Subject for this video: Tangent Line and Applied Problems Involving Quotients

Reading:

- General: Section 3.3 Derivatives of Products and Quotients
- More Specifically:
- There is no discussion of tangent line problems involving quotients in Section 3.3. There is an example involving a product (Example 2). But a specific book example involving quotients is not really needed: We have seen tangent line examples in book sections 2.4, 2.5 , and 3.2. All the tangent line problems are solved the same way. Only the particular technique used to find the derivative varies.
- There is an applied problem involving a quotient on page 201: Example 6

Homework:

H48: Tangent Line Problems Involving Quotients (3.3\#63,93)

Recall the Derivative Rules that we learned about in previous videos.

The Constant Function Rule: $\frac{d}{d x} c=0$
The Power Rule: $\frac{d}{d x} x^{n}=n x^{n-1}$
The Sum and Constant Multiple Rule: $\frac{d}{d x}(a f(x)+b g(x))=a \frac{d}{d x} f(x)+b \frac{d}{d x} g(x)$
Exponential Function Rule \#1: $\frac{d}{d x} e^{(x)}=e^{(x)}$
Exponential Function Rule \#2: $\frac{d}{d x} e^{(k x)}=k e^{(k x)}$
Exponential Function Rule \#3: $\frac{d}{d x} b^{(x)}=b^{(x)} \cdot \ln (b)$
Logarithmic Function Rule \#1: $\frac{d}{d x} \ln (x)=\frac{1}{x}$
Logarithmic Function Rule \#2: $\frac{d}{d x} \log _{b}(x)=\frac{1}{x \ln (b)}$
The Product Rule: $\frac{d}{d x} g(x) \cdot h(x)=g^{\prime}(x) \cdot h(x)+g(x) \cdot h^{\prime}(x)$

And the Quotient Rule that we learned about recently

The Quotient Rule

This rule is used for finding the derivative of a quotient of functions.
Two equation form:
If

$$
f(x)=\frac{\operatorname{top}(x)}{\operatorname{bottom}(x)}
$$

then

$$
f^{\prime}(x)=\frac{\text { top }^{\prime}(x) \operatorname{bottom}(x)-\text { top }(x) \text { bottom }^{\prime}(x)}{(\operatorname{bottom}(x))^{2}}
$$

Single equation form:

$$
\frac{d}{d x}\left(\frac{\operatorname{top}(x)}{\operatorname{bottom}(x)}\right)=\frac{\text { top }^{\prime}(x) \operatorname{bottom}(x)-\operatorname{top}(x) \text { bottom }^{\prime}(x)}{(\operatorname{bottom}(x))^{2}}
$$

[Example 1] (similar to 3.3\#63)

$$
\text { Let } f(x)=\frac{2 x-5}{2 x-3}
$$

(A) Find the equation of the line tangent to the graph of $f(x)$ at $x=3$.

We need to build the equation $(y-f(a))=f^{\prime}(a) \cdot(x-a)$
point slope form of the equation
Get Parts
$a=3$ the x coordinate of the point of tangency for the tangentine
$f(a)=f(3)=\frac{2(3)-5}{2(3)-3}=\frac{6-5}{6-3}=\frac{1}{3}$ the y coordinate of the point oftangeny

$$
f^{\prime}(x)=\frac{d}{d x}\left(\frac{2 x-5)}{2 x-3}\right)=\frac{\left(\frac{d}{d x}(2 x-5)\right) \cdot(2 x-3)-(2 x-5) \frac{d}{d x}(2 x-3)}{(2 x-3)^{2}}
$$

quotient Remember: we cannot cancel $(2 x-3)$.

$$
\begin{aligned}
& =\frac{(2) \cdot(2 x-3)-(2 x-5)(2)}{(2 x-3)^{2}} \\
& =\frac{(4 x-6)-(4 x-10)}{(2 x-3)^{2}} \\
& =\frac{4}{(2 x-3)^{2}}
\end{aligned}
$$

