Subject for this video: Tangent Line Problems Involving Logarithmic Functions

Reading:

- General: Section 3.2 Derivatives of Exponential and Logarithmic Functions
- More Specifically: The book does not discuss tangent lines in Section 3.2, and there are no similar examples.

Homework:

H44: Derivatives of Logarithmic Functions (3.2#31,35)

Recall the Derivative Rules that we learned about in previous videos.

٠

The Constant Function Rule:	$\frac{d}{dx}c = 0$
The Power Rule:	$\frac{d}{dx}x^n = nx^{n-1}$
The Sum and Constant Multiple Rule:	$\frac{d}{dx}(af(x) + bg(x)) = a\frac{d}{dx}f(x) + b\frac{d}{dx}g(x)$
Exponential Function Rule #1:	$\frac{d}{dx}e^{(x)} = e^{(x)}$
Exponential Function Rule #2:	$\frac{d}{dx}e^{(kx)} = ke^{(kx)}$
Exponential Function Rule #3:	$\frac{d}{dx}b^{(x)} = b^{(x)} \cdot \ln(b)$
Logarithmic Function Rule #1	$\frac{d}{dx}\ln(x) = \frac{1}{x}$
Logarithmic Function Rule #2	$\frac{d}{dx}\log_b(x) = \frac{1}{x\ln(b)}$

[Example]

(A) Find equation of line tangent to $f(x) = 5 + \ln(x^3)$ at $x = e^2$. We need to find $(Y - f(n)) = f'(n) \cdot (X - n)$ Point slope form of the equation of the tangent line Get Parts $Q = E^2$ the X coordinate of the point of tan ency $f(a) = f(e^{2}) = 5 + ln((e^{2})^{3}) = 5 + ln(e^{6}) = 5 + 6 ln(e) = 5 + 6 \cdot 1 = 16$ Sub x= e^{2} into fee) simplify property ln(ab) = b ln(a) ln(e) = 1 count (e^{a})^{b} = e^{a \cdot b}
Property ln(ab) = b ln(a) ln(e) = 1 count (e^{a})^{b} = e^{a \cdot b} Revrite $f(x) = 5 + ln(x^3) = 5 + 3 ln(x)$ Luse property $ln(a^b) = bln(a)$ $f(x) = \frac{d}{dx} + \frac{3}{2} \ln(x) = \frac{d}{dx} + \frac{3}{d} \ln(x) = 0 + \frac{3}{(\frac{1}{x})} = \frac{3}{x}$ Sum & constant multiple rule $S(a) = \frac{3}{e^2}$ Slope of the tangent line Sub a= e2 into f'(x)

Substitute parts into the tangent line equation

$$(Y - f(e)) = f'(a)(X - a)$$

 $(Y - 11) = \begin{pmatrix} 3 \\ e^2 \end{pmatrix}(X - e^2)$
equation for the tangent line in point slope form
convert to slope intercept form. (solve for y)
 $Y - 11 = \begin{pmatrix} 3 \\ e^2 \end{pmatrix}(X - e^2) = \begin{pmatrix} 3 \\ e^2 \end{pmatrix}X - \begin{pmatrix} 3 \\ e^2 \end{pmatrix}e^2$
 $= \begin{pmatrix} 3 \\ e^2 \end{pmatrix}X + 8$
equation for the tangent line in slope intercept form.

(B) Illustrate your solution on the given graph of $f(x) = 5 + \ln(x^3)$

