Subject for this video: Sum Rule, Constant Multiple Rule, Power Rule

## Reading:

- General: Section 2.5, Basic Differentiation Properties
- More specifically: middle of p. 148 - middle of p. 150, Parts of Examples 4,5

Homework:
Sum Rule, Constant Multiple Rule, Power Rule (2.5 \# 35,37,39)

Recall the Derivative Rules that we learned about in the previous video.

## The Constant Function Rule

This rule is used for finding the derivative of a constant function.
Two equation form: If $f(x)=c$ then $f^{\prime}(x)=0$.
Single equation form: $\frac{d}{d x} c=0$

## The Power Rule

This rule is used for finding the derivative of a power function.
Two equation form: If $f(x)=x^{n}$ then $f^{\prime}(x)=n x^{n-1}$.
Single equation form: $\frac{d}{d x} x^{n}=n x^{n-1}$

In this video, we will learn just one new Derivative rule

## The Sum and Constant Multiple Rule

If $f(x)$ and $g(x)$ are functions and $a, b$ are constants, then

$$
\frac{d}{d x}(a f(x)+b g(x))=a \frac{d}{d x} f(x)+b \frac{d}{d x} g(x)
$$

Using prime notation, we could write

$$
(a f(x)+b g(x))^{\prime}=a f^{\prime}(x)+b g^{\prime}(x)
$$

We will do three basic examples involving the use of this new rule.
[Example 1] (similar to 2.5\#35) Find $f$

$$
\begin{aligned}
& f^{\prime}(t) \text { if } f(t)=-3 t^{2}+12 t+15 \\
& f^{\prime}(t)=\frac{d}{d t}\left(-3 t^{2}+12 t+15\right)
\end{aligned}
$$

Apply the sum and constant multiple Rule

$$
\begin{aligned}
& =\underbrace{-3}_{\text {Pow r Rule with n=2 }} \frac{d}{d t} t^{2}+\underset{\text { Power full with n=1 }}{12} \frac{d}{d t} t^{n=1}+\frac{d}{d t} \quad \begin{array}{l}
\text { constant function } \\
\text { rule }
\end{array} \\
& =-3\left(2 \cdot t^{2-1}\right)+12\left(1 \cdot t^{1-1}\right)+0 \quad \begin{array}{l}
\text { Power Rule } \\
\frac{d}{d t} t^{2}=2 \cdot t^{2-1}
\end{array} \\
& =-6 \cdot t^{1}+12 \cdot t^{0} \\
& =-6 t+12
\end{aligned}
$$

Remark: A couple of videos ago we found the derivative of $f(x)=-3 x^{2}+12 x+15$ using the Definition of the Derivative. (much harder) we found $f^{\prime}(x)=-6 x+12$
[Example 2] (similar to 2.5\#37) Find $y^{\prime}$ for $y=5 x^{3 / 5}-7 x^{-13}+15$.
Solution: $y^{\prime}(x)=\frac{d}{d x}(y(x))=\frac{d}{d x}\left(5 x^{3 / 5}-7 x^{-13}+15\right)$
Apply the Sum and Constant multiple rule

$$
\begin{aligned}
& =5 \frac{d}{d x} x^{3 / 5^{2 n} \frac{3}{5}}-7 \frac{d}{d x} x^{-135^{-n}=-13}+{\underset{\substack{d x}}{d x}}_{=5\left(\frac{3}{5} \cdot x^{\frac{3}{5}-1}\right)-7\left(-13 x^{-13-1}\right)+0}^{\substack{\text { constant function } \\
\text { rule }}}
\end{aligned}
$$

Simplify

$$
=3 x^{-2 / 5}+91 x^{-14}
$$

convert to posidue exponent form

$$
=\frac{3}{x^{2 / 5}}+\frac{91}{x^{14}}
$$

[Example 3] (similar to 2.5\#38) Find $\frac{d}{d u} 6 u^{1.5} 8 x^{-0.5}$ typo
find $\frac{d}{d u} 6 u^{1.5}-8 u^{-0.5}$
we should name the function $g(u)=6 u^{1,5}-8 u^{-0,5}$
We are being asked to find $g^{\prime}(u)$

$$
g^{\prime}(u)=\frac{d}{d u} 6 u^{1.5}-8 u^{-0.5}
$$

duse the sum and constant multiple rule

$$
=6 \frac{d}{d u} u^{1.5<n=1.5}-8 \frac{d}{d u} u^{-0.5 \longleftarrow n=-0.5}
$$

Power Rale with $n=1,5 \quad$ Power Rule with $n=-0,5$

$$
\begin{aligned}
& =6\left(1.5 u^{1.5-1}\right)-8\left(-0.5 u^{-0.5-1}\right) \\
& \text { simplify } \\
& =9 u^{0.5}+4 u^{-1.5} \\
& \text { convert to positue exponent form }
\end{aligned}
$$

End of Example

$$
=9 u^{0.5}+\frac{4}{u^{1.5}}
$$ End of Video.

