Subject for this video: Derivatives of Products

Reading:

- General: Section 3.3 Derivatives of Products and Quotients
- More Specifically: Pages 196 - 198, Examples 1,2,3

Homework:

H45: Differentiating Products (3.3\#17,19,21,55)

Recall the Derivative Rules that we learned about in previous videos.

The Constant Function Rule: $\frac{d}{d x} c=0$
The Power Rule: $\frac{d}{d x} x^{n}=n x^{n-1}$
The Sum and Constant Multiple Rule: $\frac{d}{d x}(a f(x)+b g(x))=a \frac{d}{d x} f(x)+b \frac{d}{d x} g(x)$
Exponential Function Rule \#1: $\frac{d}{d x} e^{(x)}=e^{(x)}$
Exponential Function Rule \#2: $\frac{d}{d x} e^{(k x)}=k e^{(k x)}$
Exponential Function Rule \#3: $\frac{d}{d x} b^{(x)}=b^{(x)} \cdot \ln (b)$
Logarithmic Function Rule \#1 $\frac{d}{d x} \ln (x)=\frac{1}{x}$
Logarithmic Function Rule \#2 $\frac{d}{d x} \log { }_{b}(x)=\frac{1}{x \ln (b)}$

New Rule: The Product Rule

Consider a product of functions, $f(x)=g(x) \cdot h(x)$.

Question: How is $f^{\prime}(x)$ related to $g^{\prime}(x)$ and $h^{\prime}(x)$?

The good news is that there is an obvious relationship.
The bad news is that the obvious relationship is wrong.
The obvious relationship: If $f(x)=g(x) \cdot h(x)$ then $f^{\prime}(x)=g^{\prime}(x) \cdot h^{\prime}(x)$ using!
How do we know it is wrong? Consider this easy example.
[Example 1] Let $f(x)=5 x^{2}$
If we find $f^{\prime}(x)$ using our established derivative rules. We find with $n=1$

$$
f^{\prime}(x)=\frac{d}{d x} 5 x^{2}=5 \frac{d}{d x}=5\left(2 x^{2-1}\right)=10 x
$$

constant multiple rule power rule with $n=1$
But if we compute $f^{\prime}(x)$ using the obvious (bad) method, we find

The correct relationship between $f^{\prime}(x)$ and $g^{\prime}(x)$ and $h^{\prime}(x)$ is given by the Product Rule.

The Product Rule

This rule is used for finding the derivative of a product of functions.
Two equation form: If $f(x)=g(x) \cdot h(x)$ then $f^{\prime}(x)=g^{\prime}(x) \cdot h(x)+g(x) \cdot h^{\prime}(x)$
Single equation form: $\frac{d}{d x} g(x) \cdot h(x)=g^{\prime}(x) \cdot h(x)+g(x) \cdot h^{\prime}(x)$
[Example 2] (Similar to 3.3\#21) $f(x)=\left(-3 x^{2}+13 x-5\right)(3 x-2)$.
Find $f^{\prime}(x)$ using the product rule. Simplify $)^{\prime}$ our answer.

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x}\left(\left(-3 x^{2}+13 x-5\right)(3 x-2)\right) \\
\text { Productrule } & =\left(\frac{d}{d x}\left(-3 x^{2}+13 x-5\right)\right) \cdot(3 x-2)+\left(-3 x^{2}+13 x-5\right)\left(\frac{d}{d x}(3 x-2)\right) \\
& =(-3(2 x)+13(1)-0) \cdot(3 x-2)+\left(-3 x^{2}+13 x-5\right)(3(1)-0)
\end{aligned}
$$

(used the power rule and the constant functioscule)

$$
\begin{aligned}
& =(-6 x+13)(3 x-2)+\left(-3 x^{2}+13 x-5\right)(3) \\
& =-18 x^{2}+39 x+12 x-26-9 x^{2}+39 x-15 \\
& =-27 x^{2}+90 x-41
\end{aligned}
$$

