Subject for this video: Chain Rule Problems with Power Function Outer Function

Reading:

- General: Section 3.4: The Chain Rule
- More Specifically: Page 204 - middle of page 210, Examples 1,2,3,4A

Homework:
H49: Chain Rule Problems with Power Function Outer Function (3.4\#21,27,29,33,37,55,67)

Recall the Derivative Rules that we learned about so far.

Rules from Section 2.5 Basic Differentiation Properties

The Constant Function Rule: $\frac{d}{d x} c=0$
The Power Rule: $\frac{d}{d x} x^{n}=n x^{n-1}$
The Sum and Constant Multiple Rule: $\frac{d}{d x}(a f(x)+b g(x))=a \frac{d}{d x} f(x)+b \frac{d}{d x} g(x)$

Rules from Section 3.2 Derivatives of Exponential and Logarithmic Functions

| Exponential Function Rule \#1: $\frac{d}{d x} e^{(x)}=e^{(x)}$ |
| :--- | :--- |
| Exponential Function Rule \#2: $\frac{d}{d x} e^{(k x)}=k e^{(k x)}$ |
| Exponential Function Rule \#3: $\frac{d}{d x} b^{(x)}=b^{(x)} \cdot \ln (b)$ |
| Logarithmic Function Rule \#1: $\frac{d}{d x} \ln (x)=\frac{1}{x}$ |
| Logarithmic Function Rule \#2: $\frac{d}{d x} \log _{b}(x)=\frac{1}{x \ln (b)}$ |

Rules from Section 3.3 Derivatives of Products and Quotients
$\left.\left.\begin{array}{|l|}\hline \text { The Product Rule: } \\ \hline \text { The Quotient Rule: } \frac{d}{d x}\left(\frac{d}{d x}(x) \cdot h(x)=g^{\prime}(x) \cdot h(x)+g(x) \cdot h^{\prime}(x)\right. \\ \operatorname{bottom}(x)\end{array}\right)=\frac{\text { top }^{\prime}(x) \operatorname{bottom}(x)-\operatorname{top}(x) \text { bottom }^{\prime}(x)}{(\operatorname{bottom}(x))^{2}}\right)$

In this video, we will learn how to take the derivative of a composition of functions. That is, a function of the form

$$
f(x)=\text { outer }(\text { inner }(x))
$$

The rule used to find the derivatives of these kinds of functions is called the Chain Rule, presented in Section 3.4 of the book.

The Chain Rule

This rule is used for finding the derivative of a compostion of functions.

Two equation form:

If

$$
f(x)=\operatorname{outer}(\text { inner }(x))
$$

then

$$
f^{\prime}(x)=\text { outer }^{\prime}(\text { inner }(x)) \cdot \text { inner }^{\prime}(x)
$$

Single equation form:

$$
\frac{d}{d x} \operatorname{outer}(\operatorname{inner}(x))=\text { outer }^{\prime}(\operatorname{inner}(x)) \cdot \operatorname{inner}^{\prime}(x)
$$

Today: Examples where the outer function is a power function.

The book solves these using what it calls the General Power Rule. That is simply a special case of the Chain Rule, and is a completely unnecessary rule. We'll just use the Chain Rule.
[Example 1] (similar to 3.4\#21) Let $f(x)=2\left(3 x^{4}+5 x^{2}+6\right)^{7}$
Find $f^{\prime}(x)$.

