Subject for this video:

Product Rule then Chain Rule

Reading:

- General: Section 3.4: The Chain Rule
- More Specifically: There is no discussion of this kind of problem in Section 3.4, and no similar examples.

Homework:
H52: Product Rule then Chain Rule $(3.4 \# 47,79)$

Derivative Rules from Section 2.5 Basic Differentiation Properties

The Constant Function Rule: $\frac{d}{d x} c=0$
The Power Rule: $\frac{d}{d x} x^{n}=n x^{n-1}$
The Sum and Constant Multiple Rule: $\frac{d}{d x}(a f(x)+b g(x))=a \frac{d}{d x} f(x)+b \frac{d}{d x} g(x)$

Derivative Rules from Section 3.2 Derivatives of Exponential and Logarithmic Functions

Exponential Function Rule \#1: $\frac{d}{d x} e^{(x)}=e^{(x)}$
Exponential Function Rule \#2: $\frac{d}{d x} e^{(k x)}=k e^{(k x)}$
Exponential Function Rule \#3: $\frac{d}{d x} b^{(x)}=b^{(x)} \cdot \ln (b)$
Logarithmic Function Rule \#1: $\frac{d}{d x} \ln (x)=\frac{1}{x}$
Logarithmic Function Rule \#2: $\frac{d}{d x} \log _{b}(x)=\frac{1}{x \ln (b)}$

Derivative Rules from Section 3.3 Derivatives of Products and Quotients

The Product Rule: $\quad \frac{d}{d x} g(x) \cdot h(x)=g^{\prime}(x) \cdot h(x)+g(x) \cdot h^{\prime}(x)$
The Quotient Rule: $\frac{d}{d x}\left(\frac{\operatorname{top}(x)}{\operatorname{bottom}(x)}\right)=\frac{\text { top }^{\prime}(x) \operatorname{bottom}(x)-\operatorname{top}(x) \text { bottom }^{\prime}(x)}{(\operatorname{bottom}(x))^{2}}$

Derivative Rule from Section 3.4 The Chain Rule The Chain Rule: $\frac{d}{d x}$ outer $($ inner $(x))=$ outer $^{\prime}($ inner $(x)) \cdot$ inner $^{\prime}(x)$
[Example 1] (similar to 3.4\#47) Let $f(x)=7 x e^{\left(x^{2}-5\right)}$

$$
f^{\prime}(x)=\frac{d}{d x}(7 x)\left(e^{\left(\left(x^{2}-5\right)\right)}\right)
$$

$$
\begin{aligned}
& \text { must use the product rule } \\
& =\left(\frac{d}{d x}\right) \cdot e^{\left(x^{2}-5\right)}+(7 x) \frac{d}{d x} e^{\left(x^{2}-5\right)} \\
& =(7) \cdot e^{\left(x^{2}-5\right)}+7 x \cdot\left(e^{\left(x^{5} 5\right)} \cdot 2 x\right) \\
& =7 e^{\left(x^{2}-5\right)}+14 x^{2} e^{\left(x^{2}-5\right)} \\
& =\left(7+14 x^{2}\right) e^{\left(x^{2}-5\right)}
\end{aligned}
$$

\qquad
[Example 2] (similar to 3.4\#79) Find $\frac{d}{d x}\left[2 x^{2}\left(x^{3}-3\right)^{4}\right]$

$$
\begin{aligned}
& \frac{d}{d x}\left[2 x^{2} \cdot\left(\left(x^{3}-3\right)^{4}\right]_{\substack{\text { Pronct } \\
\text { ane }}}^{d x}=\left(\frac{d}{d x} 2 x^{2}\right) \cdot\left(x^{3}-3\right)^{4}+2 x^{2} \cdot \frac{d}{d x}\left(\left(x^{3}-3\right)^{4}\right)\right. \\
& =(2.2 x)\left(x^{3}-3\right)^{4}+2 x^{2}\left(4\left(x^{3}-3\right)^{3} \cdot 3 x^{2}\right) \begin{array}{l}
\text { Chan Rule Didands } \\
\text { inner }(x)=x^{3}-3
\end{array} \\
& =4 x\left(x^{3}-3\right)^{4}+24 x^{4}\left(x^{3}-3\right)^{3} \\
& =4 x\left(x^{3}-3\right)^{3} \cdot\left(x^{3}-3\right)+4 x\left(x^{3}-3\right)^{3} \cdot 6 x^{3} \\
& \text { factor } \\
& =4 x\left(x^{3}-3\right)^{3}\left[\left(x^{3}-3\right)+\left(6 x^{3}\right)\right] \\
& =4 x\left(x^{3}-3\right)^{3}\left[7 x^{3}-3\right] \\
& \text { inner }(x)=3 x^{2} \\
& \text { outer }()=()^{4} \\
& \text { empty version } \\
& \text { Ontery) }=4()^{3}
\end{aligned}
$$

