Subject for this video: Derivatives of Quotients

Reading:

- General: Section 3.3 Derivatives of Products and Quotients
- More Specifically: Middle of pages 198 - top of page 201, Examples 4AB, 5

Homework:

H46: Derivatives of Quotients (3.3\#25,31,33,69)

Recall the Derivative Rules that we learned about in previous videos.

The Constant Function Rule: $\frac{d}{d x} c=0$
The Power Rule: $\frac{d}{d x} x^{n}=n x^{n-1}$
The Sum and Constant Multiple Rule: $\frac{d}{d x}(a f(x)+b g(x))=a \frac{d}{d x} f(x)+b \frac{d}{d x} g(x)$
Exponential Function Rule \#1: $\frac{d}{d x} e^{(x)}=e^{(x)}$
Exponential Function Rule \#2: $\frac{d}{d x} e^{(k x)}=k e^{(k x)}$
Exponential Function Rule \#3: $\frac{d}{d x} b^{(x)}=b^{(x)} \cdot \ln (b)$
Logarithmic Function Rule \#1: $\frac{d}{d x} \ln (x)=\frac{1}{x}$
Logarithmic Function Rule \#2: $\frac{d}{d x} \log _{b}(x)=\frac{1}{x \ln (b)}$
The Product Rule: $\frac{d}{d x} g(x) \cdot h(x)=g^{\prime}(x) \cdot h(x)+g(x) \cdot h^{\prime}(x)$

New Rule: The Quotient Rule

Consider a quotient of functions,

$$
f(x)=\frac{\operatorname{top}(x)}{\operatorname{bottom}(x)}
$$

Question: How is $f^{\prime}(x)$ related to $\operatorname{top}^{\prime}(x)$ and $\operatorname{bottom}^{\prime}(x)$?

The good news is that there is an obvious relationship.
The bad news is that the obvious relationship is wrong.

The obvious relationship:

How do we know it is wrong? Consider this easy example.
[Example 1] Le $f(x)=\frac{x^{2}}{5}$
If we find $f^{\prime}(x)$ using our established derivative rules, we find
Start by rewriting $f(x)=\frac{x^{2}}{5}=\left(\frac{1}{5}\right) \cdot x^{2}$ power function with $n=2$

$$
f^{\prime}(x)=\frac{d}{d x}\left(\left(\frac{1}{5}\right) x^{2}\right)=\frac{1}{\uparrow}\left(\frac{1}{5}\right) \frac{d}{d x} x^{2}=\left(\frac{1}{5}\right)\left(2 x^{\prime}\right)=\frac{2 x}{5}
$$

But if we compute $f^{\prime}(x)$ using the obvious (bad) method, we find

The correct relationship between $f^{\prime}(x)$ and top $^{\prime}(x)$ and $\operatorname{bottom}^{\prime}(x)$ is given by the Quotient Rule.

The Quotient Rule

This rule is used for finding the derivative of a quotient of functions.
Two equation form:
If

$$
f(x)=\frac{\operatorname{top}(x)}{\operatorname{bottom}(x)}
$$

then

$$
f^{\prime}(x)=\frac{\text { top }^{\prime}(x) \operatorname{bottom}(x)-\operatorname{top}(x) \operatorname{bottom}^{\prime}(x)}{(\operatorname{bottom}(x))^{2}}
$$

Single equation form:

$$
\frac{d}{d x}\left(\frac{\operatorname{top}(x)}{\operatorname{bottom}(x)}\right)=\frac{\text { top }^{\prime}(x) \operatorname{bottom}(x)-\operatorname{top}(x) \operatorname{bottom}^{\prime}(x)}{(\operatorname{bottom}(x))^{2}}
$$

[Example 2] Revisit our function from [Example 11 $f(x)=\frac{x^{2}}{5}$
Find $f^{\prime}(x)$ using the predict rule. Simplify your answer.
quotient

$$
\begin{aligned}
& f^{\prime}(x)=\frac{\operatorname{tap}^{\prime}(x) \cdot \operatorname{hottan}(x)-\operatorname{tap}(x) \cdot \operatorname{botan}^{\prime}(x)}{(\operatorname{hotan}(x))^{2}} \\
& \frac{d}{d x}\left(\frac{x^{2}}{5}\right)=\frac{\left(\frac{d}{d x^{2}} x^{2}\right) \cdot 5-x^{2}\left(\frac{d}{d} x^{5}\right)}{\text { powerale }(5)^{2} \text { constant functioncale }} \\
& q^{\text {qutwice }}=\frac{\left(2 \cdot x^{1}\right) \cdot 5-x^{2}(O)}{25} \rightarrow 0 \\
& =\frac{2 x \cdot 5}{25} \sum \text { simplify } \\
& =\frac{2 x}{5} \\
& \text { Remark: Solution in [Example 1] using } \\
& \text { easier derivative rules is much simpler. } \\
& \text { Always to to rewrite function first! }
\end{aligned}
$$

[Example 3] (similar to 3.3\#25)
Let $f(x)=\frac{3 x+5}{x^{2}-3}$
Find $f^{\prime}(x)$ and simplify answer.
Solution:
note: cannot cancel $\left(x^{2}-3\right)$ at this point!

$$
=\frac{3\left(x^{2}-3\right)-(3 x+5)(2 x)}{\left(x^{2}-3\right)^{2}}
$$

$$
=\frac{\left(3 x^{2}-9\right)-\left(6 x^{2}+10 x\right)}{\left(x^{2}-3\right)^{2}}
$$

$$
=\frac{-3 x^{2}-10 x-9}{\left(x^{2}-3\right)^{2}}
$$

$$
\begin{aligned}
& \left.\left.\left.f^{\prime}(x)=\frac{\left(\frac{d}{d x^{2}}\right.}{\substack{3 x+5 \\
\text { quotient } \\
\text { rule }}}\right)^{2}\right) \cdot\left(x^{2}-3\right)-(3 x+5)\left(\frac{d}{d x}\left(x^{2}-3\right)^{2}\right)\right) \\
& =\frac{(3(1)+0) \cdot\left(x^{2}-3\right)-(3 x+5)(2 x-0)}{\left(x^{2}-3\right)^{2}}
\end{aligned}
$$

