Topic for this Video: Introduction to Continuity

Reading:

- General: Section 2.3 Continuity
- More specifically: Pages 118 121, including Example 1

Homework:

H16 Given graph of f, find limit and continuity behavior (2.3#19,20,27)

Recall the Examples that we did in the Video for Homework H02 involving finding limits for a function given by a graph.

Here is the graph:

Graph from Video for H02: Limits for a Function Given by a Graph (Section 2.1)

Observe that the graph has holes, jumps, and points in the wrong places.

Holes, jumps, and points in the wrong places are easy to spot on a graph. A reasonable question, though, is the following:

Is there some way of analyzing the formula for a function to determine if its graph would have any holes & jumps?

The answer is, *yes*. The concept of *continuity* allows one to analyze the formula for a function and determine if (and where) its graph would have holes & jumps.

Before, we see the *definition of continuity*, let's look again at the graph from the previous video, and review how the accompanying table of questions was filled out, because we will gain some insight into how *continuity* will be defined.

Questions from Video for H02: Limits for a Function Given by a Graph (Section 2.1)

<i>x</i> -value	limit from left	limit from right	limit	y-value
-3	$\lim_{x\to -3^-} f(x) = 3$	$\lim_{x \to -3^+} f(x) = 3$	$\lim_{x \to -3} f(x) = \mathbf{Z}$	f(-3) = 3
-1	$\lim_{x \to -1^-} f(x) =$	$\lim_{x \to -1^+} f(x) = 2$	$\lim_{x \to -1} f(x) = \mathbf{DNE}$	f(-1) =
1	$\lim_{x \to 1^-} f(x) = \mathcal{C}$	$\lim_{x \to 1^+} f(x) = 3$	$\lim_{x \to 1} f(x) = 3$	f(1) = DNE
4	$\lim_{x \to 4^-} f(x) =$	$\lim_{x \to 4^+} f(x) =$	$\lim_{x \to 4} f(x) =$	f(4) = 1
6	$\lim_{x \to 6^-} f(x) = \bigcirc$	$\lim_{x \to 6^+} f(x) = \mathcal{L}$	$\lim_{x\to 6} f(x) = \mathbf{DNE}$	$f(6) = \mathcal{D} \mathbf{N} \mathbf{E}$

Observations:

At x = -3, there is no break or jump or point in the wrong place, and at x = -3 the following three things are all true:

- 1) $\lim_{x \to -3} f(x)$ exists
- 2)f(-3) exists

3) The number that is the limit equals the number that is the y value. That is, $\lim_{x \to -3} f(x) = f(-3)$

Observations, continued: At all the *x* values where there is a break or a jump, one or more of those three things is not true.

- At x = -1, there is a jump in the graph
 - 1) $\lim_{x \to -1} f(x)$ does not e_{x}

2) f(-1) exists

3) The limit and the y value can't be equal, because there is no limit.

At x = 1, there is a hole in the graph

1) The limit exists: $\lim_{x \to 1} f(x) = 3$

2) f(1) does not exist

3) The limit and the y value can't be equal, because there is no y value.

At x = 4, there is a hole in the graph and a dot in the wrong place

1) The limit exists: $\lim_{x \to 4} f(x) = 1$

2)f(4) = 2

3) The limit and the y value are not equal equal

After making the above observations about the graph, we are in a good position to understand the following *definition of continuity*.

```
Definition of Continuity at a particular x value

Words: The function f is continuous at x = c.

Meaning: the function f passes these three tests:

Test 1: \lim_{x\to c} f(x) exists

Test 1: \lim_{x\to c^-} f(x) exists

Test 1: \lim_{x\to c^+} f(x) exists

Test 1: \lim_{x\to c^+} f(x) exists

Test 1: The numbers in test 1 a and 1 b agree.

Test 2: f(c) exists

Test 3: The numbers in Test 1 and Test 2 agree.
```

[Example]

In this example, you are asked various questions about a graph. Some of the questions are about *Continuity* (our new concept, from Section 2.3), but some of the questions are about *Limits* and *Limits involving Infinity* (old concepts from Sections 2.1 and 2.2)

Here is the graph:

(1) For each asymptote, give the line equation and say whether it is horizontal or vertical.

Horizontal asymptote on the left with line equation y=3 Vertical asymptote with line equation X=2 Horizontal asymptote on the right with line equation y=1

(3) $\lim_{x \to -5} f(x) =$ left limit $\lim_{x \to -5^-} f(x) = 3$ because the graph is approaching the location (x,y) = (-5,3) from the left. (x,y) = (-5,3) from the left. because the graph is approaching the becation (x,y) = (5,2)from the right. because left tright limits because left tright limits because left tright limits

(8) Is f continuous at a = -5? If not, explain why not.

Consider the continuity test
Test 1 a
$$\lim_{X \to -5^-} f(x) = 3$$

Test 16 $\lim_{X \to -5^+} f(x) = 2$
Test 10 $\lim_{X \to -5^+} f(x) = 2$
Test 10 The left + right limits do not match
Test 2 $f(-5)=3$ because point at $(X,y)=(-5,3)$
Test 3 fails tert 3 because the limit does not exist.
Conclusion : the function is get continuous at $X=-5$

(9) Is f continuous at a = -2? If not, explain why not. Test 1 dues limit exist? f(x) = -1 because graph is $x \to -2$ A heading for the a = -2 heading for the b = -2 because graph is (x, y) = (-2, -1)Test 2 dies y-value exist? f(-2) = -1 because there is a point on the graph at (x, y) = (-2, -1)Test 3 limits of Test 1 and Test 2 motch. Conclusion: the function is continuous at x = -2.

(11) Is f continuous at a = 6? If not, explain why not. test 1 kin f(x) = 3 because graph is heading for the location (X, y) = (6, 3) Test 2 f(6) = 2 because point on graph at (X, y) = (6, 2) test 3 $kin f(x) \neq f(6)$ so fails test 3 End of [Example] $x \rightarrow 6$ $x \rightarrow 6$