Subject for this video: Tangent Line and Applied Problems involving Exponential Functions

Reading:

- General: Section 3.2 Derivatives of Exponential and Logarithmic Functinos
- More Specifically: Page 192-193, Examples 4, 5

Homework:
H41: Tangent Line and Applied Problems involving Exponential Functions (3.2\#33,67,75)

Recall the Derivative Rules that we learned about in previous videos.

The Constant Function Rule: $\frac{d}{d x} c=0$
The Power Rule: $\frac{d}{d x} x^{n}=n x^{n-1}$
The Sum and Constant Multiple Rule: $\frac{d}{d x}(a f(x)+b g(x))=a \frac{d}{d x} f(x)+b \frac{d}{d x} g(x)$
Exponential Function Rule \#1: $\frac{d}{d x} e^{(x)}=e^{(x)}$
Exponential Function Rule \#2: $\frac{d}{d x} e^{(k x)}=k e^{(k x)}$
Exponential Function Rule \#3: $\frac{d}{d x} b^{(x)}=b^{(x)} \cdot \ln (b)$

[Example 1] (Similar to 3.2\#33) For the function: $f(x)=2 e^{(x)}-3 x$.
(A) Find equation of line tangent to graph of f at $x=0$.

Solution We need to build the equation $(y-f(a))=f^{\prime}(a) \cdot(x-a)$

Get parts
$a=0$ the x coordinate of the point of tangency
$f(a)=f(0)=2 e^{(0)}-3(0)=2 \cdot 1-0=2$ the y coordinate of the

$$
\left.f^{\prime}(a)=f^{\prime}(0)=\begin{array}{c}
\substack{\text { Sumand } \\
\text { sub } \\
\text { into } f^{\prime}(x)}
\end{array} \underset{\substack{\text { constantmutiple rule }}}{2 e^{(0)}-3=2 \cdot 1-3=-1} \begin{array}{l}
\text { power rule with } \\
n=1
\end{array}\right)
$$

Substitute parts into tangent line equation

$$
\begin{aligned}
& y-f(a)=f^{\prime}(a)(x-a) \\
& (y-2)=(-1)(x-0)
\end{aligned}
$$

Equation for the tangent line in point slope form convert to slope intercept form. (Solve for y)

$$
\begin{aligned}
y-2 & =-x \\
y & =-x+2
\end{aligned}
$$

equation for the tangent line in slope intercept form
(B) Find equation of line tangent to graph of f at $x=1$.

Solution we need to build $(y-f(a))=f^{\prime}(a)(x-a)$
Get Parts
$a=1$ the x coordinate of the point of tangency
$f(a)=f(1)=2 e^{(1)}-3(1)=2 e-3$ the y coordinate of the point of tangency
$\begin{array}{ll}\operatorname{snb} x=1 \\ f(x) & \text { into }\end{array}$
punt ot tangency
$f(x)=2 e^{(x)}-3 x$
$f^{\prime}(a)=f^{\prime}(1)=2 e^{(1)}-3=2 e-3$ the slope of the tangent line
$\operatorname{sub} x=1$ into

$$
f^{\prime}(x)=2 e^{(x)}-3
$$

Substitute parts into the tangent line equation

$$
\begin{aligned}
& \text { parts into the tangent line equation } \\
& (y-(2 e-3))=(2 e-3)(x-1)
\end{aligned}
$$

convert to slope intercept form by solving for x

$$
\begin{aligned}
y-(2 e-3) & =(2 e-3) x-(2 e-3) \\
y & =(2 e-3) x
\end{aligned}
$$

Slope intercept form of the equation for the tangent line
(C) Illustrate the results of (A),(B) on the given graph of $f(x)=2 e^{(x)}-3 x$.

End of [Example 1].
[Example 2] P dollars is deposited into an account that has continuously compounded interest with interest rate r.
(A) What is the value at t years?

Solution:

$$
A=P e^{(r t)}
$$

(B) What is the instantaneous rate of change of the balance at time t years?