[Example 4] (similar to 3.3\#31)
Let $f(x)=\frac{e^{(x)}}{x^{2}-3}$
Find $f^{\prime}(x)$ and simplify answer.
Solution; $f^{\prime}(x)=\frac{d}{d x}\left(\frac{\left(e^{(x)}\right.}{x^{2}-3}\right)=\frac{\left(\frac{d}{d x} e^{(x)}\right) \cdot\left(x^{2}-3\right)-e^{(x)} \frac{d}{d x}\left(x^{2}-3\right)}{\left(x^{2}-3\right)^{2}}$

$$
=\frac{\left(e^{(x)}\right) \cdot\left(x^{2}-3\right)-e^{(x)}(2 x)}{\left(x^{2}-3\right)^{2}} \text { note we cannot cancel } \begin{aligned}
& \text { the }\left(x^{2}-3\right) \text { here! }
\end{aligned}
$$

Simplify numerator by factoring out the $e^{(x)}$

$$
\begin{aligned}
& =\frac{e^{(x)}\left(\left(x^{2}-3\right)-(2 x)\right)}{\left(x^{2}-3\right)^{2}} \\
& =\frac{e^{(x)}\left(x^{2}-2 x-3\right)}{\left(x^{2}-3\right)^{2}}
\end{aligned}
$$

[Example 5] (similar to 3.3\#33)

$$
\text { Le } f(x)=\frac{\ln (x)}{x^{2}-3 x+5}
$$

$$
\frac{d}{d x} \ln (x)=\frac{1}{x}
$$

$$
\begin{aligned}
& \text { Find } f^{\prime}(x) \text { and simplify answer. } \\
& f^{\prime}(x)=\frac{\left(\frac{d}{d x} \ln (x)\right)\left(x^{2}-3 x+5\right)-\ln (x)\left(\frac{d}{d x}\left(x^{2}-3 x+5\right)\right)}{\left(x^{2}-3 x+5\right)^{2}} \\
& \text { me note: cannot cancel the }\left(x^{2}-3 x+5\right) \text { ! } \\
& =\frac{\left(\frac{1}{x}\right)\left(x^{2}-3 x+5\right)-\ln (x)(2 x-3)}{\left(x^{2}-3 x+5\right)^{2}} \\
& \text { trick } \\
& \checkmark \text { trick }
\end{aligned}
$$

$$
=\frac{\left(\frac{1}{x}\right)\left(x^{2}-3 x+5\right)-\ln (x)(2 x-3) x \cdot\left(\frac{1}{x}\right)}{\left(x^{2}-3 x+5\right)^{2}}
$$

faitor out $\frac{1}{x}$ inf rout

$$
=\frac{\left(\frac{1}{x}\right)\left[\left(x^{2}-3 x+5\right)^{2}-\ln (x)(2 x-3) x\right]}{\left(x^{2}-3 x+5\right)}
$$

move the

$$
\begin{aligned}
& \text { move the } \frac{x^{2}-3 x+5-\ln (x)\left(2 x^{2}-3 x\right)}{x\left(x^{2}-3 x+5\right.}
\end{aligned}
$$

[Example 6] (similar to 3.3\#69)
Let $f(x)=\frac{x}{x^{2}+4}$
(a) Find $f^{\prime}(x)$ and simplify answer.

$$
\begin{aligned}
& \text { (a) Find } f^{\prime}(x) \text { and simplify answer. } \\
& f_{\substack{\text { notions } \\
\text { rule }}}^{(x)}\left(\frac{d}{d x} x\right) \cdot\left(x^{2}+4\right)-x \frac{d}{d x}\left(x^{2}+4\right) \\
& \left(x^{2}+4\right)^{2}
\end{aligned}
$$

warning: Cannot cancel the $\left(x^{2}+4\right)$ here

$$
\begin{aligned}
& =\frac{(1)\left(x^{2}+4\right)-x(2 x)}{\left(x^{2}+4\right)^{2}} \\
& =\frac{x^{2}+4-2 x^{2}}{\left(x^{2}+4\right)^{2}} \\
& =\frac{-x^{2}+4}{\left(x^{2}+4\right)^{2}}
\end{aligned}
$$

(b) Find the x values where $f^{\prime}(x)=0$

$$
f^{\prime}(x)=\frac{-x^{2}+4}{\left(x^{2}+4\right)^{2}}=0
$$

Recall that a fraction $\frac{a}{b}=0$ only when $a=0$ and $b \neq 0!!$
Find the values of x that canse numerator $=0$

$$
\begin{aligned}
-x^{2}+4 & =0 \\
4 & =x^{2} \\
x & =2 \text { or } x=-2
\end{aligned}
$$

Check to see if the denominator is non-zeroat those X values

- when $x=2$, denominator $=\left(2^{2}+4\right)^{2}=(4+4)^{2} \neq 0$
- when $x=-2$, denominator $=\left((-2)^{2}+4\right)^{2}=(4+4)^{2} \neq 0$

Conclusion: $f^{\prime}(x)=0$ at $x=2$ and at $x=-2$ because numerator $=0$ and denominator $\neq 0$ there.
(c) Illustrate your result of (b) on the given graph of $f(x)=\frac{x}{x^{2}+4}$ obsecue that the tangent
lines at $x=-2$ and $x=2$ will) have slope

