Subject for this video:

Applied Problems Involving the Chain Rule

Reading:

- General: Section 3.4: The Chain Rule
- More Specifically: There is no discussion of, or examples of, applied problems involving the Chain Rule in Section 3.4. But discussion or book examples are not really needed: We have seen applied problems in book sections 2.4, 2.5, 3.2, and 3.3. All the applied problems involve the same general concepts. Only the particular technique used to find the derivative varies.

Homework:

H51: Applied Problems Involving the Chain Rule (3.4\#91,95)

Recall this definition of Average Rate of Change, from the video for Homework H25:

Definition of Average Rate of Change
words: the average rate of change of from $x=a$ to $x=b$
usage: f is a function that is continuous on the interval $[a, b]$.
meaning: the number $m=\frac{f(b)-f(a)}{b-a}$
graphical interpretation: The number m is the slope of the secant line that touches the graph of f at the points $(a, f(a))$ and $(b, f(b))$.
remark: The average rate of change m is a number.

And recall this diagram showing Three Equal Quantities, from the video for Homework H33:

Three Equal Quantities
(the most important concept of the second month of the course)

Derivative Rules from Section 2.5 Basic Differentiation Properties

The Constant Function Rule: $\frac{d}{d x} c=0$
The Power Rule: $\frac{d}{d x} x^{n}=n x^{n-1}$
The Sum and Constant Multiple Rule: $\frac{d}{d x}(a f(x)+b g(x))=a \frac{d}{d x} f(x)+b \frac{d}{d x} g(x)$

Derivative Rules from Section 3.2 Derivatives of Exponential and Logarithmic Functions

Exponential Function Rule \#1: $\frac{d}{d x} e^{(x)}=e^{(x)}$
Exponential Function Rule \#2: $\frac{d}{d x} e^{(k x)}=k e^{(k x)}$
Exponential Function Rule \#3: $\frac{d}{d x} b^{(x)}=b^{(x)} \cdot \ln (b)$
Logarithmic Function Rule \#1: $\frac{d}{d x} \ln (x)=\frac{1}{x}$
Logarithmic Function Rule \#2: $\frac{d}{d x} \log _{b}(x)=\frac{1}{x \ln (b)}$

Derivative Rules from Section 3.3 Derivatives of Products and Quotients

The Product Rule: $\quad \frac{d}{d x} g(x) \cdot h(x)=g^{\prime}(x) \cdot h(x)+g(x) \cdot h^{\prime}(x)$
The Quotient Rule: $\frac{d}{d x}\left(\frac{\operatorname{top}(x)}{\operatorname{bottom}(x)}\right)=\frac{\text { top }^{\prime}(x) \operatorname{bottom}(x)-\operatorname{top}(x) \text { bottom }^{\prime}(x)}{(\operatorname{bottom}(x))^{2}}$

Derivative Rule from Section 3.4 The Chain Rule The Chain Rule: $\frac{d}{d x}$ outer $($ inner $(x))=$ outer $^{\prime}($ inner $(x)) \cdot$ inner $^{\prime}(x)$
[Example 1] (similar to 3.4\#91) A company makes ventilators. The daily cost function is

$$
C(x)=60+40 \sqrt{4 x+36}
$$

In this equation,
x is the number of ventilators produced each day.
$C(x)$ is the cost per day, in thousands of dollars.
(A) Find $C(0)$ (exact answer)

$$
\begin{aligned}
C(0) & =60+40 \sqrt{4(0)+36}=60+40 \sqrt{36}=60+40 \cdot 6 \\
& =60+240=300
\end{aligned}
$$

(B) Find $C(16)$ and $C(91)$ (exact answers)

$$
\begin{aligned}
C(16) & =60+40 \sqrt{4(16)+36}=60+40 \sqrt{64+36}= \\
& =60+40 \sqrt{100}=60+40 \cdot 10=460 \\
C(91) & =60+40 \sqrt{4(91)+36}=60+40 \sqrt{364+36}= \\
& =60+40 \sqrt{400}=60+40-20=860
\end{aligned}
$$

(C) Find C^{\prime} (16) and $C^{\prime}(91)$

Need to get $c^{\prime}(x)$ first
Start by rewriting $C(x)=60+40 \sqrt{4 x+36}=60+40(4 x+36)^{1 / 2}$ radical form
powerfunction form

$$
\begin{aligned}
c^{1 /}(x) & =\frac{d}{d x}\left(60+40(4 x+36)^{1 / 2}\right) \\
& =\frac{d}{d x} 60+40 \frac{d}{d x}(4 x+36)^{1 / 2} \\
& =0+40 \frac{d}{d x} \text { onter(inner(x)) }
\end{aligned}
$$

chain rule

$$
\begin{aligned}
& =40 \cdot \text { outer}^{\prime}(\text { inner }(x)) \cdot \text { inner }^{\prime}(x) \\
& =40 \cdot \frac{1}{2 \sqrt{(4 x+36)}} \cdot 4=\frac{80}{\sqrt{4 x+36}}
\end{aligned}
$$

