Subject for this video: Rewrite in Power Function Form, then Differentiate

Reading:

- General: Section 2.5, Basic Differentiation Properties
- More specifically: middle of p. 148 - top of p. 151, Parts of Examples 4,5,6

Homework:
Rewrite in Power Function Form, then Differentiate (2.5 \#45,51,53,55,81)

Recall the Derivative Rules that we learned about in the previous videos.

The Constant Function Rule

This rule is used for finding the derivative of a constant function.
Two equation form: If $f(x)=c$ then $f^{\prime}(x)=0$.
Single equation form: $\frac{d}{d x} c=0$

The Power Rule

This rule is used for finding the derivative of a power function.
Two equation form: If $f(x)=x^{n}$ then $f^{\prime}(x)=n x^{n-1}$.
Single equation form: $\frac{d}{d x} x^{n}=n x^{n-1}$

The Sum and Constant Multiple Rule

If $f(x)$ and $g(x)$ are functions and a, b are constants, then

$$
\frac{d}{d x}(a f(x)+b g(x))=a \frac{d}{d x} f(x)+b \frac{d}{d x} g(x)
$$

Using prime notation, we could write

$$
(a f(x)+b g(x))^{\prime}=a f^{\prime}(x)+b g^{\prime}(x)
$$

In the previous video, we used the Sum and Constant Multiple Rule to find three fairly basic derivatives. In this video, we will do harder examples.
[Example 1] (similar to 2.5 \# 45) Find $f^{\prime}(x)$ for the function $f(x)=7+\frac{13}{x}$
Solution
The function $f(x)$ is in positive exponent form.
Convert it to power function form

$$
f(x)=7+\frac{13}{x}=7+13 \cdot x^{-1}
$$

Now take the derivative

$$
\begin{aligned}
& f^{\prime}(x)=\frac{d}{d x}\left(7+13 x^{-1}\right) \\
& \text { use sum and constant multiple rule } \\
& =\underbrace{\frac{d}{d x} 7}_{\text {constant function }}+13 \frac{d}{d x^{-1}} x^{-1} \leftarrow n=-1 \\
& =0 \text { rule }+13\left(-1 \cdot x^{-1-1}\right) \\
& =-13 x^{-2} \leftarrow \text { powerfunctionform } \\
& =-\frac{13}{x^{2}} \leftarrow \text { converted to positive exponent form }
\end{aligned}
$$

Remark: You have now seen to ways to find $f^{\prime}(x)$ for the function $f(x)=7+\frac{13}{x}$

- In [Example 1] that we just finished, we used the Sum and Constant Multiple Rule and the Power Rule.
- In [Video for Homework H27 Example 1] (similar to exercise 2.4\#35) we used the Definition of the Derivative, which was much harder.

The two methods gave the same result.
[Example 2] (similar to 2.5\#53,55) Find $f^{\prime}(x)$ for the function $f(x)=7+13 \sqrt{x}$
Solution Rewrite $f(x)$ in power function form

$$
f(x)=7+13 \sqrt{x}=7+13 \cdot x^{1 / 2}
$$

Now find the derivative
$f^{\prime}(x)=\frac{d}{d x}\left(7+13 \cdot x^{1 / 2}\right)$
Sum and constant multiple rule

$$
\begin{aligned}
& =\frac{d}{d x} 7+13 \frac{d}{d x} x^{1 / 2}<n=1 / 2 \\
& =0 \text { use power rule with } n=\frac{1}{2} \\
& =0\left(\frac{1}{2} \cdot x^{\frac{1}{2}-1}\right)
\end{aligned}
$$

$=\frac{13 x^{-1 / 2}}{2}=\frac{13}{2 x^{1 / 2}} \quad \begin{gathered}\text { converted to positive } \\ \text { exponent fuse }\end{gathered}$
$=\frac{13}{2 \sqrt{x}} \quad$ convert to radical form.

Remark: You have now seen to ways to find $f^{\prime}(x)$ for the function $f(x)=7+13 \sqrt{x}$

- In [Example 2] that we just finished, we used the Sum and Constant Multiple Rule and the Power Rule.
- In [Video for Homework H27 Example 2] (similar to exercise 2.4\#37) we used the Definition of the Derivative, which was much harder.

The two methods gave the same result.
[Example 3] (similar to $2.5 \# 51,53,55)$ Find $h^{\prime}(t)$ if $h(t)=\frac{7}{5 \sqrt[3]{t}}+\frac{3}{11 t^{2 / 5}}$
Solution Start by rewriting $h(t)$ in power function firm

$$
h(t)=\frac{7}{5 \sqrt[3]{x}}+\frac{3}{11 t^{2 / 5}}=\frac{7}{5} \cdot \frac{1}{\sqrt[3]{x}}+\frac{3}{11} \cdot \frac{1}{t^{2 / 5}}=\frac{7}{5} \cdot x^{-1 / 3}+\frac{3}{11} \cdot t^{-2 / 5}
$$

Separate the constants
Now find the derivative

$$
\begin{aligned}
& \text { Now find the derivative } \\
& h^{\prime}(t)=\frac{d}{d t}\left(\frac{7}{5} \cdot t^{-1 / 3}+\frac{3}{11} t^{-2 / 5}\right)
\end{aligned}
$$

Apply the Sum and constant multiple Rule

$$
\begin{aligned}
& =\frac{7}{5} \cdot \frac{d}{d t} t^{-1 / 3<n=-\frac{1}{3}}+\frac{3}{11} \cdot \frac{d}{d t} t^{-2 / 5} \longleftarrow n=\frac{-2}{5} \\
& =\frac{7}{5}\left(\frac{-1}{3} \cdot t^{\frac{-1}{3}-1}\right)+\frac{3}{11} \cdot\left(\frac{-2}{5} \cdot t^{\frac{-2}{5}-1}\right) \text { use powerrule } \\
& =\frac{-7}{15} \cdot t^{-4 / 3}+\left(\frac{-6}{55}\right) \cdot t^{-7 / 5}
\end{aligned}
$$

Convert to positive exponent form

$$
=-\frac{7}{15 t^{4 / 3}}-\frac{6}{55 t^{7 / 5}}
$$

[Example 4] (similar to to 2.5\#81): Find y^{\prime} if $y=\frac{2 x^{5}-4 x^{3}+2 x}{x^{3}}$
Solution Rewrite the function in power function form.

$$
\begin{aligned}
y & =\frac{2 x^{5}-4 x^{3}+2 x}{x^{3}}=\frac{2 x^{5}}{x^{3}}-\frac{4 x^{3}}{x^{3}}+\frac{2 x}{x^{3}}=2 x^{2}-4+\frac{2}{x^{2}} \\
& =2 x^{2}-4+2 x^{-2}
\end{aligned}
$$

this is in power function form
Now find the derivative.

$$
\begin{aligned}
y^{\prime} & =\frac{d}{d x}\left(2 x^{2}-4+2 x^{-2}\right) \\
& \text { Start by using the Sum and Constant Multiple lance } \\
& =\frac{2}{d} \frac{d}{d x} x^{2}-\frac{d}{d x} 4+2 \frac{d}{d x} x^{-2} \\
& =2\left(2 x^{2-1}\right)-0-2\left(-2 x^{-2-1}\right)
\end{aligned}
$$

$$
=4 x^{1}-4 x^{-3}
$$

simplify, and convert to positive

$$
=4 x-\frac{4}{x^{3}}
$$ exponent form.

End of Example End of video

