Subject for this video: Tangent Line Problems Involving Logarithmic Functions

Reading:

- General: Section 3.2 Derivatives of Exponential and Logarithmic Functions
- More Specifically: The book does not discuss tangent lines in Section 3.2, and there are no similar examples.

Homework:
H44: Derivatives of Logarithmic Functions (3.2\#31,35)

Recall the Derivative Rules that we learned about in previous videos.

The Constant Function Rule: $\frac{d}{d x} c=0$
The Power Rule: $\frac{d}{d x} x^{n}=n x^{n-1}$
The Sum and Constant Multiple Rule: $\frac{d}{d x}(a f(x)+b g(x))=a \frac{d}{d x} f(x)+b \frac{d}{d x} g(x)$
Exponential Function Rule \#1: $\frac{d}{d x} e^{(x)}=e^{(x)}$
Exponential Function Rule \#2: $\frac{d}{d x} e^{(k x)}=k e^{(k x)}$
Exponential Function Rule \#3: $\frac{d}{d x} b^{(x)}=b^{(x)} \cdot \ln (b)$
Logarithmic Function Rule \#1 $\frac{d}{d x} \ln (x)=\frac{1}{x}$
Logarithmic Function Rule \#2 $\frac{d}{d x} \log _{b}(x)=\frac{1}{x \ln (b)}$

[Example]
(A) Find equation of line tangent to $f(x)=5+\ln \left(x^{3}\right)$ at $x=e^{2}$.

We need to find $(y-f(a))=f^{\prime}(a) \cdot(x-a)$
Point slope form. of the equation of the tangent line
Get Parts
$a=e^{2}$ the x coordinate of the point of $\tan \ln (y$

$$
f(a)=f\left(e^{2}\right)=5+\ln \left(\left(e^{2}\right)^{3}\right)=5+\ln \left(e^{6}\right)=5+6 \ln (e)=5+6 \cdot 1=11 \bigcap
$$

$\operatorname{sub} x=e^{2}$ into $f(x) \quad \uparrow \quad$ simplify

$$
\left(e^{a}\right)^{b}=e^{a \cdot b}
$$

Rewrite $f(x)=5+\ln \left(x^{3}\right)=5+3 \ln (x)$
Ruse property $\ln \left(a^{b}\right)=b \ln (a)$

$$
\begin{gathered}
f^{\prime}(x)=\frac{d}{d x}+\frac{5}{}+\ln (x)=\frac{d}{\uparrow} \frac{5}{d x}+\frac{3}{d} \frac{d}{d x} \ln (x)=0+3\left(\frac{1}{x}\right)=\frac{3}{x} \\
\text { Sum }+ \text { constant multinlecule }
\end{gathered}
$$

sum a constant multiple cull
$S^{\prime}(a)=\sum_{\substack{e^{2}}} \quad$ Slope of the tangent line

Substitute parts into the tangent line equation

$$
\begin{aligned}
& (y-f(a))=f^{\prime}(a)(x-a) \\
& (y-11)=\left(\frac{3}{e^{2}}\right)\left(x-e^{2}\right)
\end{aligned}
$$

equation for the tangent line in point slope form convert to slope intercept form. (Solve for y)

$$
\begin{aligned}
y-11 & =\left(\frac{3}{e^{2}}\right)\left(x-e^{2}\right)=\left(\frac{3}{e^{2}}\right) \cdot x-\left(\frac{3}{e^{2}}\right) e^{2} \\
& =\left(\frac{3}{e^{2}}\right) \cdot x-3 \\
y & =\left(\frac{3}{e^{2}}\right) \cdot x+8
\end{aligned}
$$

equation for the tangent line in slope intercept form.
(B) Illustrate your solution on the given graph of $f(x)=5+\ln \left(x^{3}\right)$

