Subject for this video: Computing f'(x) for $\frac{1}{x}$ and \sqrt{x} type functions

Reading:

- General: Section 2.4 The Derivative
- More specifically: middle of p. 138 middle of p. 140, Examples 6,7

Homework:

Computing f'(x) for $\frac{1}{x}$ and \sqrt{x} type functions (2.4#35,37)

Recall the *Definition of the Derivative*, introduced in Section 2.4 and discussed in the previous video:

Definition of the *Derivative*

Symbol: f'(x)Spoken: f prime of xAlso spoken: the derivative of f of xMeaning: the function $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ Used For: When an actual number x = a is substituted into the derivative function f'(x), the resulting number f'(a) can be interpreted as

- the slope of the line tangent to the graph of f(x) at x = a
- the slope of the the graph of f(x) at x = a
- the instantaneous rate of change of f(x) at x = a
- If f(x) is a position function for a moving object, the number f'(a) is the velocity of the object at time x = a.

And recall the outline of a process for computing the derivative:

Four Step Process for finding f'(x) using the *Definition of the Derivative* **Present the goal:** to find $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ Get parts: **Step 1:** Find the expression f(x + h)**Step 2:** Find the expression f(x + h) - f(x)**Step 3:** Find the expression $\frac{f(x+h)-f(x)}{h}$ Find the limit: **Step 4:** Build the expression $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ and compute the limit. **Explain clearly:**

- Point out limits that are indeterminate forms.
- If cancellation is done, explain clearly why it is justified.

[Example 1] (similar to Exercise 2.4#35) Let $f(x) = 7 + \frac{13}{x}$ $\frac{1}{x}$ type function

(A) Find f'(x) using the *Definition of the Derivative*.

- **(B)** Find f(1) and f'(1).
- (C) Find f(2) and f'(2).
- **(D)** Find $f\left(\frac{1}{2}\right)$ and $f'\left(\frac{1}{2}\right)$.
- (E) Find f(-2) and f'(-2).

(F) Illustrate your results from (B),(C),(D),(E) using a given graph of f(x).

Solution
(A) We need to find
$$f'(x) = \lim_{n \to 0} \frac{f(x+h) - f(x)}{h}$$

Step 1 find $f(x+h)$
 $f(x) = 7 + \frac{13}{x}$
 $f(x) = 7 + \frac{13}{x}$ empty version
 $f(x+h) = 7 + \frac{13}{(x+h)}$

Step 2 find
$$S(\chi + h) - S(\chi)$$

 $S(\chi + h) - S(\chi) = \left(7 + \frac{13}{(\chi + h)}\right) - \left(7 + \frac{13}{\chi}\right)$
7 concels by basic arithmetic
 $= \frac{13}{\chi + h} - \frac{13}{\chi}$
get common denominator
 $= \frac{13\chi}{(\chi + h)} - \frac{13(\chi + h)}{\chi(\chi + h)}$
 $= \frac{13\chi}{(\chi + h)} - \frac{13\chi}{\chi(\chi + h)}$
 $= \frac{13\chi}{(\chi + h)} - \frac{13\chi}{\chi(\chi + h)}$
 $= \frac{13\chi}{(\chi + h)} - \frac{13\chi}{\chi(\chi + h)}$
 $= \frac{13\chi}{\chi(\chi + h)} - \frac{13\chi}{\chi(\chi + h)}$

Step 3 find
$$f(x+h) - f(x)$$

$$\frac{f(x+h) - f(x)}{h} = \frac{-13h}{x^2 + xh}$$

$$= \frac{1}{h} \cdot \frac{-13h}{x^2 + xh}$$
dividing by h is some as

$$\frac{h}{x^2 + xh}$$

$$= -\frac{13h}{h(x^2 + xh)}$$
Notice: I don't cancel h here because we don't know
anything about h in this expression.
Later, in step 4, we will know something about h,
and I will cancel h there.

Step 41 find
$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

 $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ indeterminate form
 $= \lim_{h \to 0} \frac{-13h}{h}$ using result from step 3
 $h \to 0$ $\frac{h(x^2+xh)}{h}$ indeterminate form because
of the $\frac{h}{h}$
Since $h \to 0$, we know $h \neq 0$, so we can rancel the $\frac{h}{h}$
 $= \lim_{h \to 0} \frac{-13}{x^2 + xh}$ No longer an indeterminate form
This is a rational faction with variable h .
Notice that $h=0$ is in the domain
So theorem 3 tells us that we can subshitute $h=0$
 $= \frac{-13}{x^2 + x(0)}$ we have found that
 $for f(x) = -13$
 x^2

(B) find
$$f(1)$$
 and $f'(1)$
Solution $f(x) = 7 + \frac{13}{x}$
So $f(1) = 7 + \frac{13}{x} = 7 + 13 = \frac{1}{2} \times \frac{20}{(1)}$
Point on graph out
 $f'(x) = -\frac{13}{x^2}$
So $f'(1) = -\frac{13}{(1)^2} = -13$ The line tangent to the
graph of $x = 1$ has
 $f(x) = -\frac{13}{(1)^2} = -\frac{13}{2}$ Fount on graph of $(2, \frac{23}{2})$
Solution: $f(2) = 7 + \frac{13}{2} = \frac{27}{2}$
Fount on graph of $(2, \frac{23}{2})$
 $f'(2) = -\frac{13}{(2)^2} = -\frac{13}{4}$ Slope of tangent line is
 $-\frac{13}{4}$

