Topic for this Video: Find all horizontal \& vertical asymptotes

Reading:

- General: Section 2.2 reading on p. $109-1$ imits at infinity.
- More specifically Examples 1, 2, 6, 7

Five concepts from the reading and previous videos and prerequisite material that will be important:

Important Concept (1) Correspondence between Asymptotes and Limits

Recall that these words about a horizontal asymptote:
The graph if $f(x)$ has a horizontal asymptote with line equation $y=b$.

Are abbreviated by this symbol: $\lim _{x \rightarrow \infty} f(x)=b$, where b is a real number

So to determine whether $f(x)$ has any horizontal asymptotes, we should investigate $\lim _{x \rightarrow \infty} f(x)$ to see if it is a real number.

And recall that these words about a vertical asymptote:
The graph of f has a vectical asymptote with line equation $x=C$ and the graph goes up along both sides of the asymptote.
Are abbreviated by this symbol:

$$
\lim _{x \rightarrow c} f(x)=\infty
$$

Of course, there are lots of different ways that a graph can behave at a vertical asymptote. It can go up or down on left side, and up or down on the right side, etc. These kinds of behaviors are abbreviated by symbols such as

$$
\lim _{x \rightarrow c^{-}} f(x)=\infty \quad \text { or } \quad \lim _{x \rightarrow c^{+}} f(x)=-\infty
$$

So to determine whether $f(x)$ has any vertical asymptotes, we should look for real numbers $x=c$ where the $\lim _{x \rightarrow \infty} f(x)$ will turn out to be infinite. (Or where the one-sided limits as $x \rightarrow c^{-}$or $\overline{x \rightarrow}$ typo $\xrightarrow[x \rightarrow \infty]{x \rightarrow c}$ c^{+}will turn out to be infinite.)

Important Concept (2) The form of the function that is most convenient for finding limits.

- When finding finding $\lim _{x \rightarrow \infty} f(x)$ it is the standard form of $f(x)$ that is useful.
- When finding finding $\lim _{x \rightarrow c} f(x)$, it is the factored form of $f(x)$ that is useful.

Important Concept (3)

Key results about limits at infinity for a rational function

- If $f(x)$ is a rational function with the degree of the numerator $=$ degree of the denominator, and with leading coefficients a and b in the numerator and denominator, then
- limit behavior: $\lim _{x \rightarrow \infty} f(x)=\frac{a}{b}$ and $\lim _{x \rightarrow-\infty} f(x)=\frac{a}{b}$
- end behavior: The graph of $f(x)$ has a horizontal asymptote on both sides, with line equation $y=\frac{a}{b}$
- If $f(x)$ is a rational function with the degree of the numerator $<$ degree of the denominator, then
- limit behavior: $\lim _{x \rightarrow \infty} f(x)=0$ and $\lim _{x \rightarrow-\infty} f(x)=0$
- end behavior: The graph of $f(x)$ has a horizontal asymptote on both sides, with line equation $y=0$
- If $f(x)$ is a rational function with the degree of the numerator $>$ degree of the denominator, then
- limit behavior: $\lim _{x \rightarrow-\infty} f(x)=\infty$ or $-\infty$ and $\lim _{x \rightarrow \infty} h(x)=\infty$ or $-\infty$
- end behavior: The graph of $f(x)$ goes up or down on the ends. There is no horizontal asymptote.

Important Concept (4) Factoring polynomials

Some polynomial functions can be fully factored into linear factors.

For example:

$$
f(x)=2 x^{2}-6 x-8=2\left(x^{2}-3 x-4\right)=2(x+1)(x-4)
$$

or

$$
g(x)=3 x^{2}-12=3\left(x^{2}-4\right)=3(x+2)(x-2)
$$

But some polynomial functions cannot be fully factored into linear factors.

For example:

The quadratic polynomial $h(x)=3 x^{2}+12$ is called irreducible, because it cannot be factored into linear factors.

