Subject for this video: Derivatives of Logarithmic Functions

Reading:

- General: Section 3.2 Derivatives of Exponential and Logarithmic Functions
- More Specifically: Bottom of p. 188 - middle of p. 192, Examples 2 \& 3.

Homework:

H43: Derivatives of Logarithmic Functions (3.2\#15,21,43,44,51,55)

Prerequisite Skills: Recall these Properties of Logarithms:

Logarithm of a Product:	$\ln (a \cdot b)=\ln (a)+\ln (b)$
Logarithm of an Exponential Expression:	$\ln \left(a^{b}\right)=b \ln (a)$
Logarithm of a Reciprocal:	$\ln \left(\frac{1}{a}\right)=-\ln (a)$
Logarithm of a Quotient:	$\ln \left(\frac{a}{b}\right)=\ln (a)-\ln (b)$

Prerequisite Skills: Recall the shape of the graph of $\boldsymbol{y}=\ln (x)$.
The graph of $y=\ln (x)$ is obtained from the graph of $y=e^{(x)}$ by interchanging all the x, y values.

$$
\begin{aligned}
& e^{(1)}=e \\
& e^{(0)}=1 \\
& e^{(-1)}=\frac{1}{e}
\end{aligned}
$$

More generally, the graph of $y=\log _{b}(x)$ is obtained from the graph of $y=b^{(x)}$ by interchanging all the x, y values.

$$
\begin{aligned}
& b^{(1)}=b \\
& b^{(0)}=1 \\
& b^{(-1)}=\frac{1}{b}
\end{aligned}
$$

Recall from the video for H 32 these observations about properties of exponential functions.

Properties of Exponential Functions $b^{(x)}$ with $b>1$

- Domain and Range
- The domain is the set of all real numbers x. In interval notation, $(-\infty, \infty)$
\circ The range is all $y>0$. In interval notation, $(0, \infty)$
- The graph has three distinctive points:
- The graph goes through the point $(x, y)=(0,1)$ because $b^{(0)}=1$
- The graph goes through the point $(x, y)=(1, b)$ because $b^{(b)}=b$
- The graph goes through the point $(x, y)=\left(-1, \frac{1}{b}\right)$ because $b^{(-1)}=\frac{1}{b}$
- End Behavior
- The graph goes up without bound on the right. That is, $\lim _{x \rightarrow \infty} b^{(x)}=\infty$
- Graph has a horizontal asymptote on left with equation $y=0$. That is, $\lim _{x \rightarrow-\infty} b^{(x)}=0$
- The graph is increasing from left to right. That is, if $x_{1}<x_{2}$, then $b^{\left(x_{1}\right)}<b^{\left(x_{2}\right)}$

We can make corresponding observations about properties of exponential functions.

Properties of Logarithmic Functions $\log _{b}(x)$ with $b>1$

- Domain and Range
- The domain is the set of all positive real numbers x. In interval notation, $(0, \infty)$
- The range is all real numbers y. In interval notation, $(-\infty, \infty)$
- The graph has three distinctive points:
- The graph goes through the point $(x, y)=(1,0)$, which tells us $\log _{b}(1)=0$
- The graph goes through the point $(x, y)=(b, 1)$, which tells us $\log _{b}(b)=1$
- The graph goes through the point $(x, y)=\left(\frac{1}{b},-1\right)$, which tells us $\log _{b}\left(\frac{1}{b}\right)=-1$
- End Behavior
- The graph goes up without bound on the right. That is, $\lim _{x \rightarrow \infty} \log _{b}(x)=\infty$
- Graph has a vertical asymptote with line equation $x=0$, and the graph goes down along the right side of that asymptote. That is, $\lim _{x \rightarrow 0^{+}} \log _{b}(x)=-\infty$
- The graph is increasing from left to right. That is, if $x_{1}<x_{2}$, then $\log _{b}\left(x_{1}\right)<\log _{b}\left(x_{2}\right)$

New Derivative Rules

Logarithmic Function Rule \#1

This rule is used for finding the derivative of the natural logarithm function.
Two equation form: If $f(x)=\ln (x)$ then $f^{\prime}(x)=\frac{1}{x}$.
Single equation form: $\frac{d}{d x} \ln (x)=\frac{1}{x}$

This rule is found by using the Definition of the Derivative.

```
note ln}(x)\not=\frac{1}{x}!
```

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{\ln (x+h)-\ln (x)}{h}
$$

The details of the calculation, organized by the Four Step Process, are shown clearly in the book on pages 189 - 190. It is interesting, beautiful math, worth reading. But in MATH 1350, you will not be asked to do the calculation, and I won't discuss the details here.

