Subject for this video: Derivatives of Exponential Functions

Reading:

- General: Section 3.2 Derivatives of Exponential and Logarithmic Functinos
- More Specifically: page 187-188 and Example 1, page 191-192 and Example 3A

Homework:

H40: Differentiating Exponential Functions (3.2\#13,28,49, 57)

Recall the Derivative Rules that we learned about in the previous videos.

The Constant Function Rule

This rule is used for finding the derivative of a constant function.
Two equation form: If $f(x)=c$ then $f^{\prime}(x)=0$.
Single equation form: $\frac{d}{d x} c=0$

The Power Rule

This rule is used for finding the derivative of a power function.
Two equation form: If $f(x)=x^{n}$ then $f^{\prime}(x)=n x^{n-1}$.
Single equation form: $\frac{d}{d x} x^{n}=n x^{n-1}$
The Sum and Constant Multiple Rule
If $f(x)$ and $g(x)$ are functions and a, b are constants, then

$$
\frac{d}{d x}(a f(x)+b g(x))=a \frac{d}{d x} f(x)+b \frac{d}{d x} g(x)
$$

Using prime notation, we could write

$$
(a f(x)+b g(x))^{\prime}=a f^{\prime}(x)+b g^{\prime}(x)
$$

In this video, we will add three more Rules, for finding derivatives of exponential functions. The first rule is about the derivative of $y=e^{(x)}$.

Exponential Function Rule \#1

This rule is used for finding the derivative of the base e exponential function.
Two equation form: If $f(x)=e^{(x)}$ then $f^{\prime}(x)=e^{(x)}$.
Single equation form: $\frac{d}{d x} e^{(x)}=e^{(x)}$

This wonderfully simple rule is found by using the Definition of the Derivative.

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{e^{(x+h)}-e^{(x)}}{h}
$$

An early key step in the computation uses an old fact about exponents, that $e^{(x+h)}=e^{(x)} e^{(h)}$
A later key step uses a fact from higher math

$$
\lim _{h \rightarrow 0} \frac{e^{(h)}-1}{h}=1
$$

The details of the calculation, organized by the Four Step Process, are shown clearly in the book on pages 187 - 188. It is interesting, beautiful math, worth reading. But in MATH 1350, you will not be asked to do the calculation, and I won't discuss the details here.

But we will gain a better understanding of the rule if we examine the graphs of $f(x)$ and $f^{\prime}(x)$. In the video for Homork H37, we saw that it is possible to draw the graph of $y=e^{(x)}$ by hand, using the graphs of $y=2^{(x)}$ and $y=3^{(x)}$ as guides. Here we will just use a computer graph.

agree with
the numbers that
the y values on the

$$
\text { graph of } \frac{\text { s }^{\prime}(x)}{\operatorname{sav}(x)}
$$

Exponential Function Rule \#2 is very similar to Exponential Function Rule \#1.

Exponential Function Rule \#2

Two equation form: If $f(x)=e^{(k x)}$ then $f^{\prime}(x)=k e^{(k x)}$.
Single equation form: $\frac{d}{d x} e^{(k x)}=k e^{(k x)}$

Rule \#2 is also found by using the Definition of the Derivative, using a slight variation on the computation used to find Rule \#1.

The book discusses this new derivative result only in exercises 3.2 \# 61, 62 . The book does not discuss the result in the reading and never presents it in a list of derivative rules. That is a shame, because it is one of the most-used derivative rules. That's why I have given it the name Rule \#2 and put it in a green box. We will be using it a lot in the future.
[Example 1] Use Exponential Function Rule \#2 to find the derivative of $y=b^{x}$.
Solution
Stat by rewriting the function

$$
\begin{array}{r}
y=\begin{array}{l}
b^{(x)}=\left(e^{(\ln (b))}\right)^{(x)}=e^{(\ln (b) \cdot x)} \\
\\
\\
\\
\\
\\
\text { because } b=e^{(\ln (b))}
\end{array} \quad \begin{array}{l}
\text { because }\left(e^{m}\right)^{n}=e^{m \cdot n} \\
\text { rule of exponents }
\end{array} \\
\text { rule of exponents }
\end{array}
$$

$$
\begin{aligned}
& \text { So } \frac{d y}{d x}=\frac{d}{d x} e^{(\underline{\ln (b) \cdot x)}}=\underset{\uparrow}{\uparrow} \underline{\ln (b) \cdot e^{(\ln (b) \cdot x)}}=\ln (b) \cdot b^{(x)} \\
& \text { use rule \#2 } \\
& \text { with } k=\ln (b) \\
& e^{(\ln (b) \cdot x)}=f^{(x)}
\end{aligned}
$$

$$
\frac{d}{d x} b^{(x)}=\ln (b) \cdot b^{(x)}
$$

Our result from [Example 1] amounts to a new Derivative Rule!

