## Subject for this video: Computing $\boldsymbol{f}^{\prime}(\boldsymbol{x})$ for a Polynomial Function

## Reading:

- General: Section 2.4 Rates of Change
- More specifically: middle of p. 135 - middle of p. 137, Example 4


## Homework:

H26: Computing $f^{\prime}$ for a Polynomial Function (2.4\#19,21,27,29)

In this video, we will learn about the derivative of a function, and we will study examples involving computing derivatives of polynomial functions.

In the previous video, we discussed the instantaneous rate of change of a function and line tangent to the graph of a function.

## Definition of Instantaneous Rate of Change

words: the instantaneous rate of change of $f$ at a
alternate words: the derivative of $f$ at $a$
symbol: $f^{\prime}(a)$
meaning: the number $m=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}$
remark: The instantaneous rate of change $f^{\prime}(a)$ is a number.

## Definition of the Tangent Line

words: the line tangent to the graph of of $f$ at $x=a$
meaning: the line that has these two properties

- The line contains the point $(x, y)=(a, f(a))$, which is called the point of tangency.
- The line has slope $m=f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}$, called the tangent line slope.
remark: the tangent line slope $m=f^{\prime}(a)$ is also called the slope of the graph at $\boldsymbol{x}=\boldsymbol{a}$.

Focus on the expression

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

In this expression,

- The symbol $a$ represents a number
- The symbol $f$ represents a function
- The symbol $f^{\prime}(a)$ represents a number that is the slope of the line tangent to the graph of the function $f(x)$ at $x=a$. This number is computed by finding a limit

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

The symbol $f^{\prime}(a)$ is spoken the derivative of $f$ at $a$.

Now consider replacing the number $a$ with a variable $x$ in all the expressions above. Then the expression

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

would not represent a number, but rather would represent a function of $x$. That function is called the derivative of $f$.

## Definition of the Derivative

Symbol: $f^{\prime}(x)$
Spoken: $f$ prime of $x$
Also spoken: the derivative of $f$ of $x$
Meaning: the function $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
Used For: When an actual number $x=a$ is substituted into the derivative function $f^{\prime}(x)$, the resulting number $f^{\prime}(a)$ can be interpreted as

- the slope of the line tangent to the graph of $f(x)$ at $x=a$
- the slope of the the graph of $f(x)$ at $x=a$
- the instantaneous rate of change of $f(x)$ at $x=a$
- If $f(x)$ is a position function for a moving object, the number $f^{\prime}(a)$ is the velocity of the object at time $x=a$.

It is important to be careful with terminology when thinking and speaking about derivatives.

One will sometimes hear things like:
The derivative is the slope of the tangent line.

Realize that this is wrong. The slope of the tangent line is a number. The derivative is a function, not a number.

It is much better to think of the derivative in the following way:
The derivative is a function that can be used to find the slope of tangent lines.

In today's video, we will be computing derivatives of polynomial functions using the Definition of the Derivative presented two pages ago. That means that, given a function $f(x)$, we will be building the expression for the limit described in the Definition of the Derivative,

$$
\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

and then using properties of limits to compute the limit. The result of the limit will be a function that is the derivative function $f^{\prime}(x)$.

Computing $f^{\prime}(x)$ using the Definition of the Derivative is difficult and messy.

Some of you may have studied calculus before and know about shortcuts to finding derivatives. The shortcuts are not nearly so difficult and not nearly so messy.

We will be learning shortcuts in this course, too. They will be called Derivative Rules. But that will come later. First, we will spend a few videos discussing (and you will do a few homework sets about) finding derivatives using the Definition of the Derivative. That is, the harder, messier method.

In Section 2.4, the book presents a Four-Step Process for finding derivatives using the Definition of the Derivative. Here it is:

PROCEDURE The four-step process for finding the derivative of a function $f$ :
Step 1 Find $f(x+h)$.
Step 2 Find $f(x+h)-f(x)$.
Step 3 Find $\frac{f(x+h)-f(x)}{h}$.
Step 4 Find $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$.

I don't like the book's use of the four-step process, because I feel that it obscures what I think is the most important concept of the first month of the course:

When can one cancel terms, and why?
For that reason, I will use a different procedure

Procedure for finding $f^{\prime}(x)$ using the Definition of the Derivative
Present the goal: to find $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
Get parts: Find the expression $f(x+h)$ that will be needed.
Build the limit expression and compute it: Build the expression $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$ and compute the limit using properties of limits.

## Explain clearly:

- Point out limits that are indeterminate forms.
- If cancellation is done, explain clearly why it is justified.
[Example 1] (Similar to Exercise 2.4\#29) Let $f(x)=-3 x^{2}+12 x+15$.
(A) Find $f^{\prime}(x)$ using the Definition of the Derivative.
(B) Find $f^{\prime}(-2)$.
(C) Find $f^{\prime}(0)$.
(D) Find $f^{\prime}(2)$.
(E) Find $f^{\prime}(4)$.
(F) Illustrate your results from (B),(C),(D),(E) using a given graph of $f(x)$.

Remark: The book uses this wording for (A): Use the four-step process to find $f^{\prime}(x)$.
Their question has the same goal, but I prefer to use my own process, not the four-step process.
Solution
(A) We need to find $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
notice: this is an indeterminate form: If we substitute hoo now,
we would get $\frac{f(x+(0))-f(x)}{(0)}=\frac{f(x)-f(x)}{0}=\frac{0}{0}$
Go we cant 'gut compute the limit by substituting $h=0$ right away.