Chain rule details

$$
\begin{aligned}
& \text { inner }(x)=4 x+36 \\
& \text { inner }^{\prime}(x)=\frac{d}{d x}(4 x+36)=4
\end{aligned}
$$

$$
\text { outer }()=()^{1 / 2} \text { empty }
$$

$$
\text { antes' })=\frac{1}{2}()^{\frac{1}{2}-1} \text { vision }
$$

$$
=\frac{1}{2}()^{-\frac{1}{2}} \underset{\text { vescosion }}{\text { emp }}
$$

$$
=\frac{1}{2} \cdot \frac{1}{\left(J^{1 / 2}\right.}
$$

$$
\begin{aligned}
& c^{\prime}(16)=\frac{80}{\sqrt{4(16)+36}}=\frac{80}{\sqrt{100}}=\frac{80}{10}=8 \\
& c^{\prime}(91)=\frac{80}{\sqrt{4(91)+36}}=\frac{80}{\sqrt{400}}=\frac{80}{20}=4
\end{aligned}
$$

$$
=\frac{1}{2 \sqrt{(x)}}
$$

(D) Interpret the results of (A), (B), and (C).
(A) The fixed costs are 300 thousand dollars perday.
(B) If the company produces 16 ventilators perday, their costs will he 460 thousand dollars perday
If the company produces 91 ventilators per day, their costs will be 860 thousand dollars perday.
(c) If the production changes from 16 ventilation nee day to 17, "the costs will increase by roughly 8 thousand dollars "The cost of the next ventilator"
If the production charges from 91 ventilators per day to 92 , The costs will increase by roughly 4 thousand dollars. "the cost of the next unxilator"
Notice: the "cost of the next ventilator" decreases
(E) Illustrate each of the quantities found in (A), (B), (C) on the given graph of the cost function.

[Example 2] (similar to 3.4\#95) A drug is administered by injection.
The drug concentration (in milligrams per liter) in the bloodstream t hours after the injection is given by the formula

$$
c(t)=3 e^{\left(-\frac{t}{2}\right)} \text { for } 0 \leq t
$$

(A) Find the concentration after 1 hour and after 4 hours. (Give an exact answers in symbols and approximate answers in decimals. Include units in your answer.)

$$
\begin{array}{r}
C(1)=3 e^{\left(-\frac{1}{2}\right)}=3 \cdot \frac{1}{e^{1 / 2}}=\frac{3}{\sqrt{e}} \approx 1.82 \text { milligrams per liter } \\
C(4)=3 e^{\left(-\frac{4}{2}\right)}=3 \cdot e^{-2}=\frac{3 \cdot 1}{e^{2}}=\frac{3}{e^{2}} \approx 0.41 \text { milligrams } \\
\text { exact } \begin{array}{l}
\text { approximation } \\
\text { exact approximation }
\end{array}
\end{array}
$$

(B) Find the rate of change of the concentration after 1 hour. (Give an exact answer in symbols and then approximate answer in decimals. Include units in your answer.)

We are being asked for $C^{\prime}(1)$
Strategy: - find $c^{\prime}(t)$

- Substitute in $t=1$ to get $c^{\prime}(1)$

$$
c^{\prime}(t)=\frac{d}{d t}\left(3 e^{\left(-\frac{t}{2}\right)}\right)=3 \frac{d}{d t} e^{\left(-\frac{1}{2} \cdot t\right)} \quad-\frac{t}{2}=\frac{-1}{2} \cdot t
$$

$$
=3\left(-\frac{1}{2}\right) e^{\left(\left(-\frac{1}{2}\right) \cdot t\right)}=-\frac{3}{2} e^{\left(-\frac{t}{2}\right)}
$$

$$
c^{\prime}(1)=-\frac{3}{2} e^{\left(-\frac{1}{2}\right)}=-\frac{3}{2} \cdot \frac{1}{e^{1 / 2}}=-\frac{3}{2 \sqrt{e}} \approx-0.91 \text { milligramsper }
$$

Concentration is decreasing at a rate of 0.91 milligrams per liter per hour
(C) Find the rate of change of the concentration after 4 hours. (Give an exact answer in symbols and then approximate answer in decimals. Include units in your answer.)

$$
C^{\prime}(4)=-\frac{3}{2} e^{\left(-\frac{4}{2}\right)}=-\frac{3}{2} e^{(-2)}=-\frac{3}{2} \frac{1}{e^{2}}
$$

Substitute $t=4$
into $C^{\prime}(t)=-\frac{3}{2} e^{-\frac{t}{2}}$

$$
=\frac{-3}{2 e^{2}} \underset{\text { approximate }}{\text { exact }}
$$

At time 4 hours, concentration is decreasing at a rate roughly 0.20 milligrams per liter per hour
(D) Find the average rate of change of the concentration from 1 to 4 hours. (Give an exact answer in symbols and then approximate answer in decimals. Include units in your answer.)

$$
\begin{aligned}
\text { Average ante of change }= & m=\frac{c(4)-c(1)}{4-1}=\frac{c(4)-c(1)}{3} \\
= & \frac{\frac{3}{e^{2}}-\frac{3}{\sqrt{e}}}{3}=\frac{1}{3}\left(\frac{3}{e^{2}}-\frac{3}{\sqrt{e}}\right) \\
= & \frac{1}{e^{2}}-\frac{1}{\sqrt{e}} \approx-.41 \quad \text { milligrams per lite } \\
& \text { exact approximate per hour }
\end{aligned}
$$

Over the 3 hour period from $t=1$ to $t=4$, the concentration decreased at an average rate of 0,41 milligrams per lifer per hour
(E) Illustrate the quantities found ir (A), (B), (C), (D) oh the given graph of the concentration.

