Subject for this video: Derivatives of Logarithmic Functions

Reading:

- General: Section 3.2 Derivatives of Exponential and Logarithmic Functions
- More Specifically: Bottom of p. 188 middle of p. 192, Examples 2 & 3.

Homework:

H43: Derivatives of Logarithmic Functions (3.2#15,21,43,44,51,55)

Prerequisite Skills: Recall these Properties of Logarithms:

Logarithm of a Product: $\ln(a \cdot b) = \ln(a) + \ln(b)$ Logarithm of an Exponential Expression: $\ln(a^b) = b \ln(a)$ Logarithm of a Reciprocal: $\ln\left(\frac{1}{a}\right) = -\ln(a)$ Logarithm of a Quotient: $\ln\left(\frac{a}{b}\right) = \ln(a) - \ln(b)$

Prerequisite Skills: Recall the shape of the graph of $y = \ln(x)$.

The graph of $y = \ln(x)$ is obtained from the graph of $y = e^{(x)}$ by interchanging all the x, y values.

Properties of Exponential Functions $b^{(x)}$ with b > 1

- Domain and Range
 - The domain is the set of all real numbers x. In interval notation, $(-\infty, \infty)$
 - The range is all y > 0. In interval notation, $(0, \infty)$
- The graph has three distinctive points:
 - The graph goes through the point (x, y) = (0, 1) because $b^{(0)} = 1$
 - The graph goes through the point (x, y) = (1, b) because $b^{(b)} = b$

• The graph goes through the point $(x, y) = \left(-1, \frac{1}{b}\right)$ because $b^{(-1)} = \frac{1}{b}$

- End Behavior
 - The graph goes up without bound on the right. That is, $\lim_{x\to\infty} b^{(x)} = \infty$
 - Graph has a horizontal asymptote on left with equation y = 0. That is, $\lim_{x \to -\infty} b^{(x)} = 0$
- The graph is increasing from left to right. That is, if $x_1 < x_2$, then $b^{(x_1)} < b^{(x_2)}$

We can make corresponding observations about properties of exponential functions.

Properties of Logarithmic Functions $\log_b(x)$ with b > 1

- Domain and Range
 - The domain is the set of all positive real numbers x. In interval notation, $(0, \infty)$
 - The range is all real numbers *y*. In interval notation, $(-\infty, \infty)$
- The graph has three distinctive points:
 - The graph goes through the point (x, y) = (1, 0), which tells us $\log_b(1) = 0$
 - The graph goes through the point (x, y) = (b, 1), which tells us $\log_b(b) = 1$

• The graph goes through the point $(x, y) = (\frac{1}{b}, -1)$, which tells us $\log_b(\frac{1}{b}) = -1$

- End Behavior
 - The graph goes up without bound on the right. That is, $\lim_{x\to\infty} \log_b(x) = \infty$
 - Graph has a vertical asymptote with line equation x = 0, and the graph goes down along the right side of that asymptote. That is, $\lim_{x \to 0^+} \log_b(x) = -\infty$
- The graph is increasing from left to right. That is, if $x_1 < x_2$, then $\log_b(x_1) < \log_b(x_2)$

New Derivative Rules

Logarithmic Function Rule #1

This rule is used for finding the derivative of the natural logarithm function.

Two equation form: If $f(x) = \ln(x)$ then $f'(x) = \frac{1}{x}$.

Single equation form: $\frac{d}{dx}\ln(x) = \frac{1}{x}$

This rule is found by using the Definition of the Derivative.

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{\ln(x+h) - \ln(x)}{h}$$

note

The details of the calculation, organized by the *Four Step Process*, are shown clearly in the book on pages 189 – 190. It is interesting, beautiful math, worth reading. But in MATH 1350, you will not be asked to do the calculation, and I won't discuss the details here.

But we will gain a better *understanding* of the rule if we examine the graphs of f(x) and f'(x).