Exponential Function Rule \#3
Two equation form: If $f(x)=b^{(x)}$ then $f^{\prime}(x)=b^{(x)} \cdot \ln (b)$.
Single equation form: $\frac{d}{d x} b^{(x)}=b^{(x)} \cdot \ln (b)$
[Example 2] Derivatives of Basic Functions Involving Exponents
For each function, find $f^{\prime}(x)$
(A) $f(x)=5 e^{(x)}$
(B) $f(x)=5 e^{(7 x)}$

$$
\begin{aligned}
& \text { (B) } f(x)= 5 e^{(7 x)} \\
& f^{\prime}(x)=\frac{d}{d x} 5 e^{(7 x)}=5 \frac{d}{d x} e^{(7 x)} \\
& \text { constant multiplerule }
\end{aligned}
$$

$=5.7 e^{(7 x)} \quad \stackrel{l^{\text {Simplify }}}{=} 35 e^{(7 x)}$
\uparrow userule\#2 with $k=7$

$$
\begin{gathered}
\text { (C) } f(x)=5 \cdot 7^{(x)} \\
f^{\prime}(x)=\frac{d}{d x} 5 \cdot 7^{(x)}=5 \cdot \frac{d}{d x} 7^{(x)}=5 \cdot\left(7^{(x)} \cdot \ln (7)\right)=5 \cdot \ln (7) \cdot 7^{(x)} \\
\begin{array}{c}
\uparrow \\
\text { constant multiple rule } \# 3 \text { with } b=7 \\
\text { rule }
\end{array} \sum_{\text {cleanup }}
\end{gathered}
$$

(D) $f(x)=5 e^{(7)}$

$$
f^{\prime}(x)=\frac{d}{d x} \frac{5 e^{(7)}}{\substack{\text { constant }}}=0
$$

(E) $f(x)=5 x^{e}$

$$
\begin{aligned}
& \text { E) } f(x)=5 x^{e} \\
& f^{\prime}(x)=\frac{d}{d x^{2}} 5 x^{e}=5 \frac{d}{d x}(x^{e}=5(\underbrace{e} \underbrace{e-1})=5 e \cdot x^{e-1} \\
& \text { constant multiple use rower rule } \\
& \text { rule cleanup }
\end{aligned}
$$

[Example 3] Derivatives of More Complicated Functions Involving Exponents
(A) Differentiate $7-5 x+13 e^{(x)}$
rule \# 1

$$
\frac{d}{d x}(7-5 x+\underbrace{\left.13 e^{(x)}\right)}=\frac{d}{d x}-\frac{5}{d x} x+13 \frac{d}{d x} e^{(x)}=0-5\left(1 \cdot x^{1-1}\right)+13\left(e^{(x)}\right)
$$

sum and constant

$$
\text { power rukewth } n=1=-5+13 e^{(x)}
$$

(B) Find f^{\prime} for $f(x)=5 x^{e}-7 e^{(3 x)}$

$$
f^{\prime}(x)=\frac{d}{d x}\left(5\left(x^{e}-7 e^{\text {mistake }}(3 x)\right)=5 \frac{d}{\uparrow}\right.
$$

sum and constant
multiplecale

$$
\text { (C) Find } \frac{d y}{d x} \text { for the function } y=3^{(x)}+x^{3}+e^{3}
$$

rule ty

$$
=3^{(x)} \cdot \ln (3)+3 x^{2}
$$

Corrected Calculation for [Example 3] (B) Rule\#2

$$
\begin{gathered}
f^{\prime}(x)=\frac{d}{d x}\left(5 x^{e}-7 e^{(3 x)}\right)=5 \frac{d x^{e}-7 \frac{d}{d x}-(3 x)}{d x}=5\left(e \cdot x^{e-1}\right)-7\left(3 \cdot e^{(3 x)}\right) \\
\text { Sum and PowicRulewith noe> }
\end{gathered}
$$

Constant Multiple
Rule

$$
=5 \cdot e \cdot x^{e-1}-2 / e^{(3 x)}
$$

The yellow shaded term was incorrect on the previous page