Solution: we need to find A^{\prime}
function form $A(t)=P e^{(r t)}$

$$
\begin{aligned}
& \text { So } A^{\prime}(t)=\frac{d}{d t} P e^{(r t)}=\frac{R}{\uparrow} \\
& A^{\prime}(t)=r \cdot P \cdot e^{(r t)}=P\left(r \cdot e^{(r t)}\right)=r \cdot P e^{(r t)} \\
& e^{(r t)}=r \cdot f(t)
\end{aligned}
$$

End of [Example 2]
[Example 3] (Similar to 3.2\#75)
An investment of \$1000 earns interest at a nominal rate of 7\% compounded continuously.
(A) What is the value at 10 years?
(Give an exact answer in symbols and a decimal approximation. Include the correct units.)
Solution $A(t)=P e^{(r t)}$

$$
\begin{aligned}
& P=1000 \text { the principal } \\
& r=.07 \\
& t=10 \\
& A=\text { unknown, find } A
\end{aligned}
$$

$$
A=1000 e^{(.07 \cdot 10)}=\underbrace{1000 e^{(0.7)}}_{\text {exact answer }} \underset{\substack{\text { use wolfram } \\ \text { alpha }}}{\sim} \$ 2013^{25}
$$

(B) How fast is the value growing at time $t=10$ years?
(Give an exact answer in symbols and a decimal approximation. Include the correct units.) Solution we need to find $A^{\prime}(10)$
(C) How fast is the value growing when the value is $\$ 8000$?
(Give an exact answer. Include the correct units.)
Observe: We are being asked to find the value of $A^{\prime}(t)$, but we are not given the value of t.
hard $\left\{\begin{array}{l}\text { One might think that we would have to do this: } \\ \text { Use fact that } A=8000 \text { to find } \\ \text { Use that }\end{array}\right.$
Use fact that $A=8000$ to find t (hard)
Use that value of t to find $A^{\prime}(t)$ (hard)
The clever solution is to recall what we know about $A^{\prime}(t)$

$$
A^{\prime}(t)=r \cdot A(t)=.07(8000)=560 \text { dollars pee yer }
$$

End of [Example 3]
[Example 4] (Similar to 3.2\#67)
The estimated salvage value of a new luxury car is described by the function

$$
S(t)=65,000(0.85)^{(t)}
$$

In this function,
t is the time in years since the car was purchased.
$S(t)$ is the salvage value at time t. (in dollars)
(A) What was the purchase price of the car?

$$
\begin{aligned}
& \text { What was the purchase price of the car? } \\
& S(0)=65,000(0,85)^{(0)}=65,000(1)=\$ 65,000
\end{aligned}
$$

(B) What is the value of the car at time $t=6$ years?
(Give an exact answer in symbols and a decimal approximation. Include the correct units.)
(C) What is the rate of change of the value of the car at time $t=6$ years?
(Give an exact answer in symbols and a decimal approximation. Include the correct correct units.)
We need to find $S^{\prime}(6)$ Strategy: Find $S^{\prime}(t)$

- Substitute $t=6$ toget $S^{\prime}(6)$

$$
\begin{aligned}
& S^{\prime}(t)=\frac{d}{d t} 65,000(0.85)^{t}=650000\left(\frac{d}{\text { constant muthplérule }} \underset{d t}{6 t} 0.85^{(t)}\right)= \\
& =65,000\left(0,85^{(t)} \cdot \ln (0,85)\right)=(65000) \ln (0,85) \cdot(0,85)^{(t)} \\
& \text { ouse Rule \# } 3 \text { with } b=0.85 \\
& s^{\prime}(6)=\underbrace{65,000 \ln (0.85) \cdot(0.85)^{(6)}}_{\text {exact answer }} \underset{\substack{\text { use wolfram }}}{\approx}-3984 \underset{\substack{\text { dollars } \\
\text { per year }}}{\sim} \\
& \text { alpha }
\end{aligned}
$$

(D) Illustrate the quantities from parts (A),(B),(C) on the given graph of

End of [Example 4]
End of Video