(D) find S(1/2) and S'(1/2) $\frac{S_{01ntion}}{f(1/2)} = 7 + \frac{13}{1/2} = 7 + 13.2 = 33$ point at `(Y₂,33) $S'(1/2) = -\frac{13}{(1/2)^2} = -13 \cdot 4 = -52$ tangent line Slope is m= -52 (E) find f(-2) and f'(-2) $f(-2) = 7 + \frac{13}{(-2)} = 7 - \frac{13}{2} = \frac{1}{2}$ Solution point at (-2,-) $f'(-2) = -\frac{13}{(-2)^2} = -\frac{13}{4}$ Tangent line has Slope m=-13

[End of Example 1]

[Example 2] (similar to Exercise 2.4#37) Let $f(x) = 7 + 13\sqrt{x}$

Vx type function

(A) Find f'(x) using the *Definition of the Derivative*. (**B**) Find f(1) and f'(1). (C) Find f(4) and f'(4). **(D)** Find $f\left(\frac{1}{4}\right)$ and $f'\left(\frac{1}{4}\right)$. (E) Find f(0) and f'(0). (F) Illustrate your results from (B),(C),(D),(E) using a given graph of f(x).

(A) We need to find $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ Step] find f(x+h) $f(x) = 7 + 13\sqrt{x}$ f()=7+13V() empty version $f(x+h) = 7 + 13\sqrt{x+h}$ = 7+13 x+h

Step 2 find
$$f(x+y) - f(x)$$

 $f(x+y) - f(x) = 7 + 13\sqrt{x+y} - (7 + 13\sqrt{x})$
Cancel 7 by an ith metric
 $= 13\sqrt{x+y} - 13\sqrt{x}$
factor out 13 in front
 $= 13(\sqrt{x+y} - \sqrt{x})$
Trick: multiply and divide by a special term
 $= 13(\sqrt{x+y} - \sqrt{x})(\sqrt{x+y} + \sqrt{x})$
($\sqrt{x+y} + \sqrt{x}$)
multiply the numerator terms
 $= 13(\sqrt{x+y} - \sqrt{x})(\sqrt{x+y} + \sqrt{x+y})(\sqrt{x+y} + \sqrt{x+y})$
($\sqrt{x+y} + \sqrt{x}$)
Cancel green terms using any numeric simplify red terms
 $= 13(\sqrt{x+y} - \sqrt{x}) = \frac{13h}{\sqrt{x+y} + \sqrt{x+y}}$

Step 3 find
$$f(x+h) - f(x)$$

Solution
 $5(x+h) - f(x) = \frac{1}{h} \left(f(x+h) - f(x) \right)$
 $= \frac{1}{h} \left(\frac{13 h}{\sqrt{x+h} + \sqrt{x}} \right)$
 $step 4$ find $f'(x) = lim \frac{1}{\sqrt{x+h} - f(x)}$
 $\frac{5(x+h) - f(x)}{\sqrt{x+h} + \sqrt{x}}$
 $\frac{5(x+h) - f(x)}{\sqrt{x+h} + \sqrt{x}}$
 $\frac{1}{\sqrt{x+h} + \sqrt{x}} = \frac{13}{\sqrt{x+h}} = \frac{13}{\sqrt{x+h}}$

We found that for
$$f(x) = 7 + 13\sqrt{x}$$
, the derivative is $f'(x) = 13$
(B) find $f(1)$ and $f'(1)$ There was an incorrect y value in the video \sqrt{x}
Solution $f(1) = 7 + 13\sqrt{1} = 7 + 13 = 20^{-1}$ point on graph at (130)
 $f'(1) = \frac{13}{2\sqrt{1}} = \frac{13}{2}$ tangent line has slope $m = \frac{13}{2}$
(c) find $f(4)$ and $f'(4)$
Solution: $f(4) = 7 + 13\sqrt{4} = 7 + 13 \cdot (2) = 7 + 26 = 33$ point on graph
 $f'(4) = \frac{13}{2\sqrt{4}} = \frac{13}{2 \cdot 2} = \frac{13}{4}$ tangent line slope is $m = 13$
(d) find $f(4)$ and $f'(4)$
Solution: $f(4) = 7 + 13\sqrt{4} = 7 + 13 \cdot (2) = 7 + 26 = 33$ point on graph
 $f'(4) = \frac{13}{2\sqrt{4}} = \frac{13}{2 \cdot 2} = \frac{13}{4}$ tangent line slope is $m = 13$
(D) find $f(7)$ and $f'(7)$
Solution: $f(7) = 7 + 13\sqrt{4} = 7 + 13\frac{1}{2} = 7 + \frac{13}{2} = \frac{12}{2}$ Point at $\frac{(1,2)}{4}$
 $f'(4) = \frac{13}{2\sqrt{4}} = \frac{13}{2\sqrt{4}} = 13$ tangent line slope is $m = 13$
(f) find $f(6)$ and $f'(6)$
Solution: $f(6) = 7 + 13\sqrt{6} = 7 + 13 \cdot 0 = 7 + 0 = 7$ point at $(0,7)$
 $f'(6) = \frac{13}{2\sqrt{6}} = \frac{13}{2 \cdot 0} = \frac{13}{6}$ doer not exist!! [???]

[End of Example 2]

End of Video