Subject for this video: Tangent Line and Instantaneous Velocity

Reading:

- General: Section 2.5, Basic Differentiation Properties
- More specifically: middle of p. 151 - top of p. 152, Examples 7,8

Homework:

Tangent Line and Instantaneous Velocity $(\mathbf{2 . 4 \# 1 5 , 1 7})(2.5 \# 59,63)$

Background Concepts from Section 2.4, discussed in the Video for Homework H25

Definition of Instantaneous Rate of Change

words: the instantaneous rate of change of f at a
alternate words: the derivative of f at a
symbol: $f^{\prime}(a)$
meaning: the number $m=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}$
remark: The instantaneous rate of change $f^{\prime}(a)$ is a number.

Definition of the Tangent Line

words: the line tangent to the graph of of f at $x=a$
meaning: the line that has these two properties

- The line contains the point $(x, y)=(a, f(a))$, which is called the point of tangency.
- The line has slope $m=f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}$, called the tangent line slope.
remark: the tangent line slope $m=f^{\prime}(a)$ is also called the slope of the graph at $\boldsymbol{x}=\boldsymbol{a}$.

The point slope form of the equation for the line tangent to the graph of $\boldsymbol{f}(\boldsymbol{x})$ at $\boldsymbol{x}=\boldsymbol{a}$

$$
(y-f(a))=f^{\prime}(a) \cdot(x-a)
$$

Terminology of Position and Velocity

Time: When our book uses mathematical functions to describe the motion of objects, x is a variable that represents the elapsed time.

Position: To say an object is moving in 1 dimension means that it can go forward or backward in one direction but cannot turn. In such situations, a single coordinate can be used to keep track of the position of the object. A function called the position function gives the value of the coordinate at a given time. In our book, the position function is called f. That is, at time x, the coordinate of the object is the number $f(x)$.
average velocity: The words average velocity from time $x=a$ to time $x=b$ mean the same thing as average rate of change of position from time $x=a$ to time $x=b$. That is, the number

$$
m=\frac{f(b)-f(a)}{b-a}
$$

instantaneous velocity: The words instantaneous velocity at time $x=a$ mean the same thing as instantaneous rate of change of position at time $x=a$. That is, the number

$$
m=f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

Notice that the computation of an instantaneous rate of change, or a velocity, or of a tangent line slope, involves finding a derivative. When we discussed those three kinds of quantities back in Section 2.4, the only way that we knew how to compute those derivatives was to use the Definition of the Derivative, with our computations organized by the outline of the Four Step Proccess.

Now that we are in Section 2.5, we can compute deriviatives more easily, using the Derivative Rules. This will make problems about instantaneous rate of change and tangent lines and velocity much easier.
[Example 1] (Similar to 2.4\#15)
For $f(x)=\sqrt{x^{2}+9}$, the slope of the graph is known to be $\frac{4}{5}$ at the point where $x=4$.
Find the equation for the line tangent to the graph of $f(x)$ at that point.

Remark: The given information could have been given in a different form.
It could have said that the instantaneous rate of change is known to be $\frac{4}{5}$ at $x=4$.
Solution We are being asked to find the equation for the tangent line.

$$
(y-f(a))=f^{\prime}(a)(x-a)
$$

We need to find the three quantities a, $f(a), f^{\prime}(a)$.
$a=4=$ given x coordinate of the point of tangency
$f^{\prime}(4)=\frac{4}{5}$ the known slope of the graph at the point where $x=4$
So the tangent line slope is $m=f^{\prime}(y)=\frac{4}{5}$
We need to figure out $f(a)$

$$
f(a)=f(4)=\sqrt{(4)^{2}+9}=\sqrt{16+9}=\sqrt{25}=5
$$

this is the y cosodinute of the pint of tangency

Now we can build the equation fir the tangent line

$$
\begin{aligned}
& y-\underset{\uparrow}{f(a)}={\underset{\uparrow}{\uparrow}}_{f^{\prime}(a)}^{(x-a)} \underset{\substack{f^{\prime} \\
a=4}}{(x)} \\
& f(a)=5 \quad f^{\prime}(a)=\frac{4}{5} \\
& (y-5)=\frac{4}{5}(x-4) \quad \text { Equationfor the } \\
& \text { tangent line in } \\
& \text { point slope firm }
\end{aligned}
$$

Convert to slope intercept form by solving for y

$$
\begin{aligned}
y-5 & =\frac{4}{5}(x-4) \\
& =\frac{4}{5} x-\frac{16}{5} \\
y & =\frac{4}{5} x-\frac{16}{5}+5 \\
y & =\frac{4}{5} x+\frac{9}{5} \quad \begin{array}{c}
\text { Equation for the } \\
\text { Tangent line }
\end{array}
\end{aligned}
$$

[Example 2] (Similar to 2.5\#59) Let $f(x)=x^{3}-3 x^{2}-9 x+11$
(a) Find $f^{\prime}(x)$.
(b) Find the slope of the line that is tangent to the graph of f at $x=3$.
(c) Find the slope of the line that is tangent to the graph of f at $x=0$.
(d) Find the x coordinates of all points on the graph of f that have horizontal tangent lines.
(e) Find the equation of the line that is tangent to the graph of f at $x=2$. Show all details clearly and present your equation in slope intercept form.
(f) Illustrate your results for (b),(c),(d),(e) on a given graph of $f(x)$.