[Example 3] (Similar to 3.3\#55) Let $f(x)=\left(-3 x^{2}+13 x-5\right) e^{(x)}$
(A) Find $f^{\prime}(x)$ and simplify.

$$
\begin{aligned}
& f^{\prime}(x)=\frac{d}{d x}\left(\left(-3 x^{2}+13 x-5\right) e^{(x)}\right. \\
& \stackrel{\text { prodnctuc }}{ }=\left(\frac{d}{d x}\left(-3 x^{2}+13 x-5\right)\right) \cdot e^{(x)}+\left(-3 x^{2}+13 x-5\right) \frac{d}{d x} e^{(x)} \\
&=(-6 x+13) \cdot e^{(x)}+\left(-3 x^{2}+13 x-5\right)(\underbrace{e^{(x)}}) \\
&=\left((-6 x+13)+\left(-3 x^{2}+13 x-5\right)\right] e^{e^{(x)}} \\
&=\left[-3 x^{2}+7 x+8\right] e^{(x)}
\end{aligned}
$$

(B) Find $f^{\prime}(0)$ and simplify.

$$
\begin{aligned}
& f^{\prime}(x)=\left[-3 x^{2}+7 x+8\right] e^{(x)} \\
& f^{\prime}()=\left[-3()^{2}+7()+8\right] e^{(x)} \\
& f^{\prime}(0)=\left[-3(0)^{2}+7(0)+8\right] e^{(0)}=[8] e^{(0)}=8.1=8 \\
& \text { substr-t-k } x=0 \text { into } f^{\prime}(x)
\end{aligned}
$$

subtriv-it $x=0$ into $f^{\prime}(x)$
(C) Find $f^{\prime}(1)$ and simplify.

$$
\left.f^{\prime}(1)=\left[-3(1)^{2}+7(1)+8\right] e^{(1)}=-3(1)+7+8\right] \cdot e
$$

Sub $x=1$ ind $f^{\prime}(x)$

$$
\begin{aligned}
& =[12] e \\
& =12 e
\end{aligned}
$$

[Example 4] (Similar to 3.3\#19) Let $f(x)=5 x^{7} \ln (x)$
(A) Find $f^{\prime}(x)$ and simplify.
note: dort do this $\left.f^{\prime}(x)=\left(\frac{d}{d x} 5 x^{\top}\right) \cdot\left(\frac{d}{d x} \ln (x)\right) \right\rvert\, 1$,
use product rule

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x}\left(5 x^{7} \cdot \ln (x)\right)=\left(\begin{array}{c}
\left(\frac{d}{d x} 5 x^{7}\right) \cdot \ln (x)+5 x^{7} \cdot\left(\frac{d}{d x} \ln (x)\right) \\
\\
\end{array}=\left(5 \cdot\left(7 x^{7-1}\right)\right) \ln (x)+5 x^{7} \cdot\left(\frac{1}{x}\right)\right. \\
& =35 x^{6} \ln (x)+5 x^{6} \\
& =5 x^{6} \cdot 7 \ln (x)+5 x^{6} \cdot 1 \\
& =5 x^{6}[7 \ln (x)+1]
\end{aligned}
$$

(B) Find $f^{\prime}(1)$ and simplify.

$$
\begin{aligned}
& f^{\prime}(x)=5 x^{6}[7 \ln (x)+1] \\
& f^{\prime}(1)=5(1)^{6}[7 \ln (1)+1]=5 \cdot 1[7 \cdot 0+1]=5[1]=5 \\
& \text { sub } x=1 \text { into } f^{\prime}(x) \quad \ln (1)=0
\end{aligned}
$$

(C) Find $f^{\prime}(e)$ and simplify.
(because $e^{(0)}=1$)

$$
\begin{aligned}
& f^{\prime}(e)=5(e)^{6}[\underbrace{}_{\ln (e)=1}=\frac{\ln (e)+1]=5 e^{6}[7 \cdot 1+1]}{}=5 e^{6}[8] \\
& \text { Sub } \left.x=e^{\text {indole }} f^{\prime}(x)=e\right)
\end{aligned}
$$

$$
=40 e^{6}
$$

