with line equation
$$\chi = -1$$

 $\chi = -1$
mistake in video

Remark: What do the other factors cause in the graph of f(x)?

The factor
$$(X+3)$$
 in the numeratur and not the denominator
WIN cause an X intercept at $(X,Y) = (3,0)$
The factor $(X-Y)$ causes a hole in the graph at $X=4$;
because the factor $(X-4)$ appears in numerator t denominator
with equal powers.

We can confirm this with a computer graph

End of [Example 1]

[Example 2] Find all horizontal and vertical asymptotes for the function:

$$f(x) = \frac{5x^3}{3x^2 - 12}$$

Solution:

To determine whether or not there is a horizontal asymptote, we work with the given *standard* form of f(x)

$$f(x) = \frac{5x^3}{3x^2 - 12}$$

Therefore,

there will not be a horizontal asymptote.

To determine whether or not there are any vertical asymptotes, we must find the *factored* form of

$$f(x) = \frac{5x^3}{3x^2-12} = \frac{5x^3}{3(x^2-4)} = \frac{5x^3}{3(x+2)(x-2)}$$
We observe that

$$The factors (X+2) \text{ and } (X-2) \text{ appear in the denominator}$$
and wit the numerator.

Therefore,

Remark: What do the other factors cause in the graph of f(x)? The factor (X) appears in the numeratur alone, raised to the 2^{-4} power. It will cause an X-intercept at (X, Y) = (0, 0)

We can confirm this with a computer graph

[Example 3] Find all horizontal and vertical asymptotes for the function:

$$f(x) = \frac{5x}{3x^2 + 12}$$

Solution:

To determine whether or not there is a horizontal asymptote, we work with the given *standard* form of f(x)

$$f(x) = \frac{5x}{3x^2 + 12}$$

Therefore,

To determine whether or not there are any vertical asymptotes, we must find the *factored* form of f(x)

$$S(x) = \frac{5x}{3x^2 + 12}$$
The denominator cannot be factured further

$$3x^2 + 12$$
So the factored form at S(x) is the
Same as the standard form.
The denominator does not have any linear factors.
So the graph will not have any vertical asymptotes.
Remark: What do the other factors cause in the graph of $f(x)$?

The factor X in the numerator and not the denominator Will cause an X intercept at (X,y) = (0, 0)

End of [Example 3]

End of Video