 $\mathcal{F}(x) = \frac{1}{2}$

The numbers that are the slopes on the graph of f(X)=m(X)

the numbers that are the yvalues on the graph of $f'(x) = \frac{1}{x}$

There is a second Logarithmic Function Rule

Logarithmic Function Rule #2

This rule is used for finding the derivative of base b logarithm functions.

Two equation form: If $f(x) = \log_b(x)$ then $f'(x) = \frac{1}{x \ln(b)}$.

Single equation form: $\frac{d}{dx}\log_b(x) = \frac{1}{x\ln(b)}$

Observe that Logarithmic Function Rule #1 is a special case of Logarthmic Function Rule #2

[Examples] Find the derivatives of the following functions:

(A)
$$f(x) = 12 \ln(x)$$

 $f'(x) = \frac{d}{dx} \frac{12}{dx} \ln(x) = \frac{12}{dx} \frac{d}{dx} \ln(x) = \frac{12}{dx} \frac{1}{x} + \frac{12}{x}$
Constant multipletale
(B) $f(x) = 12 \log_{13}(x)$
 $f'(x) = \frac{d}{dx} \frac{12 \log_{13}(x)}{1} = \frac{12}{dx} \frac{d}{dx} \frac{d}{dx} \frac{d}{dx} (x) = \frac{12}{x} \frac{1}{x \ln(13)} = \frac{12}{x \ln(13)}$
Constant multipletale tale togarithm rule #2
(C) $f(x) = 12 \log(x)$
 $f'(x) = \frac{12}{12} \log(x)$

(E)
$$f(x) = 12 \ln(13x)$$
 Neither one of our rules will work on $h(13x)$
Must start by rewriting $F(x)$ into a form that works with our
 $S(x) = 12 \ln(13x) = 12 (\ln(13) + \ln(x)) = 12 \ln(13) + 12 \ln(x)$
 $f_{property} \ln(a;b) = \ln(a) + \ln(b)$
 $f'(x) = \frac{d}{dx} 12 \ln(13) + \frac{d}{dx} [2\ln(x)] = \frac{0}{x} + \frac{12}{x} = \frac{12}{x}$
(E) $f(x) = 12 \ln(\frac{13}{x})$ From (D) From (D) $F(x) = 12 \ln(\frac{13}{x}) = 12 (\ln(13) - \ln(x))$
 $f(x) = 12 \ln(\frac{13}{x}) = 12 (\ln(13) - \ln(x)) = 12 \ln(13) - 12 \ln(x)$
 $f(x) = 12 \ln(\frac{13}{x}) = 12 (\ln(13) - \ln(x)) = \ln(a) - \ln(b)$
 $f'(x) = \frac{d}{dx} 12 \ln(13) - \frac{d}{dx} 12 \ln(x) = 0 - \frac{12}{x} = -\frac{12}{x}$
 $f(x) = \frac{d}{dx} 12 \ln(13) - \frac{d}{dx} 12 \ln(x) = 0 - \frac{12}{x} = -\frac{12}{x}$

(G)
$$f(x) = 12 \ln(x^{13})$$

Rew rite $f(x) = 12 \ln(x^{13}) = 12 \cdot 13 \ln(x)$
Luse preperty $\ln(a^{b}) = b \ln(a)$
 $f'(x) = \frac{1}{4x} \frac{12 \cdot 13 \ln(x)}{12 \cdot 13 \ln(x)} = \frac{12 \cdot 13 \cdot 1}{4x} = \frac{156}{x}$
(H) $f(x) = 12x \ln(13)$
 $f'(x) = \frac{1}{4x} \frac{12}{12} \times \frac{\ln(13)}{13} = \frac{12 \ln(13)}{4x} \frac{12}{12} \times \frac{12 \ln(13)}{13} \frac{12}{12} \times \frac{12}{13} \frac{12}{13} + \frac{12}{13} \frac{12}{13$