Topic for this video: Given specified limit behavior, sketch graph and discuss continuity behavior

Reading:

- General: Section 2.3 Continuity
- More specifically: Pages 118 - 121, about a graphical approach to continuity

Homework:

H17: Given specified limit behavior, sketch graph and discuss continuity behavior $(2.3 \# 11,13)$

Recall some background concepts:

The terminology of one-sided limits, introduced in Section 2.1 and discussed in the Video for Homework H02.

The limit from the left

- Symbol: $\lim _{x \rightarrow c^{-}} f(x)=L$
- Spoken: "The limit, as x approaches c from the left, of $f(x)$ is $L . "$
- Graphical Significance: The graph of f appears to be heading for location $(x, y)=(c, L)$ from the left.

The limit from the right

- Symbol: $\lim _{x \rightarrow c^{+}} f(x)=L$
- Spoken: "The limit, as x approaches c from the right, of $f(x)$ is L."
- Graphical Significance: The graph of f appears to be heading for location $(x, y)=(c, L)$ from the right.

Another background concept:

The definition of continuity, introduced in Section 2.3 and discussed in the the previous video, which accompanied Homework H16.

Definition of Continuity at a particular \boldsymbol{x} value

Words: The function f is continuous at $x=c$.
Meaning: the function f passes these three tests:
Test 1: $\lim _{x \rightarrow c} f(x)$ exists
Test 1a: $\lim _{x \rightarrow c^{-}} f(x)$ exists
Test 1b: $\lim _{x \rightarrow c^{+}} f(x)$ exists
Test 1 c : The numbers in test 1 a and 1 b agree.
Test 2: $f(c)$ exists
Test 3: The numbers in Test 1 and Test 2 agree.

IMPORTANT EXAMPLE OF A TYPE NOT DISCUSSED IN BOOK:

Given a description of limit behavior of \boldsymbol{f},
sketch a possible graph of f and discuss the continuity
[Example]
(a) Sketch a graph that satisfies all these conditions:

$$
\begin{aligned}
& f(1)=3 \\
& \lim _{x \rightarrow 1^{-}} f(x)=2 \\
& \lim _{x \rightarrow 1^{+}} f(x)=-4
\end{aligned}
$$

(b) Discuss the continuity of f at $x=1$.

Solution to (a) This part of the question was actually presented in the video for Homework H03, and represented a kind of problem was on that homework set:

Given a description of limit behavior of \boldsymbol{f}, sketch a possible graph of \boldsymbol{f}.

For simplicity, I will just repeat the solution presented in that video.

Start by noting that in the given information, three (x, y) locations are mentioned.

- The symbol $f(1)=3$ is about the location $(x, y)=(1,3)$
- The symbol $\lim _{x \rightarrow 1^{-}} f(x)=2$ is about the location $(x, y)=(1,2)$
- The symbol $\lim _{x \rightarrow 1^{+}} f(x)=-4$ is about the location $(x, y)=(1,-4)$

On one set of axes, plot these three locations with open circles.

Then add features to the figure that convey what the given information tells us about those locations.

- The symbol $f(1)=3$ tells us that there is a point on the graph at $(x, y)=(1,3)$
- The symbol $\lim _{x \rightarrow 1^{-}} f(x)=2$ tells us that the graph is heading for the location $(x, y)=(1,2)$ feer the left.
- The symbol $\lim _{x \rightarrow 1^{+}} f(x)=-4$ tells us that the graph is heading for the location $(x, y)=(1,-4)$ form the right.

Solution to (b): This is the only part of this problem that is new. To discuss the continuity of f at $x=1$, we should see how f does on the three-part test presented in the definition of continuity.

Test 1: Does $\lim _{x \rightarrow 1} f(x)$ exist?

Test lb: Does $\lim _{x \rightarrow 1^{+}} f(x)$ exist? yes wi were told that $\lim _{x \rightarrow 1^{+}} f(x)=-4$
χ Test lc: Do the numbers in test 1 a and 1 b agree? no $2 \neq-4$

$$
f \text { is not continuous at } x=1 \text { It fails test ll } 1 c_{1}
$$

Test 2: Does $f(c)$ exist? yes. Wi ace told that $f(1)=3$
Test 3: Do the numbers in Test 1 and Test 2 agree? the function failed test 1 ,
Conclusion:

$$
\int_{0}^{\text {nclusion: }} \text { is not contionous at } x=1 \text {. }
$$

pass fist 3.
[End of Example] and End of Video