But we will gain a better understanding of the rule if we examine the graphs of $f(x)$ and $f^{\prime}(x)$.

The numbers that are the slopes on the graph of $f(x)=\ln (x)$

$$
f^{\prime}(x)=\frac{1}{x}, \underbrace{\left(\frac{1}{e}, e\right)}_{=2} \begin{aligned}
& (1,1) \\
& \left(e, \frac{1}{e}\right)
\end{aligned}
$$

the numbers that are the y values on the graph of $f^{\prime}(x)=\frac{1}{x}$

There is a second Logarithmic Function Rule

Logarithmic Function Rule \#2
This rule is used for finding the derivative of base b logarithm functions.
Two equation form: If $f(x)=\log _{b}(x)$ then $f^{\prime}(x)=\frac{1}{x \ln (b)}$.
Single equation form: $\frac{d}{d x} \log _{b}(x)=\frac{1}{x \ln (b)}$

Observe that Logarithmic Function Rule \#1 is a special case of Logarthmic Function Rule \#2

$$
\begin{gathered}
\frac{d}{\operatorname{dn}(x)}=\frac{d}{d x} \log e^{(x)}=\frac{1}{x \ln (e)}=\frac{1}{x} \\
\operatorname{locanse} \\
\ln (x) \\
\operatorname{means} \\
\log (x)
\end{gathered}
$$

[Examples] Find the derivatives of the following functions:

$$
\left.\begin{array}{rl}
f^{\prime}(x) & =\frac{d}{d x} \operatorname{l2} \ln (x)
\end{array}\right)=12 \frac{d}{d x} \ln (x)=12\left(\frac{1}{x}\right)=\frac{12}{x}
$$

constant multiplecale logarithm rule \#2
(C) $f(x)=12 \log (x)$ In our book, $\log (x)$ means $\log _{10}(x)$
(warning: In some books and in some computer programs), $\log (x)$ means $\ln (x)$.

$$
f^{\prime}(x)=\frac{d}{d x} 12 \log _{10}(x)=\frac{12}{\text { steps just like }(B)}=\frac{1}{x \ln (10)}
$$

(D) $f(x)=12 \ln (13)$

$$
f^{\prime}(x)=\frac{d}{d x} \frac{12 \ln (13)}{\text { constant function }}
$$

(E) $f(x)=12 \ln (13 x)$ Neither one of our rules will work on $\ln (13 x)$ Must start by rewriting $f(x)$ into a form that works with our

$$
f(x)=12 \ln (13 x)=12(\ln (13)+\ln (x))=12 \ln (13)+12 \ln (x) d e
$$

$$
f^{\prime}(x)=\frac{d}{d x} 12 \ln (13)+\frac{d}{d x}\left(2 \ln (x)=0+\frac{12}{x}=\frac{12}{x}\right.
$$

(F) $f(x)=12 \ln \left(\frac{13}{x}\right)$ derivative rules.

$$
\begin{aligned}
& \text { Start by rewriting } \\
& f(x)=12 \ln \left(\frac{B}{x}\right)=12[\ln (13)-\ln (x)]=12 \ln (13)-12 \ln (x) \\
& f_{\text {property } \ln \left(\frac{a}{b}\right)} \ln (x)=\ln (a)-\ln (b) \\
& \frac{d}{d x} \\
& f_{\text {from } D}^{12 \ln (13)-\frac{d}{d x} 12 \ln (x)} \underbrace{0-\frac{12}{x}}_{\text {from } A}=\frac{-12}{x}
\end{aligned}
$$

(G) $f(x)=12 \ln \left(x^{13}\right)$

$$
\begin{aligned}
& \text { (G) } f(x)=12 \ln \left(x^{13}\right) \\
& \begin{array}{l}
\text { ewrite } f(x)=12 \ln \left(x^{13}\right)=12.13 \ln (x) \\
\quad \text { Cuse property } \ln \left(a^{b}\right)=b \ln (a) \\
f^{\prime}(x)=\frac{d}{d x} 12.13 \ln (x)=12.13 \cdot d \ln (x)=12.13 .1 \\
\end{array}=\frac{156}{x}
\end{aligned}
$$

constant multiple rale sulett
(H) $f(x)=12 x \ln (13)$

$$
f^{\prime}(x)=\frac{d}{d x} \underline{12 x \ln (13)} \underset{\text { coastant multiplegule }}{12 \ln (13)} \frac{d}{d x} x_{\uparrow}^{x}=12 \ln (13) \cdot 1
$$

$$
=12 \ln (13)
$$