$$
\begin{aligned}
& f^{\prime}(x)=\frac{d}{d x} \underset{d}{2}\left(3 x^{4}+5 x^{2}+6\right)^{7} \\
& =2 \frac{d}{d x}\left(3 x^{4}+5 x^{2}+6\right)^{7} \\
& =2 \frac{d}{d x} \operatorname{auter}(\operatorname{innec}(x)) \\
& \text { use chain rule } \\
& \left.=2 \cdot \text { outer }^{\prime}(\operatorname{inner}(x)) \text { inner } 1 / x\right) \\
& =2 \cdot 7\left(3 x^{4}+5 x^{2}+6\right)^{6} \cdot\left(12 x^{3}+10 x\right) \\
& \text { ChainRule Details } \\
& \text { inner }(x)=3 x^{4}+5 x^{2}+6 \\
& \text { inner }^{\prime}(x)=\frac{d}{d x}\left(3 x^{4}+5 x^{2}+6\right) \\
& =12 x^{3}+10 x \\
& \text { outer' }()=7()^{6} \text { emptyversion }
\end{aligned}
$$

个veryimportant parentheses!

$$
=14 \cdot\left(3 x^{4}+5 x^{2}+6\right)^{6} \cdot\left(12 x^{3}+10 x\right)
$$

[Example 2] (similar to 3.4\#55) Let $f(x)=\frac{2}{\left(3 x^{4}+5 x^{2}+6\right)^{7}}$
Find $f^{\prime}(x)$.
Start ny rewriting $f(x)=\frac{2}{\left(x^{4}+5 x^{2}+6\right)^{6}}=2 \cdot\left(x^{4}+5 x^{2}+6\right)^{-7}$
positive exponent form power function form
$f^{\prime}(x)=$

$$
\begin{aligned}
& \frac{d}{d x} 2\left(x^{4}+5 x^{2}+6\right)^{-7} \\
& =2 \frac{d}{d}\left(x^{4}+5 x^{2}+6\right)^{-7} \\
& =2 \frac{d}{d x} \operatorname{Outer}(\operatorname{inner}(x)) \\
& \text { chain rule } \\
& =2 \text { outer }(\text { inner }(x)) \cdot \operatorname{inner}^{\prime}(x) \\
& \text { Chain Rule Details } \\
& \text { inner }(x)=x^{4}+5 x^{2}+6 \\
& \text { inner }{ }^{\prime}(x)=12 x^{3}+10 x \\
& \text { outer }()=()^{-7} \text { Power Function } \\
& \text { outer' }()=-7()^{-7-1} \text { emptyversion } \\
& =-x)^{-8} \\
& =2 \cdot \frac{-7}{\left(x^{4}+5 x^{2}+6\right)^{8}} \cdot\left(12 x^{3}+10 x\right) \\
& =\frac{-14\left(12 x^{3}+10 x\right)}{\left(x^{4}+5 x^{2}+6\right)^{2}}=\frac{-28 x\left(6 x^{2}+5\right)}{\left(x^{4}+5 x^{2}+6\right)^{2}}
\end{aligned}
$$

[Example 3] (similar to 3.4\#67) Let $f(x)=3 \sqrt{x^{2}-3 x+21}$

radical form power function firm

$$
\begin{aligned}
& f(x)=\frac{d}{d x} 3\left(x^{2}-3 x+12\right)^{1 / 2} \\
& \text { constant multiple rale } \\
&=3 \frac{d}{d x}\left(x^{2}-3 x+12\right)^{1 / 2} \\
&=3 \frac{d}{d x} \text { outer }(\text { inner }(x))
\end{aligned}
$$

chain rale

$$
\begin{aligned}
& =3 \text { outer }(\text { inner }(x)) \cdot \operatorname{inner}^{\prime}(x) \\
& =3 \cdot \frac{1}{2 \sqrt{\left(x^{2}-3 x+21\right)}} \cdot(2 x-3) \\
& =\frac{3(2 x-3)}{2 \sqrt{x^{2}-3 x+21}}
\end{aligned}
$$

