Subject for this video: Radioactive Decay

Reading:

- General: Section 3.1 The Constant e and Continuous Compound Interest
- More Specifically: This topic is only discussed in the introduction to Exercise \#43

Homework:

H38: Radioactive Decay (3.1\#43,45)

Decaying Exponential Functions

In the video for Homewor H37, we drew the graphs $2^{(x)}, 3^{(x)}, e^{(x)}$

We also made a general observation about properties of one group of exponential functions.

Properties of Exponential Functions $b^{(x)}$ with $b>1$

- Domain and Range
- The domain is the set of all real numbers x. In interval notation, $(-\infty, \infty)$
\circ The range is all $y>0$. In interval notation, $(0, \infty)$
- The graph has three distinctive points:
- The graph goes through the point $(x, y)=(0,1)$ because $b^{(0)}=1$
- The graph goes through the point $(x, y)=(1, b)$ because $b^{(b)}=b$
- The graph goes through the point $(x, y)=\left(-1, \frac{1}{b}\right)$ because $b^{(-1)}=\frac{1}{b}$
- End Behavior
- The graph goes up without bound on the right. That is, $\lim _{x \rightarrow \infty} b^{(x)}=\infty$
- Graph has a horizontal asymptote on left with equation $y=0$. That is, $\lim _{x \rightarrow-\infty} b^{(x)}=0$
- The graph is increasing from left to right. That is, if $x_{1}<x_{2}$, then $b^{\left(x_{1}\right)}<b^{\left(x_{2}\right)}$

There is another group of exponential functions: the functions $b^{(x)}$ with base b where $0<b<1$. As a typical example, let's build a table of values for $y=\left(\frac{1}{2}\right)^{(x)}$ and examine its graph.
For comparison, we also build the table of values for $y=2^{(x)}$ and show its graph.

x	$2^{(x)}$	$\left(\frac{1}{2}\right)^{(x)}$
-3	$2^{(-3)}=\frac{1}{2^{3}}=\frac{1}{8}$	$\left(\frac{1}{2}\right)^{(-3)}=\frac{1}{(1 / 2)^{3}}=\frac{1}{(1 / 8)}=8$
-2	$2^{(-2)}=\frac{1}{2^{(2)}}=\frac{1}{4}$	$\left(\frac{1}{2}\right)^{-2}=\frac{1}{(1 / 2)^{2}}=\frac{1}{(1 / 4)^{2}}=4$
-1	$2^{(-1)}=\frac{1}{2^{1}}=\frac{1}{2}$	$\left(\frac{1}{2}\right)^{(-1)}=\frac{1}{(1 / 2)^{1}}=2$
0	$2^{(0)}=1$	$\left(\frac{1}{2}\right)^{0}=1$
1	$2^{(1)}=2$	$\left(\frac{1}{2}\right)^{1}=\frac{1}{2}$
2	$\left.2^{2}\right)^{2}=4$	$\left(\frac{1}{2}\right)^{3}=\frac{1}{4}$
3	$2^{(3)}=8$	$\frac{1}{8}$

We can make a general observation about properties of another group of exponential functions.

Properties of Exponential Functions $\boldsymbol{b}^{(x)}$ with $0<b<1$ ("decaying" exponentials)

- Domain and Range
- The domain is the set of all real numbers x. In interval notation, $(-\infty, \infty)$
\circ The range is all $y>0$. In interval notation, $(0, \infty)$
- The graph has three distinctive points:
- The graph goes through the point $(x, y)=(0,1)$ because $b^{(0)}=1$
- The graph goes through the point $(x, y)=(1, b)$ because $b^{(1)}=b$
- The graph goes through the point $(x, y)=\left(-1, \frac{1}{b}\right)$ because $b^{(-1)}=\frac{1}{b}$
- End Behavior
- Graph has a horizontal asymptote on right with equation $y=0$. That is, $\lim _{x \rightarrow \infty} b^{(x)}=0$
- The graph goes up without bound on the left. That is, $\lim _{x \rightarrow-\infty} b^{(x)}=\infty$
- The graph is decreasing from left to right. That is, if $x_{1}<x_{2}$, then $b^{\left(x_{1}\right)}>b^{\left(x_{2}\right)}$

