Subject for this video: Computing $f^{\prime}(x)$ for $\frac{1}{x}$ and \sqrt{x} type functions

Reading:

- General: Section 2.4 The Derivative
- More specifically: middle of p. 138 - middle of p. 140, Examples 6,7

Homework:
Computing $f^{\prime}(x)$ for $\frac{1}{x}$ and \sqrt{x} type functions (2.4\#35,37)

Recall the Definition of the Derivative, introduced in Section 2.4 and discussed in the previous video:

Definition of the Derivative

Symbol: $f^{\prime}(x)$
Spoken: f prime of x
Also spoken: the derivative of f of x
Meaning: the function $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
Used For: When an actual number $x=a$ is substituted into the derivative function $f^{\prime}(x)$, the resulting number $f^{\prime}(a)$ can be interpreted as

- the slope of the line tangent to the graph of $f(x)$ at $x=a$
- the slope of the the graph of $f(x)$ at $x=a$
- the instantaneous rate of change of $f(x)$ at $x=a$
- If $f(x)$ is a position function for a moving object, the number $f^{\prime}(a)$ is the velocity of the object at time $x=a$.

And recall the outline of a process for computing the derivative:

Four Step Process for finding $f^{\prime}(x)$ using the Definition of the Derivative
Present the goal: to find $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
Get parts:
Step 1: Find the expression $f(x+h)$
Step 2: Find the expression $f(x+h)-f(x)$
Step 3: Find the expression $\frac{f(x+h)-f(x)}{h}$

Find the limit:

Step 4: Build the expression $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$ and compute the limit.
Explain clearly:

- Point out limits that are indeterminate forms.
- If cancellation is done, explain clearly why it is justified.
[Example 1] (similar to Exercise 2.4\#35) Let $f(x)=7+\frac{13}{x} \quad \frac{1}{x}$ type function
(A) Find $f^{\prime}(x)$ using the Definition of the Derivative.
(B) Find $f(1)$ and $f^{\prime}(1)$.
(C) Find $f(2)$ and $f^{\prime}(2)$.
(D) Find $f\left(\frac{1}{2}\right)$ and $f^{\prime}\left(\frac{1}{2}\right)$.
(E) Find $f(-2)$ and $f^{\prime}(-2)$.
(F) Illustrate your results from (B),(C),(D),(E) using a given graph of $f(x)$.

Solution
(A) We need to find $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$

Step find $f(x+h)$

$$
\begin{aligned}
& f(x)=7+\frac{13}{x} \\
& f()=7+\frac{13}{(} \text { empty version } \\
& f(x+h)=7+\frac{13}{(x+h)}
\end{aligned}
$$

step 2 find $f(x+h)-f(x)$

$$
f(x+h)-f(x)=\left(7+\frac{13}{(x+h)}\right)-\left(7+\frac{13}{x}\right)
$$

7 cancels by basic arithmetic

$$
=\frac{13}{x+h}-\frac{13}{x}
$$

get common denominator

$$
\begin{aligned}
& =\frac{13 x}{(x+h) x}-\frac{13(x+n)}{x(x+n)} \\
& =\frac{13-x-13 x-13 n}{x(x+n)}
\end{aligned}
$$

cancel $13 x$ with basic arithmetic

$$
=\frac{-13 h}{x^{2}+x h}
$$

Step 3 find $f(x+h)-f(x)$

$$
\begin{aligned}
\frac{f(x+h)-f(x)}{h} & =\frac{\frac{-13 h}{x^{2}+x h}}{h} \\
& =\frac{1}{h} \cdot \frac{-13 h}{x^{2}+x h} \\
& =\frac{-13 h}{h\left(x^{2}+x h\right)}
\end{aligned}
$$

dividing by h is same as multiplying by $\frac{1}{h}$

Notice: I don't cancel $\frac{h}{h}$ here because we don't know anything about h in h this expression.
Later, in step 4, we will know something about h, and I will cancel h there.