Chain Rule Details

$$
\operatorname{inner}(x)=x^{2}-3 x+21
$$

$$
\text { inner }(x)=2 x-3
$$

$$
\operatorname{Outer}()=(\quad)^{1 / 2} \underset{\text { power function }}{\text { empirin }}
$$

$$
\left.\operatorname{outer}^{2}()=\frac{1}{2} C \quad\right)^{\frac{1}{2}-1} \text { powerinule }
$$

$$
=\frac{1}{2}(\quad)^{-\frac{1}{2}}{\underset{\text { power factious }}{ }}^{\text {form }}
$$

$$
=\frac{1}{2} \cdot \frac{1}{c \quad z^{1 / 2}}
$$

$$
=\frac{1}{2 C)^{1 / 2}} \begin{gathered}
\text { positive } \\
\text { exponent } \\
\text { form }
\end{gathered}
$$

$$
=\frac{1}{2 \sqrt{c} 2}{ }^{\text {radical } / f_{v r y}}
$$

(B) Find the equation of the line tangent to the graph of $f(x)$ at $x=4$
We need to build the equation $\left.(y-f(a))=f^{\prime}(a)(x-a)\right)$

Get Parts

Point slope furn. of the equation of the tangent line
$a=4$ the x coordinate of the point of tangency

$$
f(9)=f(4)=\quad 3 \sqrt{(4)^{2}-3(4)+21}=3 \sqrt{16-12+2)}=3 \sqrt{25}=3.5
$$

substitute $x=4$

$$
\text { into } f(x)=3 \sqrt{x^{2}-3 x+21}
$$

y coordinate of the point
$f^{\prime}(a)=f^{\prime}(4)=\frac{3(2(4)-3)}{2(4)}=3(8-3)$
substitute $x=4$
$=\frac{3.5}{2.5}=\frac{3}{2}$
slope of the tangent
line

$$
\begin{aligned}
& \text { Substitute } x=4 \\
& \text { into } f^{\prime}(x)=\frac{3(2 x-3)}{2 \sqrt{x^{2}-3 x+21}}
\end{aligned}
$$

Substitute parts into the equation

$$
(y-15)=\frac{3}{2}(x-4)
$$

pointslope form of the equation of the tangent line convert to slope intercept firm

$$
\begin{gathered}
y-15=\left(\frac{3}{2}\right)(x-4)=\left(\frac{3}{2}\right) x-\left(\frac{3}{2}\right) 4=\left(\frac{3}{2}\right) x-6 \\
y=\left(\frac{3}{2}\right) x+9
\end{gathered} \begin{aligned}
& \text { slope. intraent form ot the } \\
& \text { equation of the tangent line }
\end{aligned}
$$

(C) Find x coordinates of all points on the graph of $f(x)$ that have horizontal tangent lines.

Important connection: Horizontal tangent lines have slope $m=0$
Also: The slope of the line tangent to graph of $f(x)$

$$
=f^{\prime}(c)
$$

at $X=c$
We are looking for all $x=c$ such that $f^{\prime}(c)=0$ Strategy: Set $f^{\prime}(x)=0$ and solve for x

$$
0=f^{\prime}(x)=\frac{3(2 x-3)}{2 \sqrt{x^{2}-3 x+21}}
$$

Recall that a fraction $\frac{g}{b}=0$ only when $a=0$ and $b \neq 0$
Find all X values where the numerator $=0$

$$
\begin{aligned}
& 0=3(2 x-3) \\
& 0=2 x-3 \\
& x=\frac{3}{2} \\
& \text { check the denominatoretree, it is nin-zero } \\
& \text { horizontal tangent line } \\
& a x x=\frac{3}{2} \text { because } f^{\prime}(x)=0 \text { there } \\
& \begin{array}{l}
\text { Crack the denominate tr see, it it is nin-2ero } \\
\quad 2 \sqrt{\left(\frac{3}{2}\right)^{2}-3\left(\frac{3}{2}\right)+21}=2 \sqrt{\frac{9}{4}-\frac{9}{2}+21}=2 \sqrt{\frac{-9}{4}+21}=2 \sqrt{\frac{75}{4}} \neq 0
\end{array}
\end{aligned}
$$

(D) Illustrate the results from (B) and (C) on the given graph of $f(x)$.

