Subject for this video: A trick that works for derivatives of some quotients:

Rewrite First to Eliminate the Quotient

Reading:

- General: Section 3.3 Derivatives of Products and Quotients
- More Specifically: Page 199, Example402

Homework:
H47: Trick: Rewrite First to Eliminate the Quotient (3.3\#59*,73)

Recall the Derivative Rules that we learned about in previous videos.

The Constant Function Rule: $\frac{d}{d x} c=0$
The Power Rule: $\frac{d}{d x} x^{n}=n x^{n-1}$
The Sum and Constant Multiple Rule: $\frac{d}{d x}(a f(x)+b g(x))=a \frac{d}{d x} f(x)+b \frac{d}{d x} g(x)$
Exponential Function Rule \#1: $\frac{d}{d x} e^{(x)}=e^{(x)}$
Exponential Function Rule \#2: $\frac{d}{d x} e^{(k x)}=k e^{(k x)}$
Exponential Function Rule \#3: $\frac{d}{d x} b^{(x)}=b^{(x)} \cdot \ln (b)$
Logarithmic Function Rule \#1: $\frac{d}{d x} \ln (x)=\frac{1}{x}$
Logarithmic Function Rule \#2: $\frac{d}{d x} \log _{b}(x)=\frac{1}{x \ln (b)}$
The Product Rule: $\frac{d}{d x} g(x) \cdot h(x)=g^{\prime}(x) \cdot h(x)+g(x) \cdot h^{\prime}(x)$

And the Quotient Rule that we learned about in the previous video

The Quotient Rule

This rule is used for finding the derivative of a quotient of functions.
Two equation form:
If

$$
f(x)=\frac{\operatorname{top}(x)}{\operatorname{bottom}(x)}
$$

then

$$
f^{\prime}(x)=\frac{\text { top }^{\prime}(x) \operatorname{bottom}(x)-\text { top }(x) \text { bottom }^{\prime}(x)}{(\operatorname{bottom}(x))^{2}}
$$

Single equation form:

$$
\frac{d}{d x}\left(\frac{\operatorname{top}(x)}{\operatorname{bottom}(x)}\right)=\frac{\text { top }^{\prime}(x) \operatorname{bottom}(x)-\operatorname{top}(x) \text { bottom }^{\prime}(x)}{(\operatorname{bottom}(x))^{2}}
$$

[Example 1] (similar to $\underbrace{3.3 \# 73)}$
Let $f(x)=\frac{x^{7}+13}{x^{7}}$
The goal is to find $f^{\prime}(x)$ by two methods.

$$
\begin{aligned}
& \text { (A) Find } f^{\prime}(x) \text { by using the quotient rule. }\left(x^{7}+13\right) \frac{d}{d x} \\
& \begin{aligned}
& f^{\prime}(x)=\left(\frac{d}{d x} x^{7}+13\right) \cdot x^{7}-\left(x^{7}\right. \\
& \text { quotient } \\
& \text { ink }
\end{aligned} \\
& = \\
& =\frac{\left(7 x^{6}+0\right) \cdot x^{7}-\left(x^{7}+13\right) \cdot\left(7 x^{6}\right)}{\left(x^{7}\right)^{2}} \\
& \\
& =\frac{7 x^{13}-\left(7 x^{13}+91 x^{6}\right)}{x^{14}} \\
& \\
& =\frac{-91 x^{6}}{x^{14}} \\
&
\end{aligned}
$$

$$
\operatorname{asing}\left(a^{b}\right)^{c}=a^{b \cdot c}
$$

(B) Start over. First simplify $f(x)$. Then find $f^{\prime}(x)$ using easier derivative rules.

$$
f(x)=\frac{x^{7}+13}{x^{7}}=\frac{x^{7}}{x^{7}}+\frac{13}{x^{7}}=1+13 x^{-7}
$$

positive exponent form
Now find the derivative to poser function form

$$
\begin{aligned}
& \text { low find the decivatwe to proser function form } \\
& f^{\prime}(x)=\frac{d}{d x}\left(1+13 x^{-7}\right)=\frac{d}{d x}+\frac{1}{13} \frac{d}{d x} x^{-7} \text { power function } \\
& \text { with } n=-7
\end{aligned}
$$

sum and constant multi iple rule

$$
=0+13 \cdot\left(-7 \cdot x^{-7-1}\right)
$$

$$
=-91 x^{-8}
$$

Convert from power function form to position exponent form

$$
=-91 \cdot \frac{1}{x^{8}}
$$

Remark: Solution B, where we simplified $f(x)$ first, is much

$$
=\frac{-91}{x^{8}}
$$

easier than solution. A, which needed the quotient rule.