Solution $\begin{aligned} & \text { (a) } f^{\prime}(x)=\frac{d}{d x}\left(x^{3}-3 x^{2}-9 x+11\right)\end{aligned}$
use the sum and constant multiple rule
constant function rule

$$
=3 \cdot x^{n-1}-3\left(2 x^{2-1}\right)-9\left(1 \cdot x^{1-1}\right)+0
$$

$$
=3 x^{2}-6 x-9
$$

(b) We are asked to find the slope of the line tangent to the graph at $x=3$. this means that we need to find $m=f^{\prime}(3)$
This means to substitute $x=3$ in to the formula for $f^{\prime}(x)$
we found $f^{\prime}(x)=3 x^{2}-6 x-9$
so $m=f^{\prime}(3)=3(3)^{2}-6(3)-9$

$$
\begin{aligned}
& =3.9-18-9 \\
& =27-27 \\
& =0
\end{aligned}
$$

(c) To find the slope of the tangent line at $x=0$, we should compute $m=f^{\prime}(0)$
result: $m=f^{\prime}(0)=3(0)^{2}-6(0)-9$

$$
=-9
$$

(d) Find x coordinates of all points that have horizontal tangent lines.

Solution: Horizontal lines have Slope $m=0$.
we want $m=0=f^{\prime}(x)$
So set $f^{\prime}(x)=0$ and Solve fir x.

$$
\begin{aligned}
0 & =f^{\prime}(x) \\
& =3 x^{2}-6 x-9
\end{aligned}
$$

factor ont a 3

$$
=3\left(x^{2}-2 x-3\right)
$$

factor so me more

$$
=3(x+1)(x-3)
$$

We see that $f^{\prime}(x)$ will be zero when $x=-1$ or $x=3$. those are the x values where the graph will have a horizontal tangent line.
(e) Find the equation of the line tangent to the graph at $x=2$.

Solution: We need to build the equation $(y-f(a))=f^{\prime}(a) \cdot(x-a)$
Get parts
$a=2$ (the x coordinate of the point of tangency)

$$
f(a)=f(2)=(2)^{3}-3(2)^{2}-9(2)+11=8-12-18+11=19-30=-11
$$

$$
\operatorname{sub} x=2 \operatorname{into} f(x)=x^{3}-3 x^{2}-9 x+11
$$

This number is the y coordinate of the point of tangency

$$
f^{\prime}(a)=f^{\prime}(2)=3(2)^{2}-6(2)-9=12-12-9=-9
$$

$$
\text { Sub } x=2 \text { in to } f^{\prime}(x)=3 x^{2}-6 x-9
$$

This number is the slope of the tangent line
\checkmark Substitute the parts in to the equation

$$
(y-(-11))=-9 \cdot(x-2)
$$

convert to slope interest form by solving for y

$$
y+11=-9 x+18 \quad \begin{aligned}
& \text { Equation for the } \\
& y=-9 x+7 \\
& \text { tangent line in } \\
& \text { line interest } \\
& \text { firm }
\end{aligned}
$$

Given graph of $f(x)=x^{3}-3 x^{2}-9 x+11$

End of [Example 2$]$
[Example 3] (Similar to 2.5\#63)
An object is moving along a straight track with position function $f(x)=2 x^{3}-21 x^{2}+60 x$, where x is the time in seconds and $f(x)$ is the position in meters at time x.
(a) Find the velocity function.
(b) Find the velocity at time $x=3$
(2) Find the velocity at time $x=0$
$(d)(c)$ At what times is the velocity $v=0$?
(e) (d) Illustrate your results for (b),(c) on a given graph of $f(x)$.
Solution
(a) velocity function $v(x)=f^{\prime}(x)$

$$
\begin{aligned}
& =\frac{d}{d x}\left(2 x^{3}-21 x^{2}+60 x\right) \\
& =2 \frac{d}{d x} x^{3^{6}}-21 \frac{d}{d x} x^{x^{6}}+60 \frac{d}{d x} x^{n=2} \\
& \left.=2\left(3 \cdot x^{3-1}\right)-2\right)\left(2 \cdot x^{2-1}\right)+60\left(1 \cdot x^{1-1}\right) \\
& =6 x^{2}-42 x+60
\end{aligned}
$$

(b) to find the velocity at time $x=3$, we must find $V(3)$.

$$
v(3)=f^{\prime}(3)=6(3)^{2}-42(3)+60=54-126+60=-12
$$

substitute $x=3$ into $f^{\prime}(x)=6 x^{2}-42 x+60$
(c) To find the velocity at tine $x=0$, we must find $v(0)$

$$
\begin{aligned}
v(0)=f^{\prime}(0)= & 6(0)^{2}-42(0)+60=60 \\
& \text { sub } x=0 \text { into } f^{\prime}(x)=6 x^{2}-42 x+60
\end{aligned}
$$

(d) To find when the velocity is equal to zero, We muss set the velocity equal to zero and solve for x.

$$
\begin{aligned}
& 0=v(x)=f^{\prime}(x)=6 x^{2}-42 x+60 \\
& \text { Solve by factoring } \\
& 0=6\left(x^{2}-7 x+10\right)=6(x-2)(x-5)
\end{aligned}
$$

Solutions are $x=2$ and $x=5$
So those are the times when the velocity is 2100
(e)

Given graph of $f(x)=2 x^{3}-21 x^{2}+60 x=$ position at time X.

(b) $v(3)=f^{\prime}(3)=-12$
[End of Example]
(c) $v(0)=f^{\prime}(0)=60$

End of Video
(d) $v(2)=f^{\prime}(2)=0$ and $v(5)=f^{\prime}(5)=0$

