## Section 2.4 Rates of Change

## Subject for this video: Prerequisite Skills: Building and Simplifying Expressions

Reading: Section 1.1, page 10, including Example 6
Homework: H24: Prerequisite Skills: Building and Simplifying Expressions (1.1\#61,63,73,78)
[Example] Let $f(x)=-3 x^{2}+15 x-7$
Find the following quantities. In question $[F]$, assume that $h \neq 0$.

$$
\begin{aligned}
& {[\boldsymbol{A}] f(4 x)} \\
& {[\boldsymbol{B}] f(-4)} \\
& {[\boldsymbol{C}] f(4)} \\
& {[\boldsymbol{D}] f(4+h)} \\
& {[\boldsymbol{D}] f(4+h)-f(4)} \\
& {[\boldsymbol{F}] \frac{f(4+h)-f(4)}{h}}
\end{aligned}
$$

Soutinto $A(A) \quad f(x)=-3 x^{2}+15 x-7$
we need $f(4 x)$
Build the empty version of $f$

$$
f()=-3()^{2}+15()-7 \text { empty }
$$

Now put $4 x$ into each parentheses

$$
\begin{aligned}
f(4 x) & =\frac{-3(4 x)^{2}+15(4 x)-7}{} \\
& =-3\left(16 x^{2}\right)+60 x-7 \\
& =-48 x^{2}+60 x-7
\end{aligned}
$$

Solutiontor $B]$ find $f(-4)$
Returen to the umpty version

$$
\begin{aligned}
f() & =-3()^{2}+15()-7 \\
f(-4) & =-3(-4)^{2}+15(-4)-7 \\
& =-3(16)-60-7 \\
& =-48-60-7 \\
& =-115
\end{aligned}
$$

Solution to $[0]$ we need $f(4)$
Start with empty version

$$
f()=-3()^{2}+15()-7
$$

Substrate in the member 4

$$
\begin{aligned}
f(4) & =-3(4)^{2}+15(4)-7 \\
& =-3.16+60-7 \\
& =-48+60-7 \\
& =12-7 \\
& =5
\end{aligned}
$$

Solution to [D] we need $f(4+h)$
Start with the empty version

$$
f(\quad)=-3()^{2}+15(\quad)-7
$$

substitute 4 th into each parentheses

$$
\begin{aligned}
f(4+h) & =-3(4+h)^{2}+15(4+h)-7 \\
& =-3\left(\left(16+8 h+h^{2}\right)+60+15 h-7\right. \\
& =-48-24 h-3 h^{2}+60+15 h-7 \\
& =(-48+60-7)+(-24 h+15 h)-3 h^{2} \\
& =5-9 h-3 h^{2} \\
(4+h)^{2}=(4+h)(4+h) & =16+4 h+4 h+h^{2}=16+8 h+h^{2}
\end{aligned}
$$

Soution to $[E]$ we need to baild $f(4$ th $)-f(4)$

$$
\begin{aligned}
f(4+h)-f(4) & =(\underbrace{f-9 h-3 h^{2}}_{f \sin ([)]})-\underbrace{(5)}_{f \sin (c)} \\
& =-9 h-3 h^{2}
\end{aligned}
$$

Solution to [E] we ned to build the ratio

$$
\frac{f(4+h)-f(4)}{h} \quad(\text { assuming } h \neq 0)
$$

Remark: this is a difference quotient
That is, it is of the from $\frac{\Delta y}{\Delta x}$
Notice that we find the numerator in part $(E)$

$$
\begin{aligned}
& \frac{f(4+h)-f(4)}{h}=\frac{-9 h-3 h^{2}}{h}=\frac{h(-9-3 h)}{h}=-(-9-3 h \\
& \text { End of Video }
\end{aligned}
$$

