Subject for this video: Rewrite in Power Function Form, then Differentiate

Reading:

- General: Section 2.5, Basic Differentiation Properties
- More specifically: middle of p. 148 top of p. 151, Parts of Examples 4,5,6

Homework:

Rewrite in Power Function Form, then Differentiate (2.5 #45,51,53,55,81)

Recall the Derivative Rules that we learned about in the previous videos.

The Constant Function Rule

This rule is used for finding the derivative of a *constant* function.

Two equation form: If f(x) = c then f'(x) = 0.

Single equation form: $\frac{d}{dx}c = 0$

The Power Rule

This rule is used for finding the derivative of a *power* function.

Two equation form: If $f(x) = x^n$ then $f'(x) = nx^{n-1}$.

Single equation form: $\frac{d}{dx}x^n = nx^{n-1}$

The Sum and Constant Multiple Rule

If f(x) and g(x) are functions and a, b are constants, then

$$\frac{d}{dx}(af(x) + bg(x)) = a\frac{d}{dx}f(x) + b\frac{d}{dx}g(x)$$

Using prime notation, we could write

$$(af(x) + bg(x))' = af'(x) + bg'(x)$$

In the previous video, we used the Sum and Constant Multiple Rule to find three fairly basic derivatives. In this video, we will do harder examples.

[Example 1] (similar to 2.5 # 45) Find
$$f'(x)$$
 for the function $f(x) = 7 + \frac{13}{x}$
Solution
The function $f(x)$ is in positive exponent form.
Convert if to power function form
 $S(x) = 7 + \frac{13}{x} = 7 + \frac{13 \cdot x^{-1}}{x}$
Now take the derivative
 $S'(x) = \frac{13}{x} = 7 + \frac{13 \cdot x^{-1}}{x}$
 $se Sum and constant multiple rule
 $= \frac{d}{2}7 + \frac{13}{2} \frac{d}{2}x^{-1}$
 $se Sum and constant multiple rule
 $= \frac{d}{2}7 + \frac{13}{2} \frac{d}{2}x^{-1}$
 $= \frac{-13}{x^{-2}} = power function form
 $= \frac{-13}{x^{-2}} = power function form$$$$

Remark: You have now seen to ways to find f'(x) for the function $f(x) = 7 + \frac{13}{x}$

- In [Example 1] that we just finished, we used the *Sum and Constant Multiple Rule* and the *Power Rule*.
- In [Video for Homework H27 Example 1] (similar to exercise 2.4#35) we used the *Definition of the Derivative*, which was much harder.

The two methods gave the same result.

[Example 2] (similar to 2.5 # 53,55) Find
$$f'(x)$$
 for the function $f(x) = 7 + 13\sqrt{x}$
Solution Rewrite $f(x)$ in power function form
 $f(x) = 7 + 13\sqrt{x} = 7 + 13 \cdot x''_{a}$
Now find the derivative
 $f'(x) \neq d$ (7 + 13 $\cdot x''_{a}$)
 $f(x) \neq d$ (7 + 13 $\cdot x''_{a}$)
Sum and constant multiple rule
 $= d 7 + 13 d x''_{a} = n = 1/a$
 $= 0 + 13 (\frac{1}{2} \cdot x^{\frac{1}{2}-1})$
 $= \frac{13}{2} \frac{13}{2} = \frac{13}{2} x''_{a}$ Converted to positive
 $= \frac{13}{2\sqrt{x}}$ Convert to radical form.

Remark: You have now seen to ways to find f'(x) for the function $f(x) = 7 + 13\sqrt{x}$

- In **[Example 2]** that we just finished, we used the *Sum and Constant Multiple Rule* and the *Power Rule*.
- In [Video for Homework H27 Example 2] (similar to exercise 2.4#37) we used the *Definition of the Derivative*, which was much harder.

The two methods gave the same result.

[Example 3] (similar to 2.5#51,53,55) Find h'(t) if $h(t) = \frac{7}{5\sqrt[3]{t}} + \frac{3}{11t^{2/5}}$ Solution Start by rewriting h(E) in power function form $h(t) = \frac{7}{5\sqrt{7}} + \frac{3}{11t^{3/5}} = \frac{7}{5} \cdot \frac{1}{\sqrt{7}} + \frac{3}{11} \cdot \frac{1}{t^{3/5}} = \frac{7}{5} \cdot \frac{1}{\sqrt{7}} + \frac{3}{11} \cdot \frac{1}{\sqrt{7}} +$ Separate the constants Convert to power Now Find the derivative functur firm $h'(t) = \frac{d}{dt} \left(\frac{7}{5} \cdot t^{-1/3} + \frac{3}{11} t^{-2/5} \right)$ Apply the Sum and Constant Multiple Rule $= \frac{2}{5} \frac{d}{dt} t^{-1/3} t^{-\frac{3}{3}} + \frac{3}{11} \frac{d}{dt} t^{-\frac{3}{5}} t^{-\frac{5$ + $\frac{3}{11}$ ($\frac{-2}{2}$ · $t^{\frac{2}{5}-1}$) 2 use powerrule $= -\frac{2}{15} \cdot t^{-\frac{9}{3}}$ + (-6).t-7/5 Convert PISITUE expagent form $\frac{6}{55t^{3/5}}$

[Example 4] (similar to to 2.5#81): Find y' if $y = \frac{2x^5 - 4x^3 + 2x}{x^3}$ Solution Rewrite the function in power function form. $y = \frac{2x^{5} - 4x^{3} + 2x}{x^{3}} = \frac{2x^{5}}{x^{3}} - \frac{4x^{3}}{x^{3}} + \frac{2x}{x^{3}} = 2x^{2} - 4 + \frac{2}{x^{2}}$ $= 2\chi^2 - 4 + 2\chi^2$ this is in power function form Now Find the derivative. $(y) = d_{X}(2x^{2} - y + 2x^{-2})$ Start by using the Sum and Constant Multiple Kule $= 2 \frac{d}{dx} x^2 - \frac{d}{dy} + 2 \frac{d}{dx} x$ $= 2(2\chi^{2-1}) - O$ + 2(-2 χ^{-2-1}) $4\times'-4\times^{-3}$ Simplify, and convert to positure expinent form. End of Example End of Video