$f^{\prime}(a)=f^{\prime}(3)=\frac{4}{(2(3)-3)^{2}}=\frac{4}{(3)^{2}}=\frac{4}{9}$ slope m of the tangent line.
Sub $x=3$ in to $f^{\prime}(x)$
Substitute parts in to the equation
$\left(y-\frac{1}{3}\right)=\frac{4}{9}(x-3) \begin{gathered}\text { The point slope form } \\ \text { of the tangent }\end{gathered}$ of the tangent line equation
Convert to slope intercept form by solving for y.

$$
\begin{aligned}
& y-\frac{1}{3}=\frac{4}{9}(x-3)=\left(\frac{4}{9}\right) x-\left(\frac{4}{9}\right)^{3} \\
&=\left(\frac{4}{9}\right) x-\frac{4}{3} \\
& y=\left(\frac{4}{9}\right) x-\frac{4}{3}+\frac{1}{3} \\
&=\left(\frac{4}{9}\right) x-\frac{3}{3} \\
& y=\left(\frac{4}{9}\right) x-1 \text { slope intercept foin of } \\
& \text { tangent line equation. }
\end{aligned}
$$

(B) Illustrate your result of (A) on the given graph of $f(x)$

[Example 2] (similar to 3.3\#93) Sales of a game are described by the function

$$
S(t)=\frac{50 t}{t+4}
$$

where t is the time (in months) since the game was introduced and $S(t)$ is the total sales (in thousands of games) at time t.

$$
\left(6(6) \frac{50(6)}{(6)+4}=\frac{300}{10}=\right.
$$

(B) Find $S^{\prime}(t)$. Show all details clearly, use correct notation, and simplify your answer.

$$
\begin{aligned}
S^{\prime}(t)=\frac{d}{d t}\left(\frac{50 t}{t+4}\right) & =\frac{\left(\frac{d}{d t}(50 t)\right)(t+4)-50 t\left(\frac{d}{d t}(t+4)\right)}{(t+4)^{2}} \\
\text { quatientculc } & \text { cannot cancel +he } t+4!! \\
& =\frac{(50)(t+4)-50 t(1)}{(t+4)^{2}} \\
& =\frac{50 t+200-50 t}{(t+4)^{2}} \\
& =\frac{200}{(t+4)^{2}}
\end{aligned}
$$

(C) Find $S^{\prime}(6)$.

$$
\begin{aligned}
& S^{\prime}(6)=\frac{200}{((6)+4)^{2}}=\frac{200}{(10)^{2}}=\frac{200}{100}=2 \\
& \text { sub } t=6 \\
& \text { into } s^{\prime}(t)
\end{aligned}
$$

(D) Write a brief interpretation of the answers from (A) and (C).

$$
\begin{aligned}
& \text { from }(A) \quad S(6)=30 \\
& \text { from }(C) \quad S^{\prime}(6)=2
\end{aligned}
$$

At time $t=6$ months since the game was introduced, a total of 30 thousand games have been Sold.
and the total sales are increasing at a rate roughly 2 thousand games per month.
(that is, games are selling at a rate of 2 thousand games per month at that time)
(E) Use the results of (D) to estimate the total sales after 7 months.
total sales \sim total sales + rate at which games af $t=7$ at $t=6$ are selling of $t=6$

$$
S(7) \approx S(6)+S^{\prime}(6)
$$

Recall: exact change in sales: $\Delta S=S(7)-S(6)$ approximate change in sales $=S^{\prime}(6)$

$$
\Delta S \approx S^{\prime}(6)
$$

exactchnye \approx approximate change

$$
\begin{aligned}
S(\lambda)-S(6) & \approx S^{\prime}(6) \\
S(7) & \approx S(6)+S^{\prime}(6)
\end{aligned}
$$

That is, total sales at $t=7$ mouths
will be roughly 30 thousand +2 tharsant $=32$ thus send games
(F) According to the model, roughly how many games will eventually sell?

That is, what is $\lim _{t \rightarrow \infty} S(t)$?

$$
\begin{aligned}
\lim _{t \rightarrow \infty} S(t)= & \lim _{t \rightarrow \infty} \frac{50 t)}{(t+4}=\lim _{t \rightarrow \infty} \frac{50 t}{t}
\end{aligned}=\lim _{\uparrow \rightarrow \infty} 50=50
$$

roughly 50 thousand games will eventually sell.
(G) Illustrate the results of (A),(C),(E),(F) on the given graph of $S(t)$