Step 4 find $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$ indeterminate form
$=\lim _{h \rightarrow 0} \frac{-13 h}{h\left(x^{2}+x h\right) \quad \text { using result from step } 3}$ indeterminate form because of the $\frac{h}{h}$
Since $h \rightarrow 0$, we know $h \neq 0$, so we can cancel the $\frac{h}{h}$

$$
=\lim _{h \rightarrow 0} \frac{-13}{x^{2}+x h} \quad \text { no longer an indeterminate form! }
$$

This is a rational function with variable h.
Notice that $h=0$ is in the domain
So Thercem 3 tells us that we can Substitute $h=0$

$$
\begin{aligned}
& =\frac{-13}{x^{2}+x(0)} \\
& =\frac{-13}{x^{2}}
\end{aligned}
$$

we have fond that

$$
\text { for } f(x)=7+\frac{13}{x}
$$

the derivative is $f^{\prime}(x)=\frac{-13}{x^{2}}$
(B) find $f(1)$ and $f^{\prime}(1)$

Solution $f(x)=7+\frac{13}{x}$
So $f(1)=7+\frac{13}{(1)}=7+13=i \pi k 20$

$$
f^{\prime}(x)=\frac{-13}{x^{2}}
$$

Pout on graph at

$$
(x, y)=(1,20)
$$

so $f^{\prime}(1)=-\frac{13}{(1)^{2}}=-13$
(c) find $f(2)$ and $f^{\prime}(2)$

Solution:

$$
\begin{array}{ll}
f(2)=7+\frac{13}{2}=\frac{27}{2} & \text { point on graph at }\left(2, \frac{22}{2}\right) \\
f^{\prime}(2)=\frac{-13}{(2)^{2}}=\frac{-13}{4} & \begin{array}{c}
\text { Slope of tangent line is } \\
-13 / 4
\end{array}
\end{array}
$$

(D) find $f(1 / 2)$ and $f^{\prime}(1 / 2)$

Solution

$$
\begin{aligned}
& f(1 / 2)=7+\frac{13}{1 / 2}=7+13 \cdot 2=33 \quad \begin{array}{l}
\text { point at } \\
(1 / 2,33)
\end{array} \\
& f^{\prime}(1 / 2)=\frac{-13}{(1 / 2)^{2}}=-13 \cdot 4=-52 \quad \begin{array}{l}
\text { tangent line } \\
\text { Slope is } m=-52
\end{array}
\end{aligned}
$$

(E) find $f(-2)$ and $f^{\prime}(-2)$

Solution

$$
\begin{aligned}
& f(-2)=7+\frac{13}{(-2)}=7-\frac{13}{2}=\frac{1}{2} \\
& f^{\prime}(-2)=\frac{-13}{(-2)^{2}}=-\frac{13}{4} \quad \begin{array}{l}
\text { Tangent line has } \\
\text { Slope } n=-\frac{13}{4}
\end{array}
\end{aligned}
$$

[End of Example 1]
[Example 2] (similar to Exercise 2.4\#37) Let $f(x)=7+13 \sqrt{x} \quad \sqrt{x}$ type function
(A) Find $f^{\prime}(x)$ using the Definition of the Derivative.
(B) Find $f(1)$ and $f^{\prime}(1)$.
(C) Find $f(4)$ and $f^{\prime}(4)$.
(D) Find $f\left(\frac{1}{4}\right)$ and $f^{\prime}\left(\frac{1}{4}\right)$.
(E) Find $f(0)$ and $f^{\prime}(0)$.
(F) Illustrate your results from (B),(C),(D),(E) using a given graph of $f(x)$.
(A) We need to find $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$

Step) find $f(x+h)$

$$
\begin{aligned}
& f(x)=7+13 \sqrt{x} \\
& f()=7+13 \sqrt{(7)} \text { empty version } \\
& \begin{aligned}
f(x+h) & =7+13 \sqrt{(x+h)} \\
& =7+13 \sqrt{x+h}
\end{aligned}
\end{aligned}
$$

Step 2 find $f(x+h)-f(x)$

$$
\begin{aligned}
f(x+h)-f(x)= & 7+13 \sqrt{x+h}-(y+13 \sqrt{x})_{x} \\
& \text { Cancel } 7 \text { important parentheses! }
\end{aligned}
$$