Get part) we will need $f(x+h)$

$$
f(x)=-3 x^{2}+12 x+15
$$

Get the empty version

$$
f()=-3()^{2}+12()+15 \text { empty version }
$$

plug $x$ th into the parentheses and compute

$$
\begin{aligned}
f(x+h) & =-3(x+h)^{2}+12(x+h)+15 \\
& =-3(x+h)(x+h)+12 x+12 h+15 \\
& =-3\left(x^{2}+x h+x h+h^{2}\right)+12 x+12 h+15 \\
& =-3\left(x^{2}+2 x h+h^{2}\right)+12 x+12 h+15 \\
& =-3 x^{2}-6 x h-3 h^{2}+12 x+12 h+15
\end{aligned}
$$

Build the limit expression and compute it

$$
\begin{aligned}
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-(f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left(-3 x-6 x h-3 h^{2}+12 x+12 h+15\right)-\left(-3 x^{2}+12 x+15\right)}{h} \\
& \text { cancel terms using arithmetic } \\
& =\lim _{h \rightarrow 0} \frac{-6 x h-3 h^{2}+12 h}{h} \\
& \text { lactic ont an } h \text { in the numerator } \\
& =\lim _{h \rightarrow 0} \frac{h(-6 x-3 h+12)}{h} \quad \text { til inlier minute form }
\end{aligned}
$$

Since $h \rightarrow 0$, we know $h \neq 0$, so we can cancel $\frac{h}{h}$ $=\lim _{h \rightarrow 0} \underbrace{-6 x-3 \bar{h}+12}$ no longer indeterminate!
polynomial in the variable $h$.
$x$ theorem 3 tolls wy that we can substitute $h=0$

$$
\begin{aligned}
& =-6 x-3(0)+12 \\
& =-6 x+12
\end{aligned}
$$

(B) Find $f^{\prime}(-2)$
solution This symbol means substitute $x=-2$ into formula for $f^{\prime}(x)$

$$
\begin{aligned}
& f^{\prime}(x)=-6 x+12 \\
& f^{\prime}()=-6()+12 \text { empty vision } \\
& f^{\prime}(-2)=-6(-2)+12=24
\end{aligned}
$$

(c) Find $f^{\prime}(0)$

Solution $f^{\prime}(0)=-6(0)+12=12$
(D) Find $f^{\prime}(2)$

Solution s ${ }^{\prime}(2)=-6(2)+12=-12+12=0$
(F) Find ff( $(4)$

Solution $f^{\prime}(4)=-6(4)+12=-24+12=-12$
(F) Grain of $f(x)=-3 x^{2}+12 x+15$


End of [Example 1]
[Example 2] (Similar to Exercise 2.4\#21) Let $f(x)=5 x-7$.
(A) Find $f^{\prime}(x)$ using the Definition of the Derivative.
(B) Find $f^{\prime}(-2)$.
(C) Find $f^{\prime}(0)$.
(D) Find $f^{\prime}(2)$.
(E) Find $f^{\prime}(4)$.
(F) Illustrate your results from (B),(C),(D),(E) using a given graph of $f(x)$.
(A) We need to find $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$

Get pacts Wi need $f(x+h)$

$$
\begin{aligned}
f(x) & =5 x-7 \\
f() & =5(\quad)-7 \text { empty vision } \\
f(x+h) & =5(x+h)-7 \\
& =5 x+5 h-7
\end{aligned}
$$

Pat pacts into the limit experssion and compute the limit

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \quad \text { index minute form } \\
& =\lim _{h \rightarrow 0} \frac{(5 x+5 h-7)-(5 x-y)}{h} \quad \text { indeterminate }
\end{aligned}
$$

Cancel ujingarithmatic

$$
\begin{aligned}
& =\lim _{h \rightarrow 0} \frac{5 h}{h} \quad \text { indeterminate } \\
& \text { we know } h \rightarrow 0 \text {, so } h \neq 0, \text { so we can cancel } \frac{h}{h} \\
& =\lim _{h \rightarrow 0} 5
\end{aligned}
$$

$$
=5 \quad \text { we have found that } f^{\prime}(x)=5
$$

(B) find $f^{\prime}(-2)$

Solution $f^{\prime}(x)=5$, so $f^{\prime}(-2)=5$
(c) find $f^{\prime}(0)$ Solutios: $f^{\prime}(0)=5$

Gimilarly
(0) $f^{\prime}(2)=5$
(E) $f^{\prime}(4)=5$


End of [Example 2]
[Example 3] (Similar to Exercise 2.4\#19) Let $f(x)=7$.
(A) Find $f^{\prime}(x)$ using the Definition of the Derivative.
(B) Find $f^{\prime}(-2)$.
(C) Find $f^{\prime}(0)$.
(D) Find $f^{\prime}(2)$.
(E) Find $f^{\prime}(4)$.
(F) Illustrate your results from (B),(C),(D),(E) using a given graph of $f(x)$.
(A) We need to find $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$

Sect pars) we need $f(x+h)$

$$
\begin{aligned}
& f(x)=7 \\
& S(\quad)=7 \quad \text { empty vision } \\
& f(x+h)=7
\end{aligned}
$$

Build the limit expecssion and use properties of limits to find theliait.

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-(f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\text { (x)-x}}{h}
\end{aligned}
$$

(ancel) 7 using arithmetic

$$
=\lim _{h \rightarrow 0} \frac{0}{h}
$$

since $h \rightarrow 0$, we know $h \neq 0$, so $\frac{0}{h}=0$

$$
=\lim _{n \rightarrow 0} 0
$$

$=0$
we have found that $f^{\prime}(x)=0$
$(B),(C),(D),(\mathbb{E})$

$$
f^{\prime}(-2)=f^{\prime}(0)=f^{\prime}(2)=f^{\prime}(4)=0
$$



End of [Example 3]
End of Video

All of the tangent lines are hoirunal because the yip of $f(x)$ is horizontal.

