Subject for this video:

Product Rule then Chain Rule

Reading:

- General: Section 3.4: The Chain Rule
- More Specifically: There is no discussion of this kind of problem in Section 3.4, and no similar examples.

Homework:

H52: Product Rule then Chain Rule (3.4#47,79)

Derivative Rules from Section 2.5 Basic Differentiation Properties

The Constant Function Rule:
$$\frac{d}{dx}c = 0$$
The Power Rule: $\frac{d}{dx}x^n = nx^{n-1}$ The Sum and Constant Multiple Rule: $\frac{d}{dx}(af(x) + bg(x)) = a\frac{d}{dx}f(x) + b\frac{d}{dx}g(x)$

Derivative Rules from Section 3.2 Derivatives of Exponential and Logarithmic Functions

Exponential Function Rule #1:
$$\frac{d}{dx}e^{(x)} = e^{(x)}$$
Exponential Function Rule #2: $\frac{d}{dx}e^{(kx)} = ke^{(kx)}$ **Exponential Function Rule #3:** $\frac{d}{dx}b^{(x)} = b^{(x)} \cdot \ln(b)$ **Logarithmic Function Rule #1:** $\frac{d}{dx}\ln(x) = \frac{1}{x}$ **Logarithmic Function Rule #2:** $\frac{d}{dx}\log_b(x) = \frac{1}{x\ln(b)}$

Derivative Rules from Section 3.3 Derivatives of Products and Quotients

The Product Rule:
$$\frac{d}{dx}g(x) \cdot h(x) = g'(x) \cdot h(x) + g(x) \cdot h'(x)$$
The Quotient Rule:
$$\frac{d}{dx} \left(\frac{top(x)}{bottom(x)} \right) = \frac{top'(x)bottom(x) - top(x)bottom'(x)}{(bottom(x))^2}$$

Derivative Rule from Section 3.4 The Chain Rule

The Chain Rule:
$$\frac{d}{dx}outer(inner(x)) = outer'(inner(x)) \cdot inner'(x)$$

[Example 1] (similar to 3.4#47) Let $f(x) = 7xe^{(x^2-5)}$ Find f'(x) $\int '(\chi) =$ must use the product rule $(\frac{d}{dx}, \frac{7x}{dx}) \cdot e^{(x^2-5)} + (7x)$ Chain Rule Details $Coner(x) = \chi^2$ l'oner'(x)=2X $(7) \cdot e^{(\chi^2 - 5)} + 7\chi \cdot e^{(\chi^2 - 5)}$ Chain call Outer()=e() empty ressin outer()=e() $7e^{(x^2-5)} + 14x^2$ $|e^{(\chi^2-5)}$ $/ + / 4\chi$

[Example 2] (similar to 3.4#79) Find $\frac{d}{dx} [2x^2(x^3 - 3)^4]$ $= \left(\begin{array}{c} d & 2 \\ \overline{d} \\ \overline{d} \\ \end{array} \right) \left(\begin{array}{c} \chi^{3} \\ -3 \end{array} \right)^{4} + 2 \chi^{2}.$ Chain rule pro du ct $= (2.2 \times)(\chi^{2} \times)^{4} + 2 \times^{2} (4(\chi^{3} \times)^{3} \times)^{4}$ $inner(x) = \chi^{3} - 2$ $= 4X (X^{3}-3)^{4} + 24X^{4} (X^{3}-3)^{3}$ $inner(x) = 3x^2$ outer() = ($= 4 \times (x^{3}-3)^{3} \cdot (x^{3}-3) + 4 \times (x^{3}-3)^{3} \cdot 6x^{3}$ 2 mpty version Outer()=4(Sactor $(\chi^{3}-3) + (6\chi^{3})$ $= 4 \times (x^{3} - 3)^{3}$ $= 4 \chi (\chi^{3} - 3)^{3} [7\chi^{3} - 3]$