Important Concept (5)

Correspondence between factors of a rational function and its graph behavior

- If a rational function $f(x)$ has a factor $(x-c)$ appearin in the numerator only, then the graph of $f(x)$ will have an x intercept with coordinates $(c, 0)$.
- If a rational function $f(x)$ has a factor $\frac{(x-c)}{(x-c)}$ appearing in the numerator and denominator with equal powers, then the graph of $f(x)$ will have a hole at $x=c$.
- If a rational function $f(x)$ has a factor $\frac{1}{(x-c)}$ appearing in the denominator denominator only, then the graph of $f(x)$ will have a vertical asymptote with line equation $x=c$.
[Example 1] Find all horizontal and vertical asymptotes for the function:

$$
f(x)=\frac{3 x^{2}-3 x-36}{2 x^{2}-6 x-8}
$$

Solution:
To determine whether or not there is a horizontal asymptote, we work with the given standard form of $f(x)$

$$
f(x)=\frac{3 x^{2}-3 x-36}{2 x^{2}-6 x-8}
$$

We observe that

$$
\text { degree of nnmecatur }=2=\text { degree of denominator }
$$

$$
\text { leading coefficient in numerator is } 3
$$

leading coefficient in denominator is 2
Therefore,
Graph has a horizontal asymptote with line equation $y=\frac{3}{2}$.

To determine whether or not there are any vertical asymptotes, we must find the factored form of

$$
f(x)=\frac{3 x^{2}-3 x-36}{2 x^{2}-6 x-8}=\frac{3\left(x^{2}-x-12\right)}{2\left(x^{2}-3 x-4\right)}=\frac{3(x+3)(x-4)}{2(x+1)(x-4)}
$$

We observe that
The factor $(x+1)$ appears in the denominator and not the numerator.

Therefore,
The graph will have a vertical asymptote with line equation $y=-1$.

$$
x=-1
$$

mistake in video

Remark: What do the other factors cause in the graph of $f(x)$?
The factor $(x+3)$ in the numerator and not the denominator will cause an x intercept at $(x, y)=(-3,0)$
The factor $\frac{(x-4)}{(x-4)}$ causes a hole in the graph at $x=4$ s because the factor $(x-y)$ appears in numerator σ denominator with equal powers.

We can confirm this with a computer graph

End of [Example 1]
[Example 2] Find all horizontal and vertical asymptotes for the function:

$$
f(x)=\frac{5 x^{3}}{3 x^{2}-12}
$$

Solution:

To determine whether or not there is a horizontal asymptote, we work with the given standard form of $f(x)$

$$
f(x)=\frac{5 x^{3}}{3 x^{2}-12}
$$

We observe that

$$
\text { degree of numerator }=3>2=\text { degree of densminator. }
$$

Therefore,
These will nit be a horizontal asymptote.

To determine whether or not there are any vertical asymptotes, we must find the factored form of $f(x)$

$$
f(x)=\frac{5 x^{3}}{3 x^{2}-12}=\frac{5 x^{3}}{3\left(x^{2}-4\right)}=\frac{5 x^{3}}{3(x+2)(x-2)}=\frac{\substack{\text { notice difference } \\ \text { of two squares }}}{}
$$

We observe that
The factors $(x+2)$ and $(x-2)$ appear in the denominator and nt the numerator.

Therefore,
There will be vertical asymptotes with line equations $x=-2$ and $x=2$.

Remark: What do the other factors cause in the graph of $f(x)$?
The factor (x) appears in the numerator alone, raised to the $3^{\text {ra }}$ power. It will cause an x-intercept at $(x, y)=(0,0)$

We can confirm this with a computer graph

End of [Example 2]
[Example 3] Find all horizontal and vertical asymptotes for the function:

$$
f(x)=\frac{5 x}{3 x^{2}+12}
$$

Solution:

To determine whether or not there is a horizontal asymptote, we work with the given standard form of $f(x)$

$$
f(x)=\frac{5 x}{3 x^{2}+12}
$$

We observe that degree of numerator $=1<2=$ degree of denominator

Therefore,
There will be a horizontal asymptote with line equation $y=0$

To determine whether or not there are any vertical asymptotes, we must find the factored form of $f(x)$
$f(x)=\frac{5 x}{3 x^{2}+12}$ The denominator cannot be factored further So the factored form of $f(x)$ is the same as the standard form.
The denominator does not have any linear factors.
So the graph will not have any vertical asymptotes.
Remark: What do the other factors cause in the graph of $f(x)$?
The factor x in the numerator and not the denominator
will cause an X intercept at $(x, y)=(0,0)$

We can confirm this with a computer graph

End of [Example 3]

End of Video

