Continuing Section 2.3: Continuity

Subject for this video: Positive and Negative Behavior of Graphs of Functions

This is prerequisite material, but it is very important for our course so it is worth a review.

Homework:
H20: Positive and Negative Behavior of Graphs of Functions $(2.3 \# 55,85)$

Recall definition of positive and negative.

$$
\begin{aligned}
& \text { To say a number y is position e means } y>0 \\
& \text { To bay y is negative and negative. } \\
& \text { Geans } y<0 \text {. } \\
& \text { The term non-negatise means } y \geq 0 \text {) }
\end{aligned}
$$

[Example 1] The graph of a function f is shown below.

(1) Where is $\underline{f(x)=0 \text { ? }}$ Where is $y=0$?, $\quad x=-9,-5,8,10$
(2) Where is $\underbrace{f(x)>0}$? Express answers in interval notation. $(-\infty,-9) \cup(-5,8) \cup(10, \infty)$ $y>0 \quad$ Graphic above the x axis
(3) Where is $f(x)<0$? Express answers in interval notation. $(-9,-5) \cup(8,10)$ $y<0$ Graphic below the x axis.
[Example 2] A function $f(x)$ is known to have the following properties

(a) Sketch a possible graph of $f(x)$.
(b) Give the x coordinates of the x intercepts.

Start by indicating the positive o regatise regions on a number line.

S'ucortinuow, , bo the only way it caa change form positive to negative is by touching the x axis and consing it.
End of Video

$$
\text { So } x \text { intecuets at } x=-3,2,7
$$

