Continuing Section 2.3: Continuity

Subject for this video: Sign Behavior of Functions and Solving Inequalities

Reading:

- General: Section 2.3 Continuity
- More specifically: bottom of p. 123 top of p. 126, Examples 4, 5

Homework:

H21: Solving Inequalities (2.3#47,49,51,53)

In Calculus, it turns out that an important tool in analyzing a function is to determine where the function is *positive*, *negative*, *zero*, or *discontinuous*. This could generally be described as determining the *sign behavior* of the function.

Tools that we will use that were used in Video for Homework H19:

Continuity Properties from the book Section 2.3

PROPERTIES General Continuity properties

If two functions are continuous on the same interval, then their sum, difference, product, and quotient are continuous on the same interval except for values of x that make a denominator 0.

THEOREM 1 Continuity Properties of Some Specific Functions

- (A) A constant function f(x) = k, where k is a constant, is continuous for all x. f(x) = 7 is continuous for all x.
- (B) For *n* a positive integer, $f(x) = x^n$ is continuous for all *x*. $f(x) = x^5$ is continuous for all *x*.
- (C) A polynomial function is continuous for all x. $2x^3 - 3x^2 + x - 5$ is continuous for all x.
- (D) A rational function is continuous for all x except those values that make a denominator 0.

 $\frac{x^2+1}{x-1}$ is continuous for all x except x = 1, a value that makes the denominator 0.

(E) For *n* an odd positive integer greater than 1, $\sqrt[n]{f(x)}$ is continuous wherever f(x) is continuous.

 $\sqrt[3]{x^2}$ is continuous for all *x*.

(F) For *n* an even positive integer, $\sqrt[n]{f(x)}$ is continuous wherever f(x) is continuous and nonnegative.

 $\sqrt[4]{x}$ is continuous on the interval $[0, \infty)$.

Observations about sign behavior of functions

Recall observation from previous video: A function that is <u>continuous</u> can only change sign by touching the *x* axis and crossing it. At those *x* values, there is an *x intercept*.

On the intervals *between* those *x* intercepts, the sign of the function does not change. That is encapsulated in the book's Section 2.3 Theorem 2.

THEOREM 2 Sign Properties on an Interval (a, b)

If f is continuous on (a, b) and $f(x) \neq 0$ for all x in (a, b), then either f(x) > 0 for all x in (a, b) or f(x) < 0 for all x in (a, b).

But a function that is not always continuous can also change sign by by jumping across the x axis at an x value where the function is discontinuous. At these x values, there is *not* an x intercept.

Based on these observations, we see that to determine the sign behavior of a function, it is helpful to first determine the x values where the function has an x intercept or is discontinuous. We will give these x values a name. Here is a definition from the book:

DEFINITION

A real number x is a **partition number** for a function f if f is discontinuous at x or f(x) = 0.

On the intervals between the *partition numbers* for f, the sign of the function f does not change.

Keep in mind that a function does not necessarily change sign at *every partition number*. For example, consider this function.

With the terminology of *partition numbers*, we can articulate a procedure for determining the sign behavior of a function using a sign chart. Here is the procedure from the book.

We will study four examples involving determining sign behavior for a function by analyzing the formula for the function, and using sign behavior to solve inequalities

[Example 1] (similar to 2.3#49) Let $f(x) = 9x^2 - 90x + 189 = 9(x - 3)(x - 7)$ standard firm factored form (a) Determine sign behavior of f. Solution: Stepl Find partition numbers · S is polynomial, so there are no x values that cause f to be discontinuous. · Find × values that cause S(x)=D 0 = q(x-3)(x-7)Solutions X=3, X=7 So partition numbers are X=3, X=7. Sign Chart for 5(x)=9(x-3)(x-7) S(2)= 9(12)-3)(2)-7)= 9(-1)(-5) = 205 ら(い) = 9(ビン・う)(ビ)~~) = 9(1)(~~)= ney F(4) = Q((9) - 3)((9) - 3) = Q(5)(1) = 205

(b) Solve the inequality f(x) > 0.