Observe that the equation $y=\left(\frac{1}{2}\right)^{(x)}$ can be rewritten.

$$
\left.y=\left(\frac{1}{2}\right)^{(x)}=2^{(-1)}\right)^{(x)}=2^{(-x)}
$$

Rewritten this way, we see that the graph makes sense from the perspective of transformations of graphs. That is, given a graph of $y=2^{(x)}$, one can obtain a graph of $y=2^{(-x)}$ by
flipping the blue graph across the y axis

More generally, if the base b is a number $b>1$, then the function $y=b^{(r x)}$

- will be an increasing exponential function when r is a positive number,
- will be a decaying exponential function when r is a negative number.

One place where decaying exponential functions show up is in models for radioactive decay.

Radioactive Decay

The decay of radioactive substances is described by the equation

$$
Q=Q_{0} e^{(r t)} \text { with } t \geq 0
$$

In this equation,
Q_{0} is the amount of the substance at time $t=0$.
r is the continuous compound rate of decay. (The number r will be negative.)
t is the time in years
Q is the amount of the substance at time t.

The graph of $Q-v s-t$ for radioactive decay

$$
Q=Q_{0} e^{(r t)}
$$

Half Life

The half-life of a radioactive substance is the length of time required for the substance to decay to half its original amount.

For instance, suppose the amount of a substance at time $t=0$ i $\widehat{Q Q}_{0}$ and its half life is 35 years. Then the amount of the substance remaining at time $t=35$ will be $Q=\frac{1}{2} Q_{0}$

Note that after another 35 years, at time $t=70$, the substance will have decayed to half of the amount that was present at time $t=35$, and so on.

[Example 1] (similar to 3.1\#43)
The continuous compound rate of decay of the radioactive substance carbon-14 is the number

$$
r=-0.0001238
$$

How long will it take a certain amount of carbon-14 to decay to half the original amount? hat is, what is the half-life of carbon-14?
(Give an exact answer in symbols, then a decimal approximation rounded up to the nearest year.)

Q_{0} is unknown
Q is unknown but we know that $Q=\left(\frac{1}{2}\right) Q_{0}$
t is uncrown find t
Solve the equation for t

$$
Q=Q_{0} e^{(r t)}
$$

Divide by Q_{0}

$$
\frac{Q}{Q_{0}}=e^{(r t)}
$$

take natural logarithm of both sides

$$
\ln \left(\frac{Q}{a_{0}}\right)=\ln \left(e^{(r t)}\right)=r \cdot t
$$

divide both sides by r

$$
t=\ln \left(\frac{Q}{Q_{0}}\right)
$$

substitute in the values that we know

$$
t=\frac{\ln \left(\frac{\left(\frac{1}{0}\right)(20)}{80}\right)}{-.0001238}=\frac{\ln \left(\frac{1}{2}\right)}{\left.\right) .599 \text { years }}
$$

[Example 2] (similar to 3.1\#45)
A strontium isotope has a half-life of 90 years. What is the continuous compound rate of decay?
(Give an exact answer in symbols, then a decimal approximation rounded to 4 significant digits.)
Solution Qa is unknown
r is unknown (find r)
Q is unknown, hat we know $Q=\frac{1}{2} Q_{0}$

$$
t=90
$$

Solve the equation for r

End of [Example 2]
End of Video

$$
Q=Q_{0} e^{(r t)}
$$

divide by ap

$$
\frac{Q}{Q_{0}}=e^{(r t)}
$$

take natural logarithm of both sides

$$
\ln \left(\frac{Q}{Q_{0}}\right)=\ln \left(e^{(r t)}\right)=r t
$$

Divide by t

$$
r=\frac{\ln \left(\frac{Q}{Q_{0}}\right)}{t}
$$

Substitute in our known values