Cancel 7 by arithmetic

$$
=13 \sqrt{x+n}-13 \sqrt{x}
$$

factor out 13 in front

$$
=13(\sqrt{x+n}-\sqrt{x})
$$

Trick: multiply and divide by a special term

$$
=13(\sqrt{x+h}-\sqrt{x}) \frac{(\sqrt{x+h}+\sqrt{x})}{(\sqrt{x+h}+\sqrt{x})}
$$

multiply the numerator terms
$=\frac{13(\sqrt{x+h} \sqrt{x+n})-\sqrt{x} \sqrt{x+n}+\sqrt{x+n} \sqrt{x}-\sqrt{x \sqrt{x}}}{(\sqrt{x+h}+\sqrt{x})}$
cancel green terms using arithmetic simplify red terms

$$
=\frac{13(x+h-\otimes)}{\sqrt{x+h}+\sqrt{x}}=\frac{13 h}{\begin{array}{c}
\text { cancel } \\
\text { arsing } \\
\text { ariticic }
\end{array}}=\frac{\sqrt{x+h}+\sqrt{x}}{\sqrt{x}}
$$

Step 3 find $\frac{f(x+h)-f(x)}{h}$
Solution

$$
\begin{aligned}
\frac{f(x+h)-f(x)}{h} & =\frac{1}{h}(f(x+h)-f(x)) \\
& =\frac{1}{h}\left(\frac{13 h}{\sqrt{x+h}+\sqrt{x}}\right) \quad \text { using result form }
\end{aligned}
$$

Step ${ }^{2}$ find $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
Solution

$$
\begin{aligned}
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{1}{h}\left(\frac{13 h}{\sqrt{x+h}+\sqrt{x}}\right) \text { indeterminate } \\
& \text { form } \\
& \text { bechance } \frac{h}{n}
\end{aligned}
$$

Since $h \rightarrow 0$, we know $h \neq 0$, so we can cancel $\frac{h}{h}$

$$
=\lim _{h \rightarrow 0} \frac{13}{\sqrt{x+h}+\sqrt{x}}
$$

notice that this function is continues at $h=0$, so we can find the limit by just substituting in $h=0$.

$$
=\frac{13}{\sqrt{x+6)}+\sqrt{x}}=\frac{13}{\sqrt{x}+\sqrt{x}}=\frac{13}{2 \sqrt{x}}
$$

We found that for $f(x)=7+13 \sqrt{x}$, the derivative is $f^{\prime}(x)=\frac{13}{2 \sqrt{x}}$
(B) find $f(1)$ and $f^{\prime}(1)$

There was an incorrect y value in the vide $2 \sqrt{x}$
Solution $f(1)=7+13 \sqrt{1}=7+13=20 \Omega$ point ongraph at $(1,20)$
$f^{\prime}(1)=\frac{13}{2 \sqrt{1}}=\frac{13}{2}$ tangent line has slope $m=\frac{13}{2}$
(c) find $f(4)$ and $f^{\prime}(4)$

Solution: $f(4)=7+13 \sqrt{4}=7+13 \cdot(2)=7+26=33$ point on graph
$f^{\prime}(4)=\frac{13}{2 \sqrt{4}}=\frac{13}{2 \cdot 2}=\frac{13}{4}$ tangent line slope is $m=\frac{13}{4}$
(D) find $f(1 / 4)$ and $f^{\prime}(1 / 4)$

Solution:

$$
\begin{aligned}
& f(1 / 4)=7+13 \sqrt{1 / 4}=7+13 \frac{1}{\sqrt{4}}=7+\frac{13}{2}=\frac{27}{2} \text { Point at }\left(\frac{1}{4}, \frac{27}{2}\right) \\
& f^{\prime}(1 / 4)=\frac{13}{2 \sqrt{1 / 4}}=\frac{13}{2(1 / 2)}=\frac{13}{1}=13 \text { tangent linceslope is } m=13
\end{aligned}
$$

(E) find $f(0)$ and $f^{\prime}(0)$

Solution: $f(0)=7+13 \sqrt{0}=7+13 \cdot 0=7+0=7$ point at $(0,7)$

$$
f^{\prime}(0)=\frac{13}{2 \sqrt{0}}=\frac{13}{2 \cdot 0}=\frac{13}{0} \text { does not exist!!??? }
$$