Present the solution set 3 ways: Picture Using Number Line, Interval Notation, Set Notation

Solution:

(c) Solve the inequality $f(x) \ge 0$.

Present the solution set 3 ways: Picture Using Number Line, Interval Notation, Set Notation

Solution:

$$\begin{array}{c} x - 3 \\ (-\infty, 5] \cup [7, \infty) \\ \chi \quad \text{such that} \quad \chi \leq 3 \quad \text{or} \quad 7 \leq \chi \\ \end{array}$$

[Example 2] (similar to 2.3#49) Solve $9x^2 - 90x < -189$.

Present the solution set 3 ways: Picture Using Number Line, Interval Notation, Set Notation,

Solution:

More helpful form would be an inequality comparing So mething to 0, $9 \chi^2 - 90 \chi < -189$ and 189 to both Siles $9 \chi^{2} - 90 \chi + 139 < 0$ recognize that this is S(x) from previous periodem We are being asked to solve f(x) < D Using eachier sign chart **⊕**_1 大きろ EX with that 36×673 (3,7)

[Example 3] (similar to 2.3#51) Solve $x^3 > 49x$.

Present the solution set 3 ways: Picture Using Number Line, Interval Notation, Set Notation,

Solution: Create an inequality where something is compared to 0.

$$\chi^3 > 49\chi$$

Subtract 49x from both sides
 $\chi^3 - 49\chi = 0$ Polynomial function $g(\chi) = \chi^3 - 49\chi$
We want to study sign behavior of $g(\chi) = \chi^3 - 49\chi$.
Mate a sign chart.
Stall Find partition mumbers
G is phynomial, so there are no χ values that cance g to be discontinuous.
So Sind χ values that cance $g(\chi) = 0$
 $0 = g(\chi) = \chi^3 - 49\chi = \chi(\chi^2 - 7) = \chi(\chi + 7)(\chi - 7)$
 $0 = (\chi + 7)(\chi)(\chi - 7)$
 f_{above} from members
 $0 = (\chi + 7)(\chi)(\chi - 7)$
 $\chi = 0, \chi = 7$

Common incorrect solution to [Example 3] Common incorrect solution 5 olue x3 > 49x Find pactition numbers by Solving =49× this step assumes that X = D by X · Incollection 00 Missing X=Q Mit the correct solution.

[Example 4] (similar to 2.3#53) (a) Solve the inequality $\frac{x^2 - 13x}{x - 17} < 0$ Present the solution set 3 ways: Picture Using Number Line, Interval Notation, Set Notation, Solution: I dentity a function that is carolied, and study the Sign behavior of that function Let $f(x) = \frac{x^2 - 13x}{x - 17}$. Solve f(x) < 0Make a sign chart fir fix Stepl find partition numbers for $f(x) = \frac{\chi^2 - 13\chi}{\chi - 17} = \chi(x-13)$ Partition numbers X=0 and X=13 cause S(X) to be Zero X-17 canses S(x) to be discontinuous

Stepd Sign chart for $f(x) = \frac{\chi(\chi-13)}{\chi-13}$ FIJONE 510/=0 f(13)=0 $\frac{1}{1} \begin{array}{c} x = 0 \end{array}$ ナナナ X=13 X:17 X=1 X2-1 X=14 X=18 f(-1) = (-1)((-13))neg.neg = neg ((-1)-17)neg $S(1) = (1)((1)-13) = \frac{205 \cdot ncg}{(1)-13} = 205$ 5(14) = (14)(14) - 13) = 205.905 = neg((14) - 17) = neg $\frac{(18)(18)-13)}{((18)-17)}$ = <u>Pos.pos</u> = pos <u>205</u> = pos

Solution to negoality
$$S(x) < O$$
 $\frac{X^2 - 13X}{X - 17} < O$

(b) Solve the inequality
$$\frac{x^2 - 13x}{x - 17} \le 0$$
 $S(x) \le 0$

Present the solution set 3 ways: Picture Using Number Line, Interval Notation, Set Notation, **Solution**:

[End of